Macaulay2 » Documentation
Packages » TestIdeals :: MaxCartierIndex
next | previous | forward | backward | up | index | toc

MaxCartierIndex -- an option to specify the maximum number to consider when computing the Cartier index of a divisor

Description

Some functions need to search for the smallest positive integer $N$ such that $N$ times a divisor (usually the canonical divisor) is Cartier. The option MaxCartierIndex is used to specify the largest integer to be considered in this search.

Functions with optional argument named MaxCartierIndex:

  • isFRegular(...,MaxCartierIndex=>...) -- see isFRegular -- whether a ring or pair is strongly F-regular
  • testIdeal(...,MaxCartierIndex=>...) -- see testIdeal -- compute a test ideal in a Q-Gorenstein ring

For the programmer

The object MaxCartierIndex is a symbol.


The source of this document is in /build/reproducible-path/macaulay2-1.25.05+ds/M2/Macaulay2/packages/TestIdeals/testIdealsDoc.m2:94:0.