Macaulay2 » Documentation
Packages » GameTheory :: probabilitySumIdeal
next | previous | forward | backward | up | index | toc

probabilitySumIdeal -- ideal enforcing that a probability distribution sums to 1

Description

Constructs the ideal expressing normalization of a joint probability distribution. If given a list, it first calls probabilityRing with default options.

i1 : R = probabilityRing {2,3,4};
i2 : probabilitySumIdeal R

o2 = ideal(p          + p          + p          + p          + p          +
            {0, 0, 0}    {0, 0, 1}    {0, 0, 2}    {0, 0, 3}    {0, 1, 0}  
     ------------------------------------------------------------------------
     p          + p          + p          + p          + p          + p      
      {0, 1, 1}    {0, 1, 2}    {0, 1, 3}    {0, 2, 0}    {0, 2, 1}    {0, 2,
     ------------------------------------------------------------------------
        + p          + p          + p          + p          + p          +
     2}    {0, 2, 3}    {1, 0, 0}    {1, 0, 1}    {1, 0, 2}    {1, 0, 3}  
     ------------------------------------------------------------------------
     p          + p          + p          + p          + p          + p      
      {1, 1, 0}    {1, 1, 1}    {1, 1, 2}    {1, 1, 3}    {1, 2, 0}    {1, 2,
     ------------------------------------------------------------------------
        + p          + p          - 1)
     1}    {1, 2, 2}    {1, 2, 3}

o2 : Ideal of R

See also

Ways to use probabilitySumIdeal:

  • probabilitySumIdeal(Ring)

For the programmer

The object probabilitySumIdeal is a method function.


The source of this document is in /build/reproducible-path/macaulay2-1.25.05+ds/M2/Macaulay2/packages/GameTheory.m2:1577:0.