X = source f
Given a toric map $f : X \to Y$, this method returns the normal toric variety $X$.
We illustrate how to access this defining feature of a toric map with the projection from the second Hirzebruch surface to the projective line.
|
|
|
|
|
Any normal toric variety is the source of its diagonal map.
|
|
|
In a well-defined toric map, the number of columns in the underlying matrix equals the dimension of the source.
|
Since this is a defining attribute of a toric map, no computation is required.
The source of this document is in /build/reproducible-path/macaulay2-1.25.05+ds/M2/Macaulay2/packages/NormalToricVarieties/ToricMapsDocumentation.m2:155:0.