Macaulay2 » Documentation
Packages » ConnectionMatrices » isEpsilonFactorized
next | previous | forward | backward | up | index | toc

isEpsilonFactorized -- checks whether a system of connection matrices is in $\epsilon$-factorized form

Description

This method returns true if the system of connection matrices factors out (a power of) eps, such that the resulting matrices are independent of eps.

i1 : D = makeWeylAlgebra(frac(QQ[ϵ])[x]);
i2 : I = ideal(x*(1-x)*dx^2 - ϵ*(1-x)*dx);

o2 : Ideal of D
i3 : A = connectionMatrices(I, {1_D, 1/ϵ*dx})

o3 = {| 0 ϵ   |}
      | 0 ϵ/x |

o3 : List
i4 : isEpsilonFactorized(A, ϵ)

o4 = true

See also

Ways to use isEpsilonFactorized:

  • isEpsilonFactorized(List,RingElement)
  • isEpsilonFactorized(Matrix,RingElement)

For the programmer

The object isEpsilonFactorized is a method function.


The source of this document is in /build/reproducible-path/macaulay2-1.25.05+ds/M2/Macaulay2/packages/ConnectionMatrices/docs.m2:327:0.