
The ltmarks.dtx code∗

Frank Mittelbach, LATEX Project†

June 9, 2025

Abstract
Marks are used to communicate information about the content of a page to the

output routine. For example, in order to construct running headers, the output
routine needs information about which section names are present on a page, and
this information is passed to it through the mark system. However, marks may
also be used for other purposes. This module provides a generalized mechanism for
marks of independent classes.

Contents
1 Introduction 2

2 Design-level and code-level interfaces 2
2.1 Use cases for conditionals . 5
2.2 Understanding regions . 5
2.3 Debugging mark code . 7

3 Application examples 7

4 Legacy LATEX 2ε interface 7
4.1 Legacy design-level and document-level interfaces 8
4.2 Legacy interface extensions . 8

5 Notes on the mechanism 9

6 Public interfaces for packages such as multicol 10

7 Internal functions for the standard output routine of LATEX 11

8 The Implementation 12
8.1 Allocating new mark classes . 12
8.2 Updating mark structures . 14
8.3 Placing and retrieving marks . 22
8.4 Comparing mark values . 24
8.5 Messages . 24
8.6 Debugging the mark structures . 25
8.7 Designer-level interfaces . 27

∗This file has version v1.1c dated 2025/05/22, © LATEX Project.
†E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

9 LATEX 2ε integration 28
9.1 Core LATEX 2ε integration . 28
9.2 Other LATEX 2ε output routines . 31
9.3 Rollback information . 31

1 Introduction
The TEX engines offer a low-level mark mechanism to communicate information about
the content of the current page to the asynchronous operating output routine. It works
by placing \mark commands into the source document. When the material for the current
page is assembled in box 255, TEX scans for such marks and sets the commands \topmark,
\firstmark and \botmark. The \firstmark receives the content of the first \mark seen
in box 255 and \botmark the content of the last mark seen. The \topmark holds the
content of the last mark seen on the previous page or more exactly the value of \botmark
from the previous page. If there are no marks on the current page then all three are
made equal to the \botmark from the previous page.

This mechanism works well for simple formats (such as plain TEX) whose output
routines are only called to generate pages. It fails, however, in LATEX (and other more
complex formats), because here the output routine is sometimes called without producing
a page, e.g., when encountering a float and placing it into one of the float regions. In that
case the output routine is called, determines where to place the float, alters the goal for
assembling text material (if the float was added to the top or bottom region) and then
it resumes collecting textual material.

As a result the \botmark gets updated and so \topmark no longer reflects the situ-
ation at the top of the next page when that page is finally boxed.

Another problem for LATEX was that it wanted to use several “independent” marks
and in the early implementations of TEX there was only a single \mark command available.
For that reason LATEX implemented its own mark mechanism where the marks always
contained two parts with their own interfaces: \markboth and \markright to set marks
and \leftmark and \rightmark to retrieve them.

However, this extended mechanism (while supporting scenarios such as chap-
ter/section marks) was far from general. The mark situation at the top of a page (i.e.,
\topmark) remained unusable and the two marks offered were not really independent of
each other because \markboth (as the name indicates) was always setting both.

The new mechanism overcomes both issues:

• It provides arbitrarily many, fully independent named marks, that can be allocated
and, from that point onwards, used.

• It offers access for each such marks to retrieve its top, first, and bottom values
separately.

• Furthermore, the mechanism is augmented to give access to marks in different
“regions” which may not be just full pages.

2 Design-level and code-level interfaces
The interfaces are mainly meant for package developers, but they are usable (with appro-
priate care) also in the document preamble, for example, when setting up special running

2

headers with fancyhdr, etc. They are therefore available both as CamelCase commands
as well as commands for use in the L3 programming layer. Both are described together
below.

\NewMarkClass {⟨class⟩}
\mark_new_class:n {⟨class⟩}

Declares a new ⟨class⟩ of marks to be tracked by LATEX. Each ⟨class⟩ must be declared
before it is used.

Mark classes can only be declared before \begin{document}.

\NewMarkClass
\mark_new_class:n

\InsertMark {⟨class⟩} {⟨text⟩}
\mark_insert:nn {⟨class⟩} {⟨text⟩}

Adds a mark to the current galley for the ⟨class⟩, containing the ⟨text⟩.
It has no effect in places in which you can’t place floats, e.g., a mark inside a box or

inside a footnote never shows up anywhere.
If used in vertical mode it obeys LATEX’s internal @nobreak switch, i.e., it does not

introduce a breakpoint if used after a heading. If used in horizontal mode it doesn’t
handle spacing (like, for example, \index or \label does, so it should be attached to
material that is typeset.

\InsertMark
\mark_insert:nn

\AddToHook {insertmark} {⟨code⟩}

When marks are inserted, the mark content may need some special treatment, e.g., by
default \label, \index, and \glossary do not expand at this time (but only later if and
when the mark content is actually used. In order to allow packages to augment or alter
this setup there is a public hook insertmark that is executed at this point. It runs in
a group so local modification to commands are only applied to the ⟨text⟩ argument of
\InsertMark or \mark_insert:nn.

insertmark

3

\TopMark [⟨region⟩] {⟨class⟩}
\FirstMark [⟨region⟩] {⟨class⟩}
\LastMark [⟨region⟩] {⟨class⟩}
\mark_use_top:nn {⟨region⟩} {⟨class⟩}
\mark_use_first:nn {⟨region⟩} {⟨class⟩}
\mark_use_last:nn {⟨region⟩} {⟨class⟩}

These functions expand to the appropriate mark ⟨text⟩ for the given ⟨class⟩ in the
specified ⟨region⟩. The default ⟨region⟩ in the design-level commands is page. Note
that with the L3 layer commands there are no optional arguments, i.e., both arguments
have to be provided.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨text⟩ does not expand further when appearing in an x-type or e-type
argument expansion.

The “first” and “last” marks are those seen first and last in the current region/page,
respectively. The “top” mark is the last mark of the ⟨class⟩ seen in an earlier region,
i.e., the ⟨text⟩ what would be “current” at the very top of the region.

Important! The commands are only meaningful inside the output routine, in other places their
result is (while not random) unpredictable due to the way LATEX cuts text material into
pages. There is, however, one exception: if you produce multiple columns using the
multicol package, it is possible to retrieve mark values from the regions first-column,
last-column, mcol-1, mcol-2,. . . directly after the environment has ended. This can,
for example, be useful if a multicols has been be used inside a box.

\TopMark ⋆
\FirstMark ⋆
\LastMark ⋆
\mark_use_top:nn ⋆
\mark_use_first:nn ⋆
\mark_use_last:nn ⋆

Currently, ⟨region⟩ is one of page, previous-page, column, previous-column,
first-column, last-column, and mcol-1 (first column in a multicols), mcol-2 (sec-
ond column in a multicols), up to mcol-20 (twentieth column in a multicols). See
section ?? for discussion of how these regions behave and how one can make use of them.

\IfMarksEqualTF [⟨region⟩] {⟨class⟩} {⟨pos1⟩} {⟨pos2⟩} {⟨true⟩} {⟨false⟩}
\mark_if_eq:nnnnTF {⟨region⟩} {⟨class⟩} {⟨pos1⟩} {⟨pos2⟩} {⟨true⟩} {⟨false⟩}
\mark_if_eq:nnnnnnTF {⟨region1⟩} {⟨class1⟩} {⟨pos1⟩}

{⟨region2⟩} {⟨class2⟩} {⟨pos2⟩} {⟨true⟩} {⟨false⟩}
These conditionals allow you to compare the content of two marks and act based on the
result. The commands work in an expansion context, if necessary.

\IfMarksEqualTF ⋆
\IfMarksEqualT ⋆
\IfMarksEqualF ⋆
\mark_if_eq:nnnnTF ⋆
\mark_if_eq:nnnnnnTF ⋆

It is quite common when programming with marks to need to interrogate conditions
such as whether marks have appeared on a previous page, or if there are multiple marks
present on the current page, and so on. The tests above allow for the construction of a
variety of typical test scenarios, with three examples presented below.

The first two conditionals cover only the common scenarios. Both marks are picked
up from the same ⟨region⟩ (by default page) and they have to be of the same ⟨class⟩.1
The ⟨posi⟩ argument can be either top, first, or last.

Important to note is that the comparison is not with respect to the textual content
of the marks but whether or not they originated from the same \InsertMark command
(or the L3 layer version \mark_insert:nn).

If you wish to compare marks across different regions or across different classes, you
have to do it using the generic test only available in the L3 programming layer or do it
manually, i.e., get the marks and then compare the values yourself.2

1If an undeclared mark class is used the tests return true (not an error).
2If two undeclared mark classes are compared the result is always true; if a declared and an undeclared

4

2.1 Use cases for conditionals
However, the basic version is enough for the following typical use cases:

Test for at most one mark of class myclass on current page: If the first and last
mark in a region are the same then either there was no mark at all, or there was
at most one. To test this on the current page:

\NewMarkClass{myclass}
\IfMarksEqualTF{myclass}{first}{last}

{ <zero or one mark> }{ <two or more marks> }

Test for no mark of class myclass in the previous page: If the top mark is the
same as the first mark, there is no mark in the region at all. If we wanted to
do this test for the previous page:

\IfMarksEqualTF[previous-page]{myclass}{top}{first}
{ <no marks> }{ <at least one mark> }

Comparing top and last would give you the same result.

Test for zero, one, or more than one: Combining the two tests from above you can
test for zero, one or more than one mark.

\IfMarksEqualTF{myclass}{top}{first}
{ <no marks> }
{\IfMarksEqualTF{myclass}{first}{last}

{ <exactly one mark> }{ <more than one mark> }}

If you need one of such tests more often (or if you want a separate command for it
for readability), then consider defining:

\providecommand\IfNoMarkTF[2][page]{\IfMarksEqualTF[#1]{#2}{first}{last}}

2.2 Understanding regions
If a page has just been finished then the region page refers to the current page and
previous-page, as the name indicates, refers to the page before the current page. This
means you are able to access mark information for the current page as well as for the page
before (as long as you are inside the output routine) without the need to explicitly save
that information beforehand. The page region is the region that is most often queried,
which is why commands like \FirstMark use that region by default.

In single column documents the column is the same as the page region, but in
two-column documents (if not produced by multicols), column refers to the current
column that just got finished and previous-column to the one previously finished. Code
for running headers is (in standard LATEX) evaluated only after both columns have been
assembled, which is another way of saying that in that case previous-column refers to
the left column and column to the right column. However, to make these somewhat
easier to use, there are also aliased names for these two regions: first-column and
last-column.3

mark class is used it is always false.
3The region is called “last-column” not “second-column” in anticipation of extending the mechanism to

multiple columns, where first and last would still make sense. There aren’t any previous-first-column
and previous-last-column regions to access the corresponding columns from the previous page.

5

Note that you can only look backwards at already processed regions, e.g., in a
twoside document finishing a recto (odd, right-hand) page you can access the data
from the facing verso (left-hand) page, but if you are finishing a left-hand page you can’t
integrate data from the upcoming right-hand page. If such a scenario needs to be realized
then it is necessary to save the left-hand page temporarily instead of finalizing it, process
material for the right-hand page and once both are ready, attach running headers and
footers and shipout out both in one go.4

The situation starts getting rather complex if you allow for multiple columns in
the way they are supported by the multicol package. In this case you might have a
variable number of “columns” on a single page to be shipped out. And even if not, then
a multicols might start or end in the middle of the page; in either case, the regions
column and previous-column become rather meaningless and you should therefore not
use them.5 Instead, the algorithm offers mcol-1, mcol-2, mcol-3, etc., to represent the
columns in the multicols on the current page to be shipped out. If there is more than
one multicols on the current page then in the output routine only the columns of the
last one will be accessible.

These provisions cover, out of the box, a number of layouts and use cases, but obvi-
ously not all. However, more cases can be supported by storing away mark information
during the processing. Here is the full algorithm:

• The column region is used by the “current column” that is being built (moving
through all columns with previous-column trailing behind (to handle top marks
properly).

• When the multicols starts, the column region is cleared, i.e., from that point on
it looks as if there have not been any marks so far. This will make sure that the
top mark in the first column is always empty.

• If the multicols extends beyond the current page, then the material designated
for the current page is split into columns. The column region is used to represent
each column in turn.

– First we copy the current data from column to previous-column. Then the
mark data from the current column is placed into the column region. Then
we alias column to mcol-1.

– These steps are repeated for all columns of the multicols environment.
– Finally, the first and the last column of that page is also made available as

first-column and last-column, respectively.

• All those marks inside any of the columns are also available in the page region.
Thus, if you are interested in the top, first, or last mark of a specific class on the
whole page you simply need to query for it in the page region.

• If the multicols continues across several pages then this algorithm above is re-
peated for each page, except that the column region is not cleared again. This
means that the top mark of the first column of the next page will be the last mark
of the last column from the previous page.

4As of now that scenario is not (yet) officially supported but it would be possible to achieve this using
the shipout hooks to store the verso page and then on the next shipout use the hook to shipout both
with running headers and footers attached.

5They return something, because they represent the last two columns of the multicols when you are
inside the output routine, but that is obviously of little use.

6

• When the multicols finishes the remaining material for the current page is bal-
anced to produce columns of roughly equal height.

• Again column and previous-column are used while this balancing happens and
mcol-1, mcol-2, etc., are used to represent the column regions and first-column
and last-column are set appropriately.

• Then the balanced set of columns is returned back to the page (since there may be
space for further material). In addition, all marks inside that material are reinserted
so that they become available in the page region.

• As a side effect, it is possible (and useful in certain circumstances) to query for mark
classes directly after the multicols has ended without the need to be inside the
output routine. The regions that can be queried this way are mcol-1, mcol-2, etc.
(up to the number of columns the multicol had) and first-column and last-column.

2.3 Debugging mark code

\DebugMarksOn ... \DebugMarksOff

Commands to turn the debugging of mark code on or off. The debugging output is
rather coarse and not really intended for normal use at this point in time.

\DebugMarksOn
\DebugMarksOff
\mark_debug_on:
\mark_debug_off:

3 Application examples
If you want to figure out if a break was taken at a specific point, e.g., whether a heading
appears at the top of the page, you can do something like this:

\newcounter{breakcounter}
\NewMarkClass{break}
\newcommand\markedbreak[1]{\stepcounter{breakcounter}%

\InsertMark{break}{\arabic{breakcounter}%
\penalty #1\relax
\InsertMark{break}{-\arabic{breakcounter}}

To test if the break was taken you can test if \TopMark{break} is positive (taken) or
negative (not taken) or zero (there was never any marked break so far). The absolute
value can be used to keep track of which break it was (with some further coding).

to be extended with additional application examples

4 Legacy LATEX 2ε interface
Here we describe the interfaces that LATEX 2ε offered since the early nineties and some
minor extensions.

7

4.1 Legacy design-level and document-level interfaces

\markboth {⟨left⟩} {⟨right⟩}
\markright {⟨right⟩}
LATEX 2ε uses two marks which aren’t fully independent. A “left” mark generated by
the first argument of \markboth and a “right” mark generated by the second argu-
ment of \markboth or by the only argument of \markright. The command \markboth
and \markright are in turn called from heading commands such as \chaptermark or
\sectionmark and their behavior is controlled by the document class.

For example, in the article class with twoside in force the \sectionmark will issue
\markboth with an empty second argument and \subsectionmark will issue \markright.
As a result the left mark will contain chapter titles and the right mark subsection titles.

Note, however, that in one-sided documents the standard behavior is that only
\markright is used, i.e., there will only be right-marks but no left marks!

\markboth
\markright

\leftmark
\rightmark

These functions return the appropriate mark value from the current page and work as
before, that is \leftmark will get the last (!) left mark from the page and \rightmark
the first (!) right mark.

In other words they work reasonably well if you want to show the section title that
is current when you are about to turn the page and also show the first subsection title
on the current page (or the last from the previous page if there wasn’t one). Other
combinations can’t be shown using this interface.

The commands are fully expandable, because this is how they have been always
defined in LATEX. However, this is of course only true if the content of the mark they
return is itself expandable and does not contain any fragile material. Given that this
can’t be guaranteed for arbitrary content, a programmer using them in this way should
use \protected@edef and not \edef to avoid bad surprises as far as this is possible, or
use the new interfaces (\TopMark, \FirstMark, and \LastMark) which return the ⟨text⟩
in \exp_not:n to prevent uncontrolled expansion.

\leftmark ⋆
\rightmark ⋆

4.2 Legacy interface extensions
The new implementation adds three mark classes: 2e-left, 2e-right and 2e-right-nonempty
and patches \markboth and \markright slightly so that they also update these new mark
classes, so that the new classes work with existing document classes.

As a result you can use \LastMark{2e-left} and \FirstMark{2e-right} instead of
\leftmark and \rightmark. But more importantly, you can use any of the other retrieval
commands to get a different status value from those marks, e.g., \LastMark{2e-right}
would return the last subsection on the page (instead of the first as returned by
\rightmark).

The difference between 2e-right and 2e-right-nonempty is that the latter will
only be updated if the material for the mark is not empty. Thus \markboth{title}{}
as issued by, say, \sectionmark, sets a 2e-left mark with title and a 2e-right mark
with the empty string but does not add a 2e-right-nonempty mark.

Thus, if you have a section at the start of a page and you would ask for
\FirstMark{2e-right} you would get an empty string even if there are subsections
on that page. But 2e-right-nonempty would then give you the first or last subsection

8

on that page. Of course, nothing is simple. If there are no subsections it would tell you
the last subsection from an earlier page. We therefore need comparison tools, e.g., if top
and first are identical you know that the value is bogus, i.e., a suitable implementation
would be
\IfMarksEqualTF{2e-right-nonempty}{top}{first}

{ <appropriate action if there was no real mark> }
{\FirstMark{2e-right-nonempty}}

5 Notes on the mechanism
In contrast to vanilla TEX, ε-TEX extends the mark system to allow multiple independent
marks. However, it does not solve the \topmark problem which means that LATEX still
needs to manage marks almost independently of TEX. The reason for this is that the
more complex output routine used by LATEX to handle floats (and related structures)
means that \topmark(s) remain unreliable. Each time the output routine is fired up,
TEX moves \botmark to \topmark, and while ε-TEX extends this to multiple registers the
fundamental concept remains the same. That means that the state of marks needs to be
tracked by LATEX itself. An early implementation of this package used TEX’s \botmark
only to ensure the correct interaction with the output routine (this was before the ε-TEX
mechanism was even available). However, other than in a prototype implementation for
LATEX3, this package was never made public.

The new implementation now uses ε-TEX’s marks as they have some advantages,
because with them we can leave the mark text within the galley and only extract the
marks during the output routine when we are finally shipping out a page or storing away
a column for use in the next page. That means we do not have to maintain a global data
structure that we have to keep in sync with informational marks in the galley but can
rely on everything being in one place and thus manipulations (e.g. reordering of material)
will take the marks with them without a need for updating a fragile linkage.

To allow for completely independent marks we use the following procedure:
• For every type of marks we allocate a mark class so that in the output routine TEX

can calculate for each class the current top, first, and bottom mark independently.
For this we use \newmarks, i.e., one marks register per class.

• As already mentioned firing up an output routine without shipping out a page
means that TEX’s top marks get wrong so it is impossible to rely on TEX’s approach
directly. What we do instead is to keep track of the real marks (for the last page
or more generally last region) in some global variables.

• These variables are updated in the output routine at defined places, i.e., when we
do real output processing but not if we use special output routines to do internal
housekeeping.

• The trick we use to get correctly updated variables is the following: the material
that contains new marks (for example the page to be shipped out) is stored in a
box. We then use TEX primitive box splitting functions by splitting off the largest
amount possible (which should be the whole box if nothing goes really wrong).
While that seems a rather pointless thing to do, it has one important side effect:
TEX sets up first and bottom marks for each mark class from the material it has
split off. This way we get the first and last marks (if there have been any) from the
material in the box.

9

• The top marks are simply the last marks from the previous page or region. And
if there hasn’t been a first or bottom mark in the box then the new top mark also
becomes new first and last mark for that class.

• That mark data is then stored in global token lists for use during the output routine
and legacy commands such as \leftmark or new commands such as \TopMark
simply access the data stored in these token lists.

That’s about it in a nutshell. Of course, there are some details to be taken care of—those
are discussed in the implementation sections.

6 Public interfaces for packages such as multicol
The functions in this section are public so that packages can make use of them. However,
this must be done with great care, e.g., \mark_update_structure_from_material:nn
updates the global mark structure and can therefore be used only in places where such
an update is meaningful, e.g., in special output routines. Elsewhere, a change to the
mark structure would break the whole mechanism and querying the marks would return
incorrect data.

\mark_update_structure_from_material:nn {⟨region⟩} {⟨material with
marks⟩}

\mark_update_structure_from_material:nn

Helper function that inspects the marks inside the second argument and assigns new
mark values based on that to the ⟨region⟩ given in the first argument. For this it first
copies the mark structure from ⟨region⟩ to previous-⟨region⟩ and then takes all last
mark values currently in the region and makes them the new top mark values. Finally
it assigns new first and last values for all mark classes based on what was found in the
second argument.

As a consequence, the allowed values for ⟨region⟩ are page and column because
only they have previous-... counterparts.

Another important aspect to keep in mind is that marks are recognized only if they
appear on the top level, e.g., if we want to process material stored in boxes we need to
put it unboxed (using \unvcopy etc.) into the second argument.

\mark_copy_structure:nn {⟨alias⟩} {⟨source⟩}

Helper function that copies all mark values in the ⟨source⟩ region to ⟨alias⟩, i.e., make
the structures identical. Used to update the previous-... structures inside \mark_-
update_structure_from_material:nn and first-column and last-column structures
inside the internal commands __mark_update_singlecol_structures: or __mark__-
update_dblcol_structures:.

\mark_copy_structure:nn

\mark_set_structure_to_err:n {⟨region⟩}\mark_set_structure_to_err:n

Helper function that sets all mark values in the ⟨region⟩ to an error message. This is
currently used for last-column at times where using marks from it would be question-
able/wrong, i.e., when we have just processed the first column in a two-column document.

10

\mark_clear_structure:n {⟨region⟩}

Helper function that sets all mark values in the ⟨region⟩ to empty. This is currently
used for column when a multicol environment starts; this is because it wouldn’t make
sense if the top mark in the first column returned the last mark from a previous multicol
(which may have been much earlier, with intermediate material).

\mark_clear_structure:n

\mark_get_marks_for_reinsertion:nNN {⟨source⟩}
⟨token-list-var for collecting first marks⟩
⟨token-list-var for collecting last marks⟩

\mark_get_marks_for_reinsertion:nNN

Helper function for extracting marks that would otherwise get lost, for example when
they are hidden inside a box. This helper does not update mark structures and can
therefore be used outside the output routine as well.

It collects all the top-level marks from inside the ⟨source⟩ and then adds suitable
\mark_insert:nn commands to each of the two token lists. These token lists can then
be executed at the right place to reinsert the marks, e.g., directly after the box. This is,
for example, going to be used6 by multicol when a short balanced multicols is returned
to the galley for typesetting.

If the ⟨source⟩ consists of a single vertical box (plus possibly followed by some glue
but nothing else) then the box is unpacked and the top-level marks are collected from
its content. However, if it is not a vertical box or there are other data then nothing is
unpacked and you have to do the unpacking yourself to get at the marks inside.

It is quite likely that one only needs a single token list for returning the \mark_-
insert:nn statements. If that is the case this command may change to take only two
arguments.

7 Internal functions for the standard output routine
of LATEX

The functions in this section are tied to the output routine and used in the interface to
LATEX 2ε and perhaps at some later time within a new output routine for LATEX. They
are not (yet) meant for general use and are therefore made internal, even though we
already use them in multicol. Internal means that @@ automatically gets replaced in the
code (and in the documentation) so we have to give it a suitable value.

1 ⟨@@=mark⟩

__mark_update_singlecol_structures:__mark_update_singlecol_structures:

LATEX 2ε integration function in case we are doing single column layouts. It assumes that
the page content is already stored in \@outputbox and processes the marks inside that
box. It is called as part of \@opcol.

__mark_update_singlecol_structures:__mark_update_dblcol_structures:

LATEX 2ε integration function mark used when we are doing double column documents.
It assumes that the page content is already stored in \@outputbox and processes the
marks inside that box. It then does different post-processing depending on the start of
the switch \if@firstcolumn. If we are in the second column it also has to update page
marks, otherwise it only updates column marks. It too is called as part of \@opcol.

6Probably not before 2025, though.

11

8 The Implementation
2 ⟨∗2ekernel | latexrelease⟩

3 \ExplSyntaxOn

4 ⟨latexrelease⟩\NewModuleRelease{2022/06/01}{ltmarks}
5 ⟨latexrelease⟩ {Marks~handling}

8.1 Allocating new mark classes

A list holding all the mark classes that have been declared.
6 \seq_new:N \g__mark_classes_seq

\g__mark_classes_seq

\mark_new_class:n
__mark_new_class:nn

A mark class is created by initializing a number of data structures. First, we get a register
number to refer to the mark class. The new mark class is then added to the \g__mark_-
classes_seq sequence to be able to easily loop over all classes. Finally a number of
top-level global token lists are declared that hold various versions of the mark for access.

7 \cs_new_protected:Npn \mark_new_class:n #1
8 {
9 \seq_if_in:NnTF \g__mark_classes_seq {#1}

10 {
11 \msg_error:nnn { mark } { class-already-defined }
12 {#1}
13 }
14 { __mark_new_class:nn {#1} }
15 }

This is only available in the preamble.
16 \@onlypreamble \mark_new_class:n

The internal command carries out the necessary allocations.
17 \cs_new_protected:Npn __mark_new_class:nn #1
18 {
19 ⟨∗trace⟩
20 __mark_debug:n { \iow_term:x { Marks:~new~mark:~#1~\msg_line_context: } }
21 ⟨/trace⟩

Use the LATEX 2ε interface for now as the L3 programming layer doesn’t have one for
marks yet.

22 \exp_args:Nc \newmarks {c__mark_class_ #1 _mark}

Remember the new class in the sequence.
23 \seq_gput_right:Nn \g__mark_classes_seq {#1}

24 __mark_init_region:nn {page}{#1}

For the page region we also keep track of the previous-page.
25 __mark_init_region:nn {previous-page}{#1}

Same game for column and previous-column
26 __mark_init_region:nn {column}{#1}
27 __mark_init_region:nn {previous-column}{#1}

12

But for columns we also allocate token lists for the alias regions first-column and
last-column.

28 __mark_init_region:nn {first-column}{#1}
29 __mark_init_region:nn {last-column}{#1}

To support multiple columns produced by the multicol package, we preallocate twenty
alias regions (since this is the number of columns that multicol supports as a maximum).
They are filled by copying the current column into the appropriate mcol-....

30 %fmi __mark_init_region:nn {mcol}{#1}
31 %fmi __mark_init_region:nn {previous-mcol}{#1}
32 __mark_init_region:nn {mcol-1}{#1}
33 __mark_init_region:nn {mcol-2}{#1}
34 __mark_init_region:nn {mcol-3}{#1}
35 __mark_init_region:nn {mcol-4}{#1}
36 __mark_init_region:nn {mcol-5}{#1}
37 __mark_init_region:nn {mcol-6}{#1}
38 __mark_init_region:nn {mcol-7}{#1}
39 __mark_init_region:nn {mcol-8}{#1}
40 __mark_init_region:nn {mcol-9}{#1}
41 __mark_init_region:nn {mcol-10}{#1}
42 __mark_init_region:nn {mcol-11}{#1}
43 __mark_init_region:nn {mcol-12}{#1}
44 __mark_init_region:nn {mcol-13}{#1}
45 __mark_init_region:nn {mcol-14}{#1}
46 __mark_init_region:nn {mcol-15}{#1}
47 __mark_init_region:nn {mcol-16}{#1}
48 __mark_init_region:nn {mcol-17}{#1}
49 __mark_init_region:nn {mcol-18}{#1}
50 __mark_init_region:nn {mcol-19}{#1}
51 __mark_init_region:nn {mcol-20}{#1}
52 }

(End of definition for \mark_new_class:n and __mark_new_class:nn. This function is documented on
page 3.)

__mark_init_region:nn
\c__mark_empty_tl

For each class (#2) and region (#1), we need three token lists: one for top, first, and last.
The default value to be returned is “empty”.

53 \cs_new_protected:Npn __mark_init_region:nn #1 #2 {
54 \tl_new:c { g__mark_#1_top_ #2 _tl }
55 \tl_new:c { g__mark_#1_first_ #2 _tl }
56 \tl_new:c { g__mark_#1_last_ #2 _tl }
57 \tl_gset_eq:cN { g__mark_#1_top_ #2 _tl } \c__mark_empty_tl
58 \tl_gset_eq:cN { g__mark_#1_first_ #2 _tl } \c__mark_empty_tl
59 \tl_gset_eq:cN { g__mark_#1_last_ #2 _tl } \c__mark_empty_tl
60 }

All marks will have an identification in the form of a number7 that is incremented
each time a mark insertion happens; therefore the initial empty values should also have
such a number, so that data extraction will be uniform.

61 \tl_const:Nn \c__mark_empty_tl { __mark_value:nn{0}{} }

(End of definition for __mark_init_region:nn and \c__mark_empty_tl.)

7There are a few cases where special identification strings are used, e.g., 2.09-compat.

13

8.2 Updating mark structures
\l__mark_box

\l__mark_ii_box
\g__mark_tmp_tl

\g__mark_new_top_tl

For some operations we need two temporary private boxes and two private global token
lists.

62 \box_new:N \l__mark_box
63 \box_new:N \l__mark_ii_box
64 \tl_new:N \g__mark_tmp_tl
65 \tl_new:N \g__mark_new_top_tl

(End of definition for \l__mark_box and others.)

__mark_extract_and_handle_marks:nn This is the main macro to extract and handle marks inside some vertical material. It is
used by \mark_update_structure_from_material:nn (for updating the mark structure
for a region based on the marks found) and by \mark_get_marks_for_reinsertion:nNN
(for extracting marks from some material and prepare for reinserting them later (e.g.,
out of a box that is placed as a box into the main galley).

66 \cs_new_protected:Npn __mark_extract_and_handle_marks:nn #1#2 {

This macro expects code to handle extracted marks in its first argument and vertical
material (not boxed or just consisting of a single vertical box) as its second. It extracts
top-level mark information from #2, stores them as split marks and then calls #1 to make
use of this information.

If it finds a forced break in the material it removes it and then restarts the attempt
without it.

We start with a group to keep most changes local.
67 \group_begin:

Getting the first and last marks out of the material in #2 is done by putting the
material in a box and then doing a split operation to the maximum size possible (which
hopefully gets us all of the content).8 Because this action is used only to get the mark
values, we don’t want any underfull box warnings so we (locally) turn those off.

68 \dim_set_eq:NN \tex_splitmaxdepth:D \c_max_dim
69 \int_set_eq:NN \tex_vbadness:D \c_max_int
70 \dim_set_eq:NN \tex_vfuzz:D \c_max_dim

There is a further complication: if the material contains infinite shrinking glue then
a \vsplit operation will balk with a low-level error. Now pages or columns, which are
our main concern here, can’t have such infinite shrinkage if they are cut straight from the
galley, however the use of \enlargethispage actually does add some at the very bottom
(and also wraps the whole page into a box by itself, so if we leave it this way then a) we
get this error and b) we don’t see any marks because they are hidden one level down).

Another possible issue are packages or user code that place stray \vboxes directly
into the main galley (an example is marginnote that attaches its marginals in this way).
If such boxes end up as the last item on the page we should not unpack them.

All these issues need to be handled, which is done in __mark_prepare_and_-
extract:nn.

71 __mark_prepare_and_extract:nn {#1} {#2}

8With normal column material cut from the main galley we should always get all material in one go,
but in certain situations, for example, in a multicols environment that contains some \columnbreaks a
single split operation will not be enough. Thus, this is something we need to handle.

14

Once all mark classes have been processed, the data structures are updated and we can
close the group, which undoes our local changes and retains only the global ones.

72 \group_end:
73 }

(End of definition for __mark_extract_and_handle_marks:nn.)

__mark_prepare_and_extract:nn This macro does the dirty work. It is not directly integrated in __mark_extract_and_-
handle_marks:nn because we may have to call it recursively if we find forced breaks.

74 \cs_new_protected:Npn __mark_prepare_and_extract:nn #1#2 {

To handle the \enlargethispage case we do an \unskip to get rid of any glue that
is present at the very end of the material and also check if we have then a \vbox as the
last item and if so unpack that too, but only under certain conditions, see below. All
this is temporary done in a group, just for getting the marks out, so it doesn’t affect the
final page production.

75 \vbox_set:Nn \l__mark_box
76 {
77 #2
78 \tex_unskip:D
79 \box_set_to_last:N \l__mark_box

After having removed the last box from the current list (if there was one) we check
whether the vertical list is now empty. If not, then the last box is definitely not the one
from \enlargethispage and so we can, and should, leave it alone. Otherwise we check
if this last box is a \vbox.

80 \int_compare:nNnT \tex_lastnodetype:D < 0
81 {
82 \box_if_vertical:NT \l__mark_box

If it is, we unpack the box.
83 { \vbox_unpack:N \l__mark_box }
84 }

If it wasn’t a vbox, it was either an hbox or there was no box. Given that we are only
interested in the marks we don’t need put it back in that case.

85 }

We are now ready to \vsplit the box to get at the marks. If the box contains some
infinite negative glue the TEX will produce an error complaining about it but it will
correctly find the split marks. Given that we can’t prevent that error, we hide it from
the user and ensure that TEX doesn’t stop. The error message still shows in the log, but
even that is mitigated as best as possible—see the definition of __mark_vbox_set_-
split_to_maxdimen:NN for the tricks employed.

86 __mark_vbox_set_split_to_maxdimen:NN \l__mark_ii_box \l__mark_box

After splitting we check if there is anything left in \l__mark_box. If not then the above
split has set some split marks that we can then use to finish the extraction:

87 \box_if_empty:NTF \l__mark_box
88 { #1 }

15

If we have a remainder after the split then this means that there was some forced break
in the material. We get rid of that by combining the content of the two boxes and restart.

89 {
90 ⟨∗trace⟩
91 __mark_debug:n { \iow_term:x
92 { Marks:~ mark~ extraction~needs~ recursion~
93 \msg_line_context: } }
94 ⟨/trace⟩
95 __mark_prepare_and_extract:nn {#1}
96 { \vbox_unpack:N \l__mark_ii_box
97 \vbox_unpack:N \l__mark_box }
98 }
99 }

(End of definition for __mark_prepare_and_extract:nn.)

__mark_vbox_set_split_to_maxdimen:NN Split a box to get at its marks without pausing even if TEX is producing an error message
because of infinite negative glue in the box. If there is such an error we ensure that it
only shows up in the log but not on the terminal.

The nice low-level hack by DPC records in the .log that a glue shrinkage error is
harmless.

We disguise \c_max_dim in an odd looking csname, which then shows up as part
of the display of an error message if that error happens. This csname forms part of the
error display so what you get is something like

! Infinite glue shrinkage found in box being split.
<argument> Infinite shrink error above ignored !
l. ... }

which hopefully makes it clear that the error is harmless and and should be ignored by
the reader of the .log.
100 \cs_set_eq:cN {Infinite~shrink~error~above~ignored~!}\c_max_dim

The whole definition of __mark_vbox_set_split_to_maxdimen:NN below is fully
expanded, so we have to use a lot of \exp_not:N commands to prevent expansion where
necessary.
101 \cs_new_protected:Npx __mark_vbox_set_split_to_maxdimen:NN #1#2 {

We start by saving the current interaction and escape char settings.
102 \tl_set:Ne \exp_not:N \l__mark_saved_parameters_tl
103 {
104 \tex_interactionmode:D
105 \exp_not:N \int_use:N \tex_interactionmode:D \scan_stop:
106 \tex_escapechar:D
107 \exp_not:N \int_use:N \tex_escapechar:D \scan_stop:
108 }

Then we change them so that no escape char is printed in the error message (accounts
for the missing backslash in front of Infinite shrink ...) and we set the interaction
to \nonstopmode so that the error (if any) just goes into the .log file and TEX doesn’t
stop at that point.
109 \tex_escapechar:D -1 \scan_stop:
110 \tex_interactionmode:D 0 \scan_stop:

16

Then we do the splitting of the box to \c_max_dim to get at the marks. This may
generate the error we are worried about, i.e., if the box contains infinite negative glue.
However, TEX makes this glue finite and continues, which means we get our split marks
which is really all we care about.
111 \tex_setbox:D #1 \tex_vsplit:D #2 to

The \use:n may seem pointless, and it is to some extent, but we need it to get our
disguised \c_max_dim displayed properly as part of the error message if there is one.
Without it, the display would show only part of what we want it to show (try it).
112 \exp_not:N \use:n {
113 \use:c{Infinite~shrink~error~above~ignored~!}
114 }

Finally, we change the escape char and the interaction mode back to what it was before:
115 \exp_not:N \l__mark_saved_parameters_tl
116 }

(End of definition for __mark_vbox_set_split_to_maxdimen:NN.)

\l__mark_saved_parameters_tl The temporary variable used for resetting escape char and interaction mode.
117 \tl_new:N \l__mark_saved_parameters_tl

(End of definition for \l__mark_saved_parameters_tl.)

\mark_update_structure_from_material:nn This function updates the mark structures of a region. The first argument is the region
to update and second argument receives the material that holds the marks. Out of this
material we extract the first and last marks for all classes (if there are any) to do the
assignments.
118 \cs_new_protected:Npn \mark_update_structure_from_material:nn #1#2 {
119 __mark_extract_and_handle_marks:nn

Once the marks can be extracted we update the structure from the split marks (code
in __mark_update_structure_from_splitmarks:n).
120 { __mark_update_structure_from_splitmarks:n {#1} }
121 { #2 }
122 }

(End of definition for \mark_update_structure_from_material:nn. This function is documented on page
10.)

__mark_update_structure_from_splitmarks:n This macro is called after we have done a \tex_vsplit:D operation and the mark data
is in the split marks.
123 \cs_new_protected:Npn __mark_update_structure_from_splitmarks:n #1 {

The first thing we do is to copy the current region structure to previous-...; this
leaves the current structure untouched so we can update it class by class (as is necessary).
124 \mark_copy_structure:nn { previous-#1 } {#1}

After this action we can get first and last marks of the various classes through \tex_-
splitfirstmarks:D and \tex_splitbotmarks:D. So now we loop over all classes stored
in \g__mark_classes_seq.
125 \seq_map_inline:Nn \g__mark_classes_seq
126 {

17

First action: get the last mark from the previous region, i.e., previous-#1. But because
it is also still inside #1, at the moment we use that to construct the name because this is
a tiny bit faster. Given that we need this value in various assignments we store it away
which avoids unnecessary further csname generations.
127 \tl_gset_eq:Nc \g__mark_new_top_tl { g__mark_#1_last_##1_tl }

This will first of all become the new top mark for the current class.
128 \tl_gset_eq:cN { g__mark_#1_top_##1_tl } \g__mark_new_top_tl

Next action is to get ourselves the new last mark from the material supplied.
129 \tl_gset:No \g__mark_tmp_tl
130 { \tex_splitbotmarks:D \use:c { c__mark_class_##1_mark } }

If this mark doesn’t exist then obviously neither does the first mark, so both become the
last mark from the previous region. We have to be a little careful here: something like
\mark_insert:nn{foo}{} adds an “empty” mark that should not be confused with no
mark at all. But no mark in our material will result in \g__mark_tmp_tl being fully
empty. This is why we have to make sure that “empty” from \mark_insert:nn only
appears to be empty when typeset but fails the next test (see below how this is done).
131 \tl_if_empty:NTF \g__mark_tmp_tl
132 {
133 \tl_gset_eq:cN { g__mark_#1_last_ ##1_tl }
134 \g__mark_new_top_tl
135 \tl_gset_eq:cN { g__mark_#1_first_##1_tl }
136 \g__mark_new_top_tl
137 }

If it wasn’t empty, i.e., if it had a real value then we use this value for our new last mark
instead.
138 {
139 \tl_gset_eq:cN { g__mark_#1_last_##1_tl } \g__mark_tmp_tl

Because we had a last mark we also have a first mark (which might be the same, but
might be not), so we pick that up and assign it to the appropriate token list. This explains
why we first checked for the last mark because that makes the processing faster in case
there is none.
140 \tl_gset:co { g__mark_#1_first_##1_tl }
141 {
142 \tex_splitfirstmarks:D
143 \use:c { c__mark_class_##1_mark }
144 }
145 }
146 }
147 }

(End of definition for __mark_update_structure_from_splitmarks:n.)

\mark_get_marks_for_reinsertion:nNN This function extracts the marks from the material in the first argument but it does not
update any the mark structures. Instead, it collects the marks in the token lists given
as the second and third argument, in such a way that they can be reinserted by just
executing the token lists.9

148 \cs_new_protected:Npn \mark_get_marks_for_reinsertion:nNN #1#2#3 {

9It is probably enough to collect everything in a single token list as long as we put the first marks
first and the last marks last). But for extra flexibility, I currently use 2 token lists. This might change
when it is really clear that this is never needed.

18

First we clear the temporary token lists as we haven’t seen any marks yet.
149 \tl_gclear:N \g__mark_first_marks_tl
150 \tl_gclear:N \g__mark_last_marks_tl

Then we extract all top-level marks, thereby filling the token lists with suitable \mark_-
insert:nn calls.
151 __mark_extract_and_handle_marks:nn

The first argument holds the code used for filling the token lists and the second holds
the material from which all marks should be extracted.
152 __mark_get_from_splitmarks:
153 { #1 }

Finally, we copy the updated (or not updated) temporary token lists to the two that
have been supplied when the function was called. By convention “get” operations return
their values in local variables and __mark_extract_and_handle_marks:nn runs in a
group, which is why we have to use global temporary variables for collecting.
154 \tl_set_eq:NN #2 \g__mark_first_marks_tl
155 \tl_set_eq:NN #3 \g__mark_last_marks_tl
156 }

(End of definition for \mark_get_marks_for_reinsertion:nNN. This function is documented on page
11.)

__mark_get_from_splitmarks: This function is called after we have done a \vsplit to update the split marks. It loops
through all mark classes to find out if there are marks for this class and if so updates the
global tls used for collecting.
157 \cs_new_protected:Npn __mark_get_from_splitmarks: {
158 \seq_map_inline:Nn \g__mark_classes_seq
159 {

First we to get the last mark for the current class from the material supplied.
160 \tl_gset:No \g__mark_tmp_tl
161 { \tex_splitbotmarks:D \use:c { c__mark_class_##1_mark } }

If this mark doesn’t exist then obviously first mark doesn’t either, so we do nothing
(other than issuing some debugging info).

We have to be a little careful here: something like \mark_insert:nn{foo}{} adds
an “empty” mark that we should not confuse with the case where there is no mark at all.

When there is no mark at all we get a truly empty \g__mark_tmp_tl as a result. This
is why we have to make sure that an “empty” mark generated with \mark_insert:nn
only appears to be empty when it is typeset, but fails the next test (see below how this
is done).
162 \tl_if_empty:NTF \g__mark_tmp_tl
163 {
164 ⟨∗trace⟩
165 __mark_debug:n { \iow_term:x { Marks:~no~ marks~
166 for~ class~ ’##1’~\msg_line_context: } }
167 ⟨/trace⟩
168 }

19

If it wasn’t empty, i.e., if it had a real value then we use this value for our new
last mark instead. This means we put an appropriate \mark_insert:nn statement into
\g__mark_last_marks_tl.
169 {
170 ⟨∗trace⟩
171 __mark_debug:n { \iow_term:x { Marks:~ extract~ last~

The mark content in \g__mark_tmp_tl may contain aribtrary code that may react badly
if it is expanded in a write. So we better avoid that expansion, otherwise debugging
might generate spurious errors when turned on.
172 mark~ for~ class~ ’##1’~ =~ \exp_not:o \g__mark_tmp_tl } }
173 ⟨/trace⟩
174 \tl_gput_right:Ne \g__mark_last_marks_tl
175 { \mark_insert:nn {##1} { __mark_drop_id:o { \g__mark_tmp_tl } } }

Because we had a last mark we also have a first mark (which might be the same, but
might not be), so we pick that up and add it to the \g__mark_first_marks_tl token list.
This explains why we first checked for the last mark because that makes the processing
faster in case there is none.
176 ⟨∗trace⟩
177 __mark_debug:n { \iow_term:x {
178 Marks:~ extract~ first~ mark~ for~ class~ ’##1’~ =~

Again no expansion for the mark content.
179 \exp_not:o {
180 \tex_splitfirstmarks:D
181 \use:c { c__mark_class_##1_mark }
182 }
183 } }
184 ⟨/trace⟩
185 \tl_gput_right:Ne \g__mark_first_marks_tl
186 { \mark_insert:nn {##1}
187 {

We better drop the id from the returned value otherwise they will accumulate in the
marks when reinserted.
188 __mark_drop_id:o {
189 \tex_splitfirstmarks:D
190 \use:c { c__mark_class_##1_mark }
191 }
192 }
193 }
194 }
195 }
196 }

(End of definition for __mark_get_from_splitmarks:.)

\g__mark_first_marks_tl
\g__mark_last_marks_tl

These are two global temporary variables used in the code above.
197 \tl_new:N \g__mark_first_marks_tl
198 \tl_new:N \g__mark_last_marks_tl

(End of definition for \g__mark_first_marks_tl and \g__mark_last_marks_tl.)

20

\mark_copy_structure:nn This function copies the structure for one region to another, e.g., from page to
previous-page above, or later from column to first-column, etc.
199 \cs_new_protected:Npn \mark_copy_structure:nn #1#2 {

This requires a simple loop through all mark classes copying the token list from one name
to the next.
200 \seq_map_inline:Nn \g__mark_classes_seq
201 {
202 \tl_gset_eq:cc { g__mark_ #1 _top_ ##1 _tl }
203 { g__mark_ #2 _top_ ##1 _tl }
204 \tl_gset_eq:cc { g__mark_ #1 _first_ ##1 _tl }
205 { g__mark_ #2 _first_ ##1 _tl }
206 \tl_gset_eq:cc { g__mark_ #1 _last_ ##1 _tl }
207 { g__mark_ #2 _last_ ##1 _tl }
208 }
209 }

(End of definition for \mark_copy_structure:nn. This function is documented on page 10.)

\mark_clear_structure:n This function sets the structure of one region back to an initial state, so that all classes
return an empty value if queried.
210 \cs_new_protected:Npn \mark_clear_structure:n #1 {

This requires a simple loop through all mark classes.
211 \seq_map_inline:Nn \g__mark_classes_seq
212 {
213 \tl_gset_eq:cN { g__mark_ #1 _top_ ##1 _tl }
214 \c__mark_empty_tl
215 \tl_gset_eq:cN { g__mark_ #1 _first_ ##1 _tl }
216 \c__mark_empty_tl
217 \tl_gset_eq:cN { g__mark_ #1 _last_ ##1 _tl }
218 \c__mark_empty_tl
219 }
220 }

(End of definition for \mark_clear_structure:n. This function is documented on page 11.)

\mark_set_structure_to_err:n
__mark_error:n

A slight variation is to install a fixed error message as the value.
221 \cs_new_protected:Npn \mark_set_structure_to_err:n #1 {
222 \seq_map_inline:Nn \g__mark_classes_seq
223 {
224 \tl_gset:ce { g__mark_ #1 _top_ ##1 _tl } { __mark_value:nn{?}{__mark_error:nn {#1}{?} }}
225 \tl_gset:ce { g__mark_ #1 _first_ ##1 _tl } { __mark_value:nn{?}{__mark_error:nn {#1}{?} }}
226 \tl_gset:ce { g__mark_ #1 _last_ ##1 _tl } { __mark_value:nn{?}{__mark_error:nn {#1}{?} }}
227 }
228 }

Given that this is used in only one place, we could hardwire the argument which would
be a bit more compact, but who knows, perhaps we end up with another reason to use
this error command elsewhere, so for now we keep the argument.
229 \cs_new_protected:Npn __mark_error:nn #1#2 {
230 \msg_error:nnnn { mark } { invalid-use } {#1} {#2}
231 }

(End of definition for \mark_set_structure_to_err:n and __mark_error:n. This function is docu-
mented on page 10.)

21

8.3 Placing and retrieving marks
\mark_insert:nn This function puts a mark for some ⟨class⟩ at the current point.

232 \cs_new_protected:Npn \mark_insert:nn #1#2
233 {
234 \seq_if_in:NnTF \g__mark_classes_seq {#1}
235 {

We need to pass the evaluated argument into the mark but protected commands should
not expand including those protected using the \protect approach of LATEX 2ε. We also
disable \label and the like.10

At this point the code eventually should get a public (and a kernel) hook instead of
a set of hardwired settings.
236 \group_begin:

Within the group we alter some comments, e.g, \label or \index, to do the right at this
point. This is done in the kernel hook \@kernel@before@insertmark which is followed
by the public hook insertmark that can be used by packages to augment or alter that
setup as necessary.
237 \@kernel@before@insertmark
238 \hook_use:n { insertmark }
239 \unrestored@protected@xdef \g__mark_tmp_tl
240 {

To ensure that marks are unique we insert a hidden sequence marker at the beginning of
the content of the mark containing the sequence number of the mark.
241 __mark_value:nn{ \int_use:N\g__mark_int }{#2}
242 }
243 ⟨∗trace⟩
244 __mark_debug:n{ \iow_term:x { Marks:~ set~#1~<-~
245 ’\tl_to_str:V \g__mark_tmp_tl’ ~ \msg_line_context: } }
246 ⟨/trace⟩
247 \tex_marks:D \use:c { c__mark_class_ #1 _mark }
248 {

Here is the trick to avoid truly empty marks: if the result from the above processing is
empty we add something which eventually becomes empty, but not immediately; other-
wise we just put \g__mark_tmp_tl in.
249 % This is no longer needed with 1.0f
250 % \tl_if_empty:NTF \g__mark_tmp_tl
251 % { \exp_not:n { \prg_do_nothing: } }
252 % { \exp_not:o { \g__mark_tmp_tl } }
253 \exp_not:o { \g__mark_tmp_tl }
254 }
255 \group_end:

A mark introduces a possible break point and in certain situations that should not happen
in vertical mode in LATEX. This may need some checking and possibly cleanup
256 \if@nobreak\ifvmode\nobreak\fi\fi
257 }

10Straight copy from latex.ltx but is this even correct? At least a label in a running header makes
little sense if it get set several times! Maybe that needs looking at in the 2e kernel.

22

If the mark class was not known, raise an error.
258 {
259 \msg_error:nnx { mark } { unknown-class }
260 { \tl_to_str:n {#1} }
261 }
262 }

(End of definition for \mark_insert:nn. This function is documented on page 3.)

__mark_value:nn A hidden marker is placed into every mark added by \mark_insert:nn. It will not show
up in the output but its argument (a counter value that is incremented) makes all marks
unique so the test for “equal” is not fooled by two different marks having the same mark
text.
263 \cs_new_protected:Npn __mark_value:nn #1#2 { #2 }

(End of definition for __mark_value:nn.)

\@kernel@before@insertmark
insertmark

By default \label, \index, and \glossary do nothing when the mark is inserted.
264 \int_new:N \g__mark_int
265 \cs_new:Npn \@kernel@before@insertmark {
266 \cs_set_eq:NN \label \scan_stop:
267 \cs_set_eq:NN \index \scan_stop:
268 \cs_set_eq:NN \glossary \scan_stop:

We count each mark and use that to place a hidden marker in front of the mark text.
To ensure that there is no overflow (very unlikely but you never know) we restart every
100000 marks. Thus, if somebody puts more than that number of marks on a single page
you could construct a scenario in which that approach fails.
269 \int_compare:nNnTF \g__mark_int < {99999}
270 { \int_gincr:N \g__mark_int }
271 { \int_gzero:N \g__mark_int }
272

273 }

The public hook to augment the setup.
274 \hook_new:n {insertmark}

(End of definition for \@kernel@before@insertmark and insertmark.)

\mark_use_top:nn
\mark_use_first:nn
\mark_use_last:nn

To retrieve the first, last or top region mark, we grab the appropriate value stored
in the corresponding token list variable and pass its contents back. These functions
should be used only in output routines and only after \mark_update_structure_from_-
material:nn has acted, otherwise their value will be wrong.
275 \cs_new:Npn \mark_use_first:nn #1#2 { __mark_use_check:nnn { g__mark_#1_first_#2_tl } {#1} {#2} }
276 \cs_new:Npn \mark_use_last:nn #1#2 { __mark_use_check:nnn { g__mark_#1_last_#2_tl } {#1} {#2} }
277 \cs_new:Npn \mark_use_top:nn #1#2 { __mark_use_check:nnn { g__mark_#1_top_#2_tl } {#1} {#2} }

If used with an unknown class or region these commands will generate an error.
If that happens in an expandable context then the error generation is delayed (e.g., if
used in a \section) and happens when the code is finally used in typesetting, e.g.,
in the TOC or a running header. If used in a \typeout you only see something like
__mark_error:n{page}. This is not too good, but probably better than low-level errors,
I guess, and I don’t want to use an expandable error because of the size restrictions in
such error messages.

23

278 \cs_new:Npn __mark_use_check:nnn #1#2#3 {
279 \tl_if_eq:cNTF {#1} \relax
280 { __mark_error:nn {#2} {#3} }
281 { __mark_drop_id:v {#1} }
282 }

Each mark starts with an id and while the id does not print it is nevertheless better
to remove it when returning the mark, so that downstream manipulation of the data
doesn’t have to deal with it. This is what the \exp_not:o accomplishes.
283 \cs_new:Npn __mark_drop_id:n #1 { \exp_not:o { #1 } }
284 \cs_generate_variant:Nn __mark_drop_id:n { o, v }

(End of definition for \mark_use_top:nn , \mark_use_first:nn , and \mark_use_last:nn. These func-
tions are documented on page 4.)

8.4 Comparing mark values
\mark_if_eq:nnnnTF

\mark_if_eq:nnnnnnTF
Test if in a given region (#1) for a given class (#2) the marks in position #3 and #4 (top,
first, or last) are identical
285 \prg_new_conditional:Npnn \mark_if_eq:nnnn #1#2#3#4 { T , F , TF }
286 {
287 \tl_if_eq:ccTF { g__mark_ #1 _#3_ #2 _tl }
288 { g__mark_ #1 _#4_ #2 _tl }
289 \prg_return_true:
290 \prg_return_false:
291 }

The fully general test (with two triplets of the form ⟨region⟩, ⟨class⟩, and ⟨position⟩)
is this:
292 \prg_new_conditional:Npnn \mark_if_eq:nnnnnn #1#2#3#4#5#6 { T , F , TF }
293 {
294 \tl_if_eq:ccTF { g__mark_ #1 _#3_ #2 _tl }
295 { g__mark_ #4 _#6_ #5 _tl }
296 \prg_return_true:
297 \prg_return_false:
298 }

(End of definition for \mark_if_eq:nnnnTF and \mark_if_eq:nnnnnnTF. These functions are documented
on page 4.)

8.5 Messages
Mark errors are LATEX kernel errors:
299 \prop_gput:Nnn \g_msg_module_type_prop { mark } { LaTeX }

300 \msg_new:nnnn { mark } { class-already-defined }
301 { Mark~class~’#1’~already~defined }
302 {
303 \c__msg_coding_error_text_tl
304 LaTeX~was~asked~to~define~a~new~mark~class~called~’#1’:~
305 this~mark~class~already~exists.
306 \c__msg_return_text_tl
307 }

24

308 \msg_new:nnnn { mark } { unknown-class }
309 { Unknown~mark~class~’#1’. }
310 {
311 \c__msg_coding_error_text_tl
312 LaTeX~was~asked~to~manipulate~a~mark~of~class~’#1’,~
313 but~this~class~of~marks~does~not~exist.
314 }

The next error can also happen if the mark class is unknown, so this should perhaps
be separated into two different errors.
315 \msg_new:nnnn { mark } { invalid-use }
316 { Mark~region~’#1’~not~usable~or~class~’#2’~unknown }
317 {
318 \c__msg_coding_error_text_tl
319 The~region~’#1’~is~either~not~known~or~data~for~it~
320 still~needs~to~be~assembled,~e.g.,~last-column~
321 while~building~the~first-column.~
322 Also~possible:~the~class~namne~’#2’~is~misspelled.
323 \c__msg_return_text_tl
324 }

8.6 Debugging the mark structures
Code and commands in this section are not final, it needs more experimentation to see
what kind of tracing information is going to be useful in practice. For now the tracing is
mainly meant to be used for code testing and not so much for application testing.

It is quite likely that the commands and the behavior of the tracing might change
in the future once we gained some experience with it.

\g__mark_debug_bool Holds the current debugging state.
325 \bool_new:N \g__mark_debug_bool

(End of definition for \g__mark_debug_bool.)

\mark_debug_on:
\mark_debug_off:
__mark_debug:n

__mark_debug_gset:

Turns debugging on and off by redefining __mark_debug:n.
326 \cs_new_eq:NN __mark_debug:n \use_none:n
327 \cs_new_protected:Npn \mark_debug_on:
328 {
329 \bool_gset_true:N \g__mark_debug_bool
330 __mark_debug_gset:
331 }
332 \cs_new_protected:Npn \mark_debug_off:
333 {
334 \bool_gset_false:N \g__mark_debug_bool
335 __mark_debug_gset:
336 }
337 \cs_new_protected:Npn __mark_debug_gset:
338 {
339 \cs_gset_protected:Npx __mark_debug:n ##1
340 { \bool_if:NT \g__mark_debug_bool {##1} }
341 }

(End of definition for \mark_debug_on: and others. These functions are documented on page 7.)

25

\DebugMarksOn
\DebugMarksOff

CamelCase commands for debugging.
342 \cs_new_eq:NN \DebugMarksOn \mark_debug_on:
343 \cs_new_eq:NN \DebugMarksOff \mark_debug_off:

(End of definition for \DebugMarksOn and \DebugMarksOff. These functions are documented on page 7.)

__mark_class_status:nnn Shows the mark values across all regions for one mark class (#2).
The first argument gives some ⟨info⟩ to help in identifying where the command was

called, the second is the class and the third holds the number of mcol-... we should
display: inside a multicols environment this will be \col@number, in LATEX’s normal
output routines it will be 0.
344 ⟨∗trace⟩
345 \cs_new_protected:Npn __mark_class_status:nnn #1#2#3 {
346 \typeout{ Marks:~#2~ #1:}
347 __mark_region_status:nnn {#2}{ page~ (previous) } { previous-page }
348 __mark_region_status:nnn {#2}{ page~ (current)~ } { page }
349 __mark_region_status:nnn {#2}{ column~ (previous) }{ previous-column }
350 __mark_region_status:nnn {#2}{ column~ (current)~ }{ column }
351 __mark_region_status:nnn {#2}{ column~ (first) } { first-column }
352 __mark_region_status:nnn {#2}{ column~ (last)~ } { last-column }

Then finish by displaying a subset of the mcol-... regions: none (0) in the standard
LATEX output routine and \col@number within a multicols environment.
353 \int_step_inline:nn {#3}
354 {
355 __mark_region_status:nnn {#2}{ column~ (##1)~ } { mcol-##1 }
356 }
357 }

(End of definition for __mark_class_status:nnn.)

__mark_region_status:nnn Display the top, first, and last mark of a region unless none of them exist or all of them
are empty.
358 \cs_new_protected:Npn __mark_region_status:nnn #1#2#3 {
359 \group_begin:
360 \cs_set:Npn __mark_value:nn ##1##2{ \exp_not:n{ {##1} ~ ##2 } }
361 \tl_if_exist:cT { g__mark_#3_last_ #1 _tl }
362 {
363 \tl_if_eq:cNF { g__mark_#3_last_ #1 _tl } \c__mark_empty_tl
364 {
365 \typeout{\@spaces #2 =
366 ~|~ \use:c { g__mark_#3_top_ #1 _tl } ~|~
367 \use:c { g__mark_#3_first_ #1 _tl } ~|~
368 \use:c { g__mark_#3_last_ #1 _tl } ~|
369 }
370 }
371 }
372 \group_end:
373 }

(End of definition for __mark_region_status:nnn.)

26

__mark_status:nn Show a snapshot of all mark class values across all regions. The first argument is a string
to identify the output, the second argument is the number of mcol-... regions to show.
Outside of a multicols environment this is normally set to 0.
374 \cs_new_protected:Npn __mark_status:nn #1#2
375 {
376 \seq_map_inline:Nn \g__mark_classes_seq
377 { __mark_class_status:nnn {#1} {##1} {#2} }
378 }
379 ⟨/trace⟩

(End of definition for __mark_status:nn.)

\ShowMarksAt Debugging helper that displays a snapshot of all known mark structures. The first argu-
ment is a text string that is displayed to help identifying when the snapshot was made.
The optional second one determines how many mcol-... regions are displayed (by de-
fault 4).

This may not stay like this (or at all), which is why it isn’t yet documented as an
official command.
380 \NewDocumentCommand \ShowMarksAt {m O{4} } {
381 ⟨∗trace⟩
382 __mark_debug:n { __mark_status:nn {#1}{#2} }
383 ⟨/trace⟩
384 }

(End of definition for \ShowMarksAt. This function is documented on page ??.)

8.7 Designer-level interfaces
\NewMarkClass

\InsertMark
These two are identical to the L3 programming layer commands.
385 \cs_new_eq:NN \NewMarkClass \mark_new_class:n
386 \@onlypreamble \NewMarkClass

387 \cs_new_eq:NN \InsertMark \mark_insert:nn

(End of definition for \NewMarkClass and \InsertMark. These functions are documented on page 3.)

\TopMark
\FirstMark
\LastMark

The following commands take an optional argument that defaults to page. There is no
checking that the region is actually valid. If not there is simply an empty return.
388 \NewExpandableDocumentCommand \FirstMark { O{page} m }
389 { \mark_use_first:nn {#1}{#2} }

390 \NewExpandableDocumentCommand \LastMark { O{page} m }
391 { \mark_use_last:nn {#1}{#2} }

392 \NewExpandableDocumentCommand \TopMark { O{page} m }
393 { \mark_use_top:nn {#1}{#2} }

(End of definition for \TopMark , \FirstMark , and \LastMark. These functions are documented on page
4.)

\IfMarksEqualTF
\IfMarksEqualT
\IfMarksEqualF

We only provide CamelCase commands for the case with one region (optional) and one
class. One could think of also providing a version for the general case with several optional
arguments, but use cases for this are most likely rare, so not done yet.
394 \NewExpandableDocumentCommand \IfMarksEqualTF {O{page}mmm} {
395 \mark_if_eq:nnnnTF {#1}{#2}{#3}{#4}

27

396 }
397 \NewExpandableDocumentCommand \IfMarksEqualT {O{page}mmm} {
398 \mark_if_eq:nnnnT {#1}{#2}{#3}{#4}
399 }
400 \NewExpandableDocumentCommand \IfMarksEqualF {O{page}mmm} {
401 \mark_if_eq:nnnnF {#1}{#2}{#3}{#4}
402 }

(End of definition for \IfMarksEqualTF , \IfMarksEqualT , and \IfMarksEqualF. These functions are
documented on page 4.)

9 LATEX 2ε integration
9.1 Core LATEX 2ε integration

__mark_update_singlecol_structures: This command updates the mark structures if we are producing a single column docu-
ment.
403 \cs_new_protected:Npn __mark_update_singlecol_structures: {

First we update the page region (which also updates the previous-page.
The \@outputbox is normally in \vbox in LATEX but we can’t take that for granted

(an amsmath test document changed it to an \hbox just to trip me up) so we are a little
careful with unpack now.
404 \box_if_vertical:NTF \@outputbox
405 {
406 \mark_update_structure_from_material:nn {page}
407 { \vbox_unpack:N \@outputbox }
408 }
409 {
410 \mark_update_structure_from_material:nn {page}
411 { \hbox_unpack:N \@outputbox }
412 }

Then we provide the necessary updates for the aliases.
413 \mark_copy_structure:nn {previous-column}{previous-page}
414 \mark_copy_structure:nn {column}{page}
415 \mark_copy_structure:nn {first-column}{page}
416 \mark_copy_structure:nn {last-column}{page}
417 ⟨∗trace⟩
418 % move this into status itself?
419 __mark_debug:n
420 {
421 __mark_status:nn
422 { in~ OR~ (
423 \legacy_if:nTF {@twoside}
424 { twoside-
425 \int_if_odd:nTF \c@page
426 { odd }{ even }
427 }
428 { oneside }
429)
430 }
431 {0}
432 }

28

433 ⟨/trace⟩
434 }

(End of definition for __mark_update_singlecol_structures:.)

__mark_update_dblcol_structures: This commands handles the updates if we are doing two-column pages.
435 \cs_new_protected:Npn __mark_update_dblcol_structures: {

First we update the column and previous-column regions using the material assembled
in \@outputbox.
436 \box_if_vertical:NTF \@outputbox
437 {
438 \mark_update_structure_from_material:nn {column}
439 { \vbox_unpack:N \@outputbox }
440 }
441 {
442 \mark_update_structure_from_material:nn {column}
443 { \hbox_unpack:N \@outputbox }
444 }

How we have to update the alias regions depends on whether or not \@opcol was called
to process the first column or to produce the completed page
445 \legacy_if:nTF {@firstcolumn}
446 {

If we are processing the first column then column is our first-column and there is no
last-column yet, so we make those an error.
447 \mark_copy_structure:nn {first-column}{column}
448 \mark_set_structure_to_err:n {last-column}
449 }
450 {

If we produce the completed page then the first-column is the same as the new
previous-column. However, the structure should already be correct if you think about
it (because is was set to column last time which is now the previous-column), thus there
is no need to make an update.
451 % \mark_copy_structure:nn {first-column}{previous-column}

However, we now have a proper last-column so we assign that.
452 \mark_copy_structure:nn {last-column}{column}

What now remains doing is to update the page and previous-page regions. For this we
have to copy the settings in page into previous-page and then update page such that
the top and first marks are taken from the first-column region and the last marks are
taken from the last-column region. All this has to be done for all mark classes so we
loop over our sequence.

Note that one loop is needed if we arrange the copy statements in a suitable way.
453 \seq_map_inline:Nn \g__mark_classes_seq
454 {

The previous-page updates need to come before the updates for page region because
otherwise the values to copy are already overwritten. necessary values.
455 \tl_gset_eq:cc { g__mark_previous-page_top_ ##1 _tl }
456 { g__mark_page_top_ ##1 _tl }
457 \tl_gset_eq:cc { g__mark_previous-page_first_ ##1 _tl }
458 { g__mark_page_first_ ##1 _tl }

29

459 \tl_gset_eq:cc { g__mark_previous-page_last_ ##1 _tl }
460 { g__mark_page_last_ ##1 _tl }

To update the top we only have to copy what is in first-column:
461 \tl_gset_eq:cc { g__mark_page_top_ ##1 _tl }
462 { g__mark_first-column_top_ ##1 _tl }
463

Updating the first mark for the page region is more complicated. We first have to find
out of there is any mark in the first column (this can be done by comparing the top and
the first mark of that region).
464 \tl_if_eq:ccTF { g__mark_first-column_top_ ##1 _tl }
465 { g__mark_first-column_first_ ##1 _tl }
466 {

If there is no mark in the first column we copy the first mark of the last column. If that
doesn’t contain a mark we still get the right result because the first mark is then equal
to the top mark.
467 \tl_gset_eq:cc { g__mark_page_first_ ##1 _tl }
468 { g__mark_last-column_first_ ##1 _tl }
469 }
470 {

On the other hand, if there is a mark in the first column we copy over the first mark
from that column.
471 \tl_gset_eq:cc { g__mark_page_first_ ##1 _tl }
472 { g__mark_first-column_first_ ##1 _tl }
473 }

The logic for the last page mark is again simple, we can just copy the value in the last
mark of the last column. If that column doesn’t contain any marks, then the value in
last will be automatically the same as the last from the first column.
474 \tl_gset_eq:cc { g__mark_page_last_ ##1 _tl }
475 { g__mark_last-column_last_ ##1 _tl }
476 }
477 }
478 ⟨∗trace⟩
479 __mark_debug:n
480 {
481 __mark_status:nn
482 { in~ OR~ (
483 \legacy_if:nTF {@twoside}
484 { twoside-
485 \int_if_odd:nTF \c@page
486 { odd }{ even }
487 }
488 { oneside }
489 \space
490 \legacy_if:nTF {@firstcolumn}
491 { first~ }{ second~ }
492 column)
493 }
494 {0}
495 }
496 ⟨/trace⟩
497 }

30

(End of definition for __mark_update_dblcol_structures:.)

9.2 Other LATEX 2ε output routines
This section will cover support for packages that alter the LATEX output routine (as
necessary). The support for multicol (for now) is handled directly in that package.
498 ⟨@@=⟩

\@expl@@@mark@update@singlecol@structures@@

499 \cs_new_eq:NN \@expl@@@mark@update@singlecol@structures@@
500 __mark_update_singlecol_structures:

(End of definition for \@expl@@@mark@update@singlecol@structures@@.)

\@expl@@@mark@update@dblcol@structures@@

501 \cs_new_eq:NN \@expl@@@mark@update@dblcol@structures@@
502 __mark_update_dblcol_structures:

(End of definition for \@expl@@@mark@update@dblcol@structures@@.)

9.3 Rollback information
503 ⟨latexrelease⟩\IncludeInRelease{0000/00/00}{ltmarks}%
504 ⟨latexrelease⟩ {Undo~Marks~handling}
505 ⟨latexrelease⟩

We keep the interface commands around even if we roll back in case they are used in
packages that don’t roll back. Not likely to do a lot of good, but then there is not much
we can do, but this at least they won’t give unknown csname errors.
506 ⟨latexrelease⟩\DeclareRobustCommand \NewMarkClass[1]{}
507 ⟨latexrelease⟩\DeclareRobustCommand \InsertMark[2]{}
508 ⟨latexrelease⟩\RenewExpandableDocumentCommand \FirstMark { O{} m } { }
509 ⟨latexrelease⟩\RenewExpandableDocumentCommand \LastMark { O{} m } { }
510 ⟨latexrelease⟩\RenewExpandableDocumentCommand \TopMark { O{} m } { }
511 ⟨latexrelease⟩\RenewExpandableDocumentCommand \IfMarksEqualTF { O{} mmm }{ }
512 ⟨latexrelease⟩
Same here, this avoided extra roll back code in the OR.
513 ⟨latexrelease⟩\let \@expl@@@mark@update@singlecol@structures@@ \relax
514 ⟨latexrelease⟩\let \@expl@@@mark@update@dblcol@structures@@ \relax
515 ⟨latexrelease⟩
516 ⟨latexrelease⟩
517 ⟨latexrelease⟩\EndModuleRelease

518 \ExplSyntaxOff

519 ⟨/2ekernel | latexrelease⟩

Reset module prefix:
520 ⟨@@=⟩

31

	Contents
	1 Introduction
	2 Design-level and code-level interfaces
	2.1 Use cases for conditionals
	2.2 Understanding regions
	2.3 Debugging mark code

	3 Application examples
	4 Legacy LaTeX2ε interface
	4.1 Legacy design-level and document-level interfaces
	4.2 Legacy interface extensions

	5 Notes on the mechanism
	6 Public interfaces for packages such as multicol
	7 Internal functions for the standard output routine of LaTeX
	8 The Implementation
	8.1 Allocating new mark classes
	8.2 Updating mark structures
	8.3 Placing and retrieving marks
	8.4 Comparing mark values
	8.5 Messages
	8.6 Debugging the mark structures
	8.7 Designer-level interfaces

	9 LaTeX2ε integration
	9.1 Core LaTeX2ε integration
	9.2 Other LaTeX2ε output routines
	9.3 Rollback information

