
Still
going on

Hans Hagen

2

Content

Introduction 6

1 Math new style: are we better off? 8

1.1 Introduction 8

1.2 Some basic questions 8

1.3 The math script 10

1.4 Alphabets 14

1.5 Bold 20

1.6 Radicals 22

1.7 Primes 26

1.8 Accents 29

1.9 Stackers 32

1.10 Fences 40

1.11 Directions 45

1.12 Structure 51

1.13 Italic correction 53

1.14 Big 54

1.15 Macros 56

1.16 Unscripting 58

1.17 Combining fonts 60

1.18 Experiments 61

1.19 Tracing 63

1.20 Conclusion 63

2 Removing something (typeset) 66

2.1 Introduction 66

2.2 Marked content 67

2.3 A plain solution 69

3 Scanning input 74

3.1 Introduction 74

3.2 The TEX scanner 74

3.3 Scanning from LUA 75

3.4 Considerations 80

3.5 Applications 81

3.6 Assigning meanings 89

3.7 Conclusion 90

3

4 Profiling lines 92

4.1 Introduction 92

4.2 Line heights and depths 93

4.3 When lines exceed boundaries 93

4.4 Where to use profiling 99

4.5 Conclusion 101

5 Opentype math 106

5.1 Introduction 106

5.2 Italic correction 107

5.3 Vertical delimiters 108

5.4 Horizontal delimiters 112

5.5 Accents 114

5.6 Fractions 115

5.7 Skewed fractions 116

5.8 Side effects 117

5.9 Fixed scripts 118

5.10 Remark 119

6 Possibly useful extensions 120

6.1 Introduction 120

6.2 Rules 122

6.3 Spaces 128

6.4 Token lists 129

6.5 Active characters 132

6.6 \csname and friends 134

6.7 Packing 137

6.8 Errors 138

6.9 Final remarks 139

7 The LUATEX PDF backend 140

7.1 Introduction 140

7.2 Extensions 141

7.3 From whatsits to nodes 141

7.4 Direction nodes 143

7.5 Promoted commands 143

7.6 Backend commands 144

7.7 Backend variables 145

7.8 Backend feedback 147

7.9 Removed primitives 148

7.10 Conclusion 149

4

8 LUATEX going stable 150

8.1 Introduction 150

8.2 What is it 150

8.3 Where it differs 151

8.4 Extras 152

8.5 Follow up 153

5

Introduction 6

Introduction

This document is a follow up on ‘mk’, ‘hybrid’ and ‘about’. The first one is

written when LuaTEX evolved to version 0.50, the second one stops around

version 0.70 while the last one goes on after that. The title of this docu-

ment refers to the fact that we’re still working towards version 1.00. In the

meantime we have done a lot of testing and the engine has become quite

stable. The LuajitTEX variant has become part of the standard distribution

and we’re working on a library support framework. At the same time we

keep experimenting and here we will report on some issues that we run into

as well as discuss the way ConTEXt MkIV keeps adapting itself.

Hans Hagen

Hasselt NL

2013–2016

http://www.luatex.org

http://www.pragma-ade.com

7 Introduction

Math new style: are we better off? 8

1 Math new style: are we better off?

1.1 Introduction

In this article I will summarize the state of upgrading math support in Con-

TEXt per mid 2013 in the perspective of demand, usability, font development

and LuaTEX. There will be some examples, but don’t consider this a manual:

there are enough articles in the mkiv, hybrid and about series about spe-

cific topics; after all, we started with this many years ago. Where possible

I will draw some conclusions with respect to the engine. Some comments

might sound like criticism, but you should keep in mind that I wouldn’t

spend so much time on TEX if I would not like it that much. It’s just that

the environment wherein TEX is and can be used is not always as perfect

as one likes it to be, i.e. bad habits and decisions once made can be pretty

persistent and haunt us forever. I’m not referring to TEX the language and

program here, but more to its use in scientific publishing: in an early stage

standards were set and habits were nurtured which meant that to some

extent the coding resembles the early days of computing and the look and

feel got frozen in time, in spite of developments in coding and evolving typo-

graphic needs. I think that the community has missed some opportunities

to influence and improve matters which means that we’re stuck with sub-

optimal situations and, although they are an improvement, Unicode math

and OpenType math have their flaws.

This is not a manual. Some aspects will be explained with examples, oth-

ers are just mentioned. I’ve written down enough details in the documents

that describe the history of LuaTEX and MkIV and dedicated manuals and

repeating myself makes not much sense. Even if you think that I talk non-

sense, some of the examplesmight set you thinking. This article was written

for the tug 2013 conference in Japan. Many thanks to Barbara Beeton for

proofreading and providing feedback.

1.2 Some basic questions

Is there still a need for a program like TEX? Those who typeset math will

argue that there is. After all, one of the reasons why TEX showed up is type-

setting math. In this perspective we should ask ourselves a few questions:

• Is TEX still the most adequate tool?

• Does it make sense to invest in better machinery?

9 Math new style: are we better off?

• Have we learned from the past and improved matters?

• What drives development and choices to be made?

The first question is not that easy to answer, unless you see proof in the

fact that TEX is still popular for typesetting a wide range of complex content

(with critical editions being among the most complex). Indeed the program

still attracts new users and developers. But we need to be realistic. First

of all, there is some bias involved: if you have used a tool for many years, it

becomes the one and only and best tool. But that doesn’t necessarily make

it the best tool for everyone.

In this internet world finding a few thousand fellow users gives the impres-

sion that there is a wide audience but there can be of course thousandfold

more users of other systems that don’t fall into your scope. This is fine:

I always wonder why there is not more diversity; for instance, we have

only a few operating systems to choose from, and in communities around

computer languages there is a tendency to evangelize (sometimes quite ex-

treme). We should also take into account that a small audience can have a

large impact so size doesn’t matter much.

As TEX is still popular among mathematicians, we can assume that it hasn’t

lost its charm yet and often it is their only option. We have a somewhat

curious situation that scientific publishers still want to receive TEX docu-

ments —a demand that is not much different from organizations demand-

ing MS Word documents— but at the same time don’t care too much about

TEX at all. Their involvement in user groups has started degrading long

ago, compared to their profits; they don’t invest in development; they are

mostly profit driven, i.e. those who submit their articles don’t even own

their sources any more, etc.

On the other hand, we have users who make their own books (self-publish-

ing) and who go, certainly in coding and style, beyond what publishers do:

they want to use all kinds of fonts (and mixtures), color, nicely integrated

graphics, more interesting layouts, experiment with alternative presenta-

tions. But especially for documents that contain math that also brings a

price: you have to spend more time on thinking about presenting the con-

tent and coding of the source. This all means that if we look at the user

side, alternative input is an option, especially if they want to publish on dif-

ferent media. I know that there are ConTEXt users who make documents (or

articles) with ConTEXt, using whatever coding suits best, and do some con-

version when it has to be submitted to a journal. Personally I think that the

lack of interest of (commercial) publishers, and their rather minimal role in

Math new style: are we better off? 10

development, no longer qualifies them to come up with requirements for the

input, if only because in the end all gets redone anyway (in Far Far Away).

It means that, as long as TEX is feasible, we are relatively free to move on

and experiment with alternative input. Therefore the other two questions

become relevant. The TEX engines are adapted to new font technology and

a couple of math fonts are being developed (funded by the user groups).

Although the TEX community didn’t take the lead in math font technology

we are catching up. At the same time we’re investing much time in new

tools, but given the fact that muchmath is produced for publishers it doesn’t

get much exposure. Scientific publishing is quite traditional and like other

publishing lags behind and eventually will disappear in its current form. It

could happen that one morning we find out that all that ‘publishers want

it this or that way’ gets replaced by ways of publishing where authors do

all themselves. A publisher (or his supplier) can keep using a 20-year old

TEX ecosystem without problems and no one will notice, but users can go

on and come up with more modern designs and output formats and in that

perspective the availability of modern engines and fonts is good. I’ve said

it before: for ConTEXt user demand drives development.

In the next sections I will focus on different aspects of math and how we

went from MkII to MkIV. I will also discuss some (pending) issues. For each

aspect I will try to answer the third question: did matters improve and if

not, and how do we cope with it (in ConTEXt).

1.3 The math script

All math starts with symbols and/or characters that have some symbolic

meaning and in TEX speak this can be entered in a rather natural way:

$ y = 2x + b $

In order to let TEX know it’s math (the equivalent of) two dollar signs are

used as triggers. The output of this input is: 𝑦 = 2𝑥 + 𝑏. But not all is that
simple, for instance if we want to square the x, we need to use a superscript

signal:

$ y = x^2 + ax + b $

The ^ symbol results in a smaller 2 raised after the x as in 𝑦 = 𝑥2 +𝑎𝑥+𝑏.
Ok, this ^ and its cousin _ are well known conventions so we stick to this

kind of input.

11 Math new style: are we better off?

A next level of complexity introduces special commands, for instance a com-

mand that will wrap its argument in a square root symbol: 𝑦 = √𝑥2 + 𝑎𝑥+ 𝑏.

$ y = \sqrt { x^2 + ax + b } $

It is no big deal to avoid the backslash and use this kind of coding:

\asciimath { y = sqrt (x^2 + ax + b) }

In fact, we have been supporting scientific calculator input for over a decade

in projects where relatively simple math had to be typeset. In one of our

longest-running math related projects the input went from TEX, to content

MathML to OpenMath and via presentation MathML ended up as a com-

bination of some kind of encoding that web browsers can deal with. This

brings us to reality: it’s web technology that drives (and will drive math)

coding. Unfortunately content driven coding (like content MathML) does

not seem to be the winner here, even if it renders easier and is more ro-

bust.

Later I will discuss fences, like parentheses. Take this dummy formula:

$ (x + 1) / a = (x - 1) / b $

In a sequential (inline) rendering this will come out okay. A more display

mode friendly variant can be:

$ \frac{x + 1}{a} = \frac{x - 1}{b} $

which in pure TEX would have been:

$ {x + 1} \over {a} = {x - 1} \over {b} $

The main difference between these two ways of coding is that in the second

(plain) variant the parser doesn’t know in advance what it is dealing with.

There are a few cases in TEX where this kind of parsing is needed and it

complicates not only the parser but also is not too handy at the macro level.

This is why the \frac macro is often used instead. In LuaTEX we didn’t

dare to get rid of \over and friends, even if we’re sure they are not used

that often by users.

In inline or in more complex display math, the use of fences is quite normal.

$ (\frac{x + 1}{a} + 1)^2 = \frac{x - 1}{b} $

Here we have a problem. The parentheses don’t come out well.

Math new style: are we better off? 12

(𝑥+1
𝑎 + 1)2 = 𝑥−1

𝑏

We have to do this:

$ \left(\frac{x + 1}{a} + 1 \right)^2 = \frac{x - 1}{b} $

in order to get:

(𝑥+1
𝑎 + 1)

2
= 𝑥−1

𝑏

Doing that \left-\right trick automatically is hard, although in MathML,

where we have to interpret operators anyway it is somewhat easier. The

biggest issue here is that these two directives need to be paired. In 𝜀-TEX
a \middle primitive was added to provide a way to have bars adapt their

height to the surroundings. Interesting is that where at the character level

a (has a math property open and) has close. The bar, as we will see later,

can also act as separator but this property does not exist. Because proper-

ties (classes in TEX speak) determine spacing we have a problem here. So

far we didn’t extend the repertoire of properties in LuaTEX to suit our needs

(although in ConTEXt we do have more properties).

If you are a TEX user typesetting math, you can without doubt come up

with more cases of source coding that have the potential of introducing

complexities. But you will also have noticed that in most cases TEX does

a pretty good job on rendering math out of the box. And macro packages

can provide additional constructs that help to hide the details of fine tuning

(because there is a lot that can be fine tuned).

In TEX there are a couple of special cases that we can reconsider in the per-

spective of (for instance) faster machines. Normally a macro cannot have a

\par in one of its arguments. By defining them as \long this limitation goes

away. This default limitation was handy in times when a run was relatively

slow and grabbing a whole document source as argument due to a missing

brace had a price. Nowadays this is no real issue which is why in LuaTEX

we can disable \long which indeed we do in ConTEXt. On the agenda is to

also permit \par in a math formula, as currently TEX complains loudly. Per-

mitting a bit more spacy formula definitions (by using empty lines) would

be a good thing.

Another catch is that in traditional TEX math characters cannot be used

outside math. That restriction has been lifted. Of course users need to

be aware of the fact that a mix of math and text symbols can be visually

incompatible.

13 Math new style: are we better off?

In the examples we used ^ and _ and in math mode these have special mean-

ings. Traditionally in text mode they trigger an error message. In ConTEXt

MkIV we have made these characters regular characters but in math mode

they still behave as expected.1 In a similar fashion the & is an ampersand and

when you enable \asciimode the dollar and percent signs also become reg-

ular.2 In LuaTEX we have introduced primitives for all characters (or more

precisely: catcodes) that TEX uses for special purposes like opening and

closing math mode, scripts, table alignment, etc.

In projects that involve xml we use MathML. In TEX many characters can

be inserted using commands that are tuned for some purpose. The same

character can be associated with several commands. In MathML entities

and Unicode characters are used instead of commands. Interesting is that

whenever we get math coded that way, there is a good chance that the

coding is inconsistent. Of course there are ways in MathML to make sure

that a character gets interpreted in the right way. For instance, the mfenced

element drives the process of (matching) parenthesis, brackets, etc. and a

renderer can use this property to make sure these symbols stretch vertically

when needed. However, using mo in an mrow for a fence is also an option, but

that demands some more (fuzzy) analysis. I will not go into details here, but

some of the more obscure options and flags in ConTEXt relate to overcoming

issues with such cases.

I have no experience with how MS Word handles math input, apart from

seeing some demos. But I know that there is some input parsing involved

that is a mixture between TEX and analysis. Just as word processing has

driven math font technology it might be that at some point users expect

more clever processing of input. To a large extent TEX users already expect

that. Where till now TEX could inspire the way word processers do math,

word processors can inspire TEXies way of inputting text.

So, we have MathML, which, in spite of being structured, is still providing

users a lot of freedom. Then there are word processors, where mouse clicks

and interpretation does the job. And of course we have TEX, with its familiar

backslashes. Let us consider math, when seen in print, as a script to express

the math language. And indeed, in OpenType, math is one of the official

scripts although one where a rather specific kind of machinery is needed in

order to get output.

1 In an intermediate version \nonknuthmode and \donknuthmode controlled this.
2 Double percent signs act as comments then which is comparable to comments in some

programming languages.

Math new style: are we better off? 14

I could show more complex math formulas but no matter what notation is

used, coding will always be somewhat cumbersome and handywork. Math

formula coding and typesetting remains a craft in itself and TEX notation

will keep its place for a while. So, with that aspect settled we can continue

to discuss rendering.

1.4 Alphabets

I have written about math alphabets before so let’s keep it simple here.

I think we can safely say that most math support mechanisms in macro

packages are inspired by plain TEX. In traditional TEX we have fonts with

a limited number of glyphs and an eight-bit engine, so in order to get the

thousands of possible characters mapped onto glyphs the right one has to

be picked from some font. In addition to characters that you find in Uni-

code, there are also variants, additional sizes and bits and pieces that are

used in constructing large characters, so in practice a math font is quite

large. But it is unlikely that we will ever run into a situation where fonts

pose limits.

The easiest way is of course a direct mapping: an ‘a’ entered in math mode

becomes an ‘𝑎’ simply because the current font at that time has an italic

shape in the slot referenced by the character. If we want a bold shape

instead, we can switch to another font and still input an ‘a’. The 16 families

available are normally enough for the alphabets that we need. Because

symbols can be collected in any font, they are normally accessed by name,

like \oplus or ⊕.

In Unicode math the math italic ‘𝑎’ has slot U+1D44E and directly entering

this character in a Unicode aware TEX engine also has to give that ‘𝑎’. In
fact, it is the only official way to get that character and the fact that we

can enter the traditional ascii characters and get an italic shape is a side

effect of the macro package, for instance the way it defines math fonts and

families.3

Before we move on, let’s stress a limitation in Unicode with respect to math

alphabets. It has always been a principle of Unicode committees to never

duplicate entries. So, thanks to the availability of some characters in tradi-

tional (font) encodings, we ended up with some symbols that are used for

3 Our experience is that even when for instance MathML permits coding of math in xml,

copy editors have no problem with abusing regular italic font switches to simulate math.

This can result is a weird mix of math rendering.

15 Math new style: are we better off?

math in the older regions of Unicode. As a consequence some alphabets

have gaps. The only real reason I can come up with for accepting these

gaps is that old documents using these symbols would be not compatible

with gapfull Unicode math but I could argue that a document that uses

those old codepoints uses commands (and needs some special fonts) to get

the other symbols anyway, so it’s unlikely to be a real math document. On

the other hand, once we start using Unicode math we could benefit from

gapless alphabets simply because otherwise each application would have

to deal with the exceptions. One can come up with arguments like “just use

this or that library” but that assumes persistence, and also forces everyone

to use the same approach. In fact, if we hide behind a library we could as

well have hidden the vectors (alphabets) as well. But as they are exposed,

the gaps stand out as an anomaly.4 Let’s illustrate this with an example. Say

that we load the TEXGyre Pagella math font and call up a few characters:

\definefont[mathdemo][file:texgyrepagellamath*mathematics]

\mathdemo \char"0211C \char"1D507 \char"1D515

The Unicode fraktur math alphabet is continuous but the ‘MATHEMATICAL

FRAKTUR CAPITAL R’ is missing as we already have the BLACK-LETTER

CAPITAL R instead. So, this is why we only see two characters show up.

It means that in the input we cannot have a U+1D515.

ℜ𝔇

Of course we can cheat and fill in the gap:

\definefontfeature

[mymathematics]

[mathematics]

[mathgaps=yes]

This feature will help us cheat:

\definefont[mathdemo][file:texgyrepagellamath*mymathematics]

\mathdemo \char"0211C \char"1D507 \char"1D515

This time we can use the character. I wonder what would happen if the TEX

community would simply state that slot U+1D515 is valid. I bet that math

4 One good reason for not having the gaps is that when users cut and paste there is no way

to know if U+210E is used as Planck constant or variable of some sort, i.e. the not existing

0x1D455. There is no official way to tag it as something math, and even then, as it has no

code point it so has lost it’s meaning, contrary to a copied 𝑖.

Math new style: are we better off? 16

related applications would support it, as they also support more obscure

properties of TEX input encoding.

ℜ𝔇ℜ

If you still wonder why I bother about this, here is a practical example. The

SciTE editor that I use is rather flexible and permits me to implement ad-

vanced lexers for ConTEXt (and especially hybrid usage). It also permits

to hook in Lua code and that way the editor can (within bounds) be ex-

tended. As an example I’ve added some button bars that permit entering

math alphabets. Of course the appearance depends on the font used but

operating systems tend to consult multiple fonts when the core font of the

editor doesn’t provide a glyph.

Here I show a small portion of the stripe with buttons that inject the shown

characters. What happens in the rendering is that first the used font is con-

sulted and that one has a couple of ‘BLACK LETTER CAPITAL’s so they get

used. The others are ‘MATHEMATICAL FRAKTUR CAPITAL’s and since the

font is not a math font the renderer takes them from (in this case) Cam-

bria Math, which is why they look so different, especially in proportion. Of

course we could start out with Cambria but it has no monospace (which I

want for editing) and is a less complete text font, so we have a chicken--

egg problem here. It is one reason why as part of the math font project

we extend the Dejavu Sans Mono with proper (consistent) math symbols.

Anyhow, it illustrates why gaps are kind of evil from the application point

of view.

gap char meant unicode used

U+1D455 ǜ MATHEMATICAL ITALIC SMALL H U+0210E PLANCK CONSTANT

U+1D49D ੅ MATHEMATICAL SCRIPT CAPITAL B U+0212C SCRIPT CAPITAL B

U+1D4A0 ੈ MATHEMATICAL SCRIPT CAPITAL E U+02130 SCRIPT CAPITAL E

U+1D4A1 ੉ MATHEMATICAL SCRIPT CAPITAL F U+02131 SCRIPT CAPITAL F

U+1D4A3 ੋ MATHEMATICAL SCRIPT CAPITAL H U+0210B SCRIPT CAPITAL H

U+1D4A4 ੌ MATHEMATICAL SCRIPT CAPITAL I U+02110 SCRIPT CAPITAL I

U+1D4A7 ੏ MATHEMATICAL SCRIPT CAPITAL L U+02112 SCRIPT CAPITAL L

U+1D4A8 ੐ MATHEMATICAL SCRIPT CAPITAL M U+02133 SCRIPT CAPITAL M

U+1D4AD ੕ MATHEMATICAL SCRIPT CAPITAL R U+0211B SCRIPT CAPITAL R

17 Math new style: are we better off?

U+1D4BA ੢ MATHEMATICAL SCRIPT SMALL E U+0212F SCRIPT SMALL E

U+1D4BC ੤ MATHEMATICAL SCRIPT SMALL G U+0210A SCRIPT SMALL G

U+1D4C4 ੬ MATHEMATICAL SCRIPT SMALL O U+02134 SCRIPT SMALL O

U+1D506 લ MATHEMATICAL FRAKTUR CAPITAL C U+0212D BLACK-LETTER CAPITAL C

U+1D50B ષ MATHEMATICAL FRAKTUR CAPITAL H U+0210C BLACK-LETTER CAPITAL H

U+1D50C સ MATHEMATICAL FRAKTUR CAPITAL I U+02111 BLACK-LETTER CAPITAL I

U+1D515 ℜ MATHEMATICAL FRAKTUR CAPITAL R U+0211C BLACK-LETTER CAPITAL R

U+1D51D ૉ MATHEMATICAL FRAKTUR CAPITAL Z U+02128 BLACK-LETTER CAPITAL Z

U+1D53A ਅ MATHEMATICAL DOUBLE-STRUCK CAPITAL C U+02102 DOUBLE-STRUCK CAPITAL C

U+1D53F ਊ MATHEMATICAL DOUBLE-STRUCK CAPITAL H U+0210D DOUBLE-STRUCK CAPITAL H

U+1D545 ਐ MATHEMATICAL DOUBLE-STRUCK CAPITAL N U+02115 DOUBLE-STRUCK CAPITAL N

U+1D547 ਒ MATHEMATICAL DOUBLE-STRUCK CAPITAL P U+02119 DOUBLE-STRUCK CAPITAL P

U+1D548 ਓ MATHEMATICAL DOUBLE-STRUCK CAPITAL Q U+0211A DOUBLE-STRUCK CAPITAL Q

U+1D549 ਔ MATHEMATICAL DOUBLE-STRUCK CAPITAL R U+0211D DOUBLE-STRUCK CAPITAL R

U+1D551 ਜ MATHEMATICAL DOUBLE-STRUCK CAPITAL Z U+02124 DOUBLE-STRUCK CAPITAL Z

Barbara Beeton toldme that, although it took some convincing arguments in

the discussions aboutmath in Unicode, we have at least one hole less than to

be expected: slot U+1D4C1 has not been seen as already covered by U+02113.

So is there really this distinction between a MATHEMATICAL SCRIPT SMALL

L and SCRIPT SMALL L (usually \ell in macro packages? Indeed there is,

although at the time of this writing interestingly Latin Modern fonts lacked

the mathematical one (which in ConTEXt math mode normally results in an

upright drop--in). Such details become important when math is edited by

someone not familiar with the distinction between a variable (or whatever)

represented by a script shape and the length operator. There seems not to

be agreement by font designers about the shapes being upright or italic, so

some confusion will remain, although this does not matter as long as within

the font they differ.

font U+1D4C1 U+02113

latin modern ℓ
stix/xits 𝓁 ℓ
bonum 𝓁 ℓ
termes 𝓁 ℓ
pagella 𝓁 ℓ
lucida 𝓁 ℓ

As math uses greek and because greek was already present in Unicode

when math was recognized as script and got its entries, you can imagine

that there are some issues there too, but let us move on to using alphabets.

Math new style: are we better off? 18

In addition to a one--to--one mapping from a font slot onto a glyph, you can

assign properties to characters that map them onto a slot in some family

(which itself relates to a font). This means that in a traditional approach

you can choose among two methods:

• You define several fonts (or instances of the same font) where the posi-

tions of regular characters point to the relevant shape. So, when an italic

family is active the related font maps character U+61 as well as U+1D44E

to the same italic shape ‘𝑥1𝐷44𝐸’. A switch from italic to bold italic is

then a switch in family and in that family the U+61 as well as U+1D482

become bold italic ‘𝑥1𝐷482’.
• You define just one font. The alphabet (uppercase, lowercase and some-

times digits and a few symbols) gets codes that point to the right shape.

When we switch from italic to bold italic, these codes get reassigned.

The first method has some additional overhead in defining fonts (you can

use copies but need to make sure that the regular ascii slots are overloaded)

but the switch from italic to bold italic is fast, while in the second variant

there is less overhead in fonts but reassigning the codes with a style switch

has some overhead (although in practice this overhead is can be neglected

because not that many alphabet switches take place). In fact, many TEX

users will probably stick to traditional approaches where verbose names

are used and these can directly point to the right shape.

In ConTEXt, when we started with MkIV, we immediately decided to follow

another approach. We only have one family and we assume Unicode math

input. Ok, we do have a few more families, but these relate to a full bold

math switch and right--to--left math. We cannot expect users to enter Uni-

code math, if only because support in editors is not that advanced, so we

need to support the ascii input method as well.

We have one family and don’t redefine character codes, but set properties

instead. We don’t switch fonts, but properties. These properties (often a

combination) translates into the remapping of a specific character in the

input onto a Unicode math code point that then directly maps onto a shape.

This approach is quite clean and efficient at the TEX end but carries quite

a lot of overhead at the Lua end. So far users never complained about it,

maybe because ConTEXt math support is rather optimized. Also, dealing

with characters is only part of math typesetting and we have subsystems

that use far more processing power.

Because math characters are organized in classes, we need to set them

up. Because for several reasons we collect character properties in a data-

19 Math new style: are we better off?

base we also define these character properties in Lua. This means that the

math-* files are relatively small. So we have much less code at the TEX end,

but quite a lot at the Lua end. This assumes a well managed Lua subsys-

tem because as soon as users start plugging in their code, we have to make

sure that the core system still functions well. The amount of code involved

in virtual math fonts is also relatively large but most of that is becoming

sort of obsolete.

Relatively new in ConTEXt is the possibility in somemathematical constructs

to configure the math style (text, script, etc.) and in some cases math

classes can be influenced. Control over styles is somewhat more conve-

nient in LuaTEX, because we can consult the current style in some cases. I

expect more of this kind of control in ConTEXt, although most users proba-

bly never need it. These kinds of features are meant for users like Aditya

Mahajan, who likes to explore such features and also takes advantage of

the freedom to experiment with the look and feel of math.

The font code that relates to math is not the easiest to understand but this

is because it has to deal with bold as well as bidirectional math in efficient

ways. Because in ConTEXt we have additional sizes (x, xx, a, b, c, d, . . .) we

also have some delayed additional defining going on. This all might sound

slower to set up but in the end we win some back by the fact that we have

fewer fonts to load. The price that a ConTEXt user pays in terms of runtime

is more influenced by the by now large sequence of math list manipulators

than by loading a font.

An unfortunate shortcoming of Unicode math is that some alphabets have

gaps. This is because characters can only end up once in the standard.

Given the number of weird characters showing up in recent versions, I think

this condition is somewhat over the top. It forces applications that deal with

Unicode math to implement exceptions over and over again. In ConTEXt we

assume no gaps and compensate for that.

There are several ways that characters can become glyphs. An ‘a’ can be-

come an italic, bold, bold italic but also end up sans serif or monospace.

Because there are several artistic interpretations possible, some fonts pro-

vide a so-called alternate. In the case of for instance greek we can also

distinguish upright or slanted (italic). A less well known transformation is

variants driven by Unicode modified directives. If we forget about bidirec-

tional math and full bold (heavy) math we can (currently) identify 6 axes:

axis use choices

Math new style: are we better off? 20

1 type digits, lowercase & uppercase latin & greek, symbols

2 alphabet regular, sans serif, monospace, blackboard, fraktur, script

3 style upright, italic, bold, bolditalic

4 variant alternative rendering provided by font

5 shape unchanged, upright, italic

6 Unicode alternative rendering driven by Unicode modifier

Apart from the last one, this is not new, but it is somewhat easier to support

this consistently. It’s one of the areas where Unicode shines, although the

gaps in vectors are a bad thing. One thing that I decided early in the MkIV

math development is that all should fit into the same model: it makes no

sense to cripple a whole system because of a few exceptions.

Users expect their digits to be rendered upright and letters to be rendered

with italic shapes, but use regular ascii input. This means that we need to

relocate the letters to the relevant alphabet in Unicode. In ConTEXt this

happens as part of several analysis steps that more or less are the same

as the axis mentioned. In addition there is collapsing, remapping, italic

correction, boldening, checking, intercepting of special input, and more

going on. Currently there are (depending on what gets enabled) some 10

to 15 manipulation passes over the list and there will be more.

So how does the situation compare to the old one? I think we can safely

say that we’re better off now and that LuaTEX behaves quite okay. There is

not much that can be improved, apart from more complete fonts (especially

bold). A nice bonus of LuaTEX is that math characters can be used in text

mode as well (given that the current font provides them).

It will be clear that by following this route we moved far away from the MkII

approach and the dependency on Lua has become rather large in this case.

The benefit is that we have rather clean code with hardly any exceptions.

It came at the price of lots of experiments and (re)coding but I think it pays

off for users.

1.5 Bold

Bold is sort of special. There are bold symbols and some bold alphabets and

that is basically what bold math is: just a different rendering. In a proper

OpenType math fonts these bold characters are covered.

Section titles or captions are often typeset bolder and when they contain

math all of it needs to be bolder too. So, a regular italic shape becomes

21 Math new style: are we better off?

a bold italic shape but a bold shape becomes heavy. This means that we

need a full blown bold font for that purpose. And although some are on the

agenda of the font team, often we need to fake it. This is seldom an issue as

(at least in the documents that I deal with) section titles are not that loaded

with math.

A proper implementation of such a mechanism involves two aspects: first

there needs to be a complete bold math font with heavy bold included, and

second themacro packagemust switch to boldmath in a bold context. When

no real bold font is available, some automatic mapping can take place, but

that might give interpretation issues if bold is used in a formula. For the

average highschool math that we render this is not an issue. Currently

there are no full bold math fonts that have enough coverage. (The Xits font,

derived from Stix, has a bold companion that does provide for instance bold

radicals but lacks many bolder alphabets and symbols.)

\startimath

\sqrt{x^2\over 4x} \qquad

{\bf \sqrt{x^2\over 4x}} \qquad

{\mb \sqrt{x^2\over 4x}} \qquad

\sqrt{x^2 + 4x} \qquad

{\bf \sqrt{x^2 + 4x}} \qquad

{\mb \sqrt{x^2 + 4x}}

\stopimath

This gives:

√𝑥2
4𝑥

√𝐱𝟐
𝟒𝐱

√𝒙𝟐
𝟒𝒙

√𝑥2 + 4𝑥 √𝐱𝟐 +𝟒𝐱 √𝒙𝟐 +𝟒𝒙

Here it is always a bit of a guess if bold extensibles are (already) supported

so it’s dangerous to go wild with full bold/heavy combinations unless you

check carefully what results you get. Another aspect you need to be aware

of is that there is an extensive fallback mechanism present. When possible a

proper alphabet will be used, but when one is not present there is a fallback

on another. This ensures that we get at least something.

There is not much that an engine can do about it, apart from providing

enough families to implement it. In a Type1 universe indeed we need lots of

families already so the traditional 16-family pool is drained soon. In LuaTEX

we can have 256 families which means that additional Type1 bases family

sets are no issue any longer. But as in MkIV we no longer follow that route,

bold math can be set up relatively easy, given that we have a bold font. If

we don’t have such a font, we have an intermediate mode where a bold font

Math new style: are we better off? 22

is simulated. Keep in mind that this always will need checking, at least as

long as don’t have complete enough bold fonts with heavy bold included.

1.6 Radicals

In most cases a TEX user is not that aware of what happens in order to

get a nicely wrapped up root on paper. In traditional TEX this is an inter-

play between rather special font properties and macros. In LuaTEX it has

become a bit more simple because we introduced a primitive for it. Also,

in OpenType fonts, the radical is provided in a somewhat more convenient

way. In an OpenType math font there are some variables that control the

rendering:

RadicalExtraAscender

RadicalRuleThickness

RadicalVerticalGap

RadicalDisplayStyleVerticalGap

The engine will use these to construct the symbol. The root symbols can

grow in two dimensions: the left bit grows vertically but due to the fact

that there is a slope involved it happens in steps using different symbols.

√√√
√√

√
√√
⎷

√
√√√
⎷

√
√
√
√
⎷

√
√
√
√
√
⎷

√
√
√
√
√
⎷

Compare this to for instance how a bracket grows:

[[[⎡⎢
⎣

⎡⎢⎢⎢
⎣

⎡
⎢⎢⎢⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

The bracket is a so-called vertical extensible character. It grows in steps

using different glyphs and when we run out of variants a last resort kicks in:

a symbol gets constructed from three pieces, a top and bottom piece and

in between a repeated middle segment. The root symbol is also vertically

extensible but there the change to the stretched variant is visually rather

distinct. This has a reason: the specification cannot deal with slopes. So,

23 Math new style: are we better off?

in order to stretch the last resort, as with the bracket, goes vertical and

provides a middle segment.

The root can also grow horizontally; just watch this:

√ √ √ √ √

√
√√
⎷

√
√√√
⎷

√
√
√
√
⎷

√
√
√
√
√
⎷

√
√
√
√
√
⎷

The font specification can handle vertical as well as horizontal extensibles

but surprise: it cannot handle a combination. Maybe the reason is that

there is only one such symbol: the radical. So, instead of expecting a sym-

metrical engine, an exception is made that is controlled by the mentioned

variables. So, while we go upwards with a proper middle glyph, we go hor-

izontal using a rule.

One can argue that the traditional TEXmachinery is complex because it uses

special font properties and macros, but once you start looking into the mod-

ern variant it becomes clear that although we can have a somewhat cleaner

implementation, it still is a kludge. And, because rendering on paper no

longer drives development it is not to be expected that this will change.

The TEX community didn’t come up with a better approach and there is no

reason to believe that it will in the future.

One of the reasons for users to use TEX is control over the output: instead

of some quick and dirty job authors can spend time on making their docu-

ments look the way they want. Even in these internet times with dynamic

rendering, there is still a place for a more frozen rendering, explicitly driven

by the author. But, that only makes sense when the author can influence

the rendering, maybe even without bounds.

So, because in ConTEXt I really want to provide control, as one of the last

components, math radicals were made configurable too. In fact, the code

involved is not that complex because most was already in place. What is

interesting is that when I rewrapped radicals once again I realized that

instead of delegating something to the engine and font one could as well

forget about it and do all in dedicated code. After all, what is a root symbol

more that a variation of a framed bit of text. Here are some examples.

$

y = \sqrt { x^2 + ax + b } \quad

y = \sqrt[2]{ x^2 + ax + b } \quad

Math new style: are we better off? 24

y = \sqrt[3]{ \frac{x^2 + ax + b }{c} }

$

By default this gets rendered as follows:

𝑦 = √𝑥2 + 𝑎𝑥+ 𝑏 𝑦 = 2√𝑥2 + 𝑎𝑥+ 𝑏 𝑦 = 3√𝑥2+𝑎𝑥+𝑏
𝑐

We can change the rendering alternative to one that permits some addi-

tional properties (like color):

\setupmathradical[sqrt][alternative=normal,color=maincolor]

This looks more or less the same:

𝑦 = √𝑥2 + 𝑎𝑥+ 𝑏 𝑦 = 2√𝑥2 + 𝑎𝑥+ 𝑏 𝑦 = 3√𝑥2+𝑎𝑥+𝑏
𝑐

We can go a step further and instead of a font use a symbol that adapts

itself:

\setupmathradical

[sqrt]

[alternative=mp,

color=darkgreen]

Now we get this:

𝑦 = 𝑥2 + 𝑎𝑥+ 𝑏 𝑦 = 𝑥2 + 𝑎𝑥+ 𝑏2 𝑦 = 𝑥2+𝑎𝑥+𝑏
𝑐

3

Such a variant can be more subtle, as we not only can adapt the slope dy-

namically, but also add a nice finishing touch to the end of the horizontal

line. Take this variant:

\startuniqueMPgraphic{math:radical:extra}

draw

math_radical_simple(OverlayWidth,OverlayHeight,OverlayDepth,OverlayOffset)

withpen pencircle

xscaled (2OverlayLineWidth)

yscaled (3OverlayLineWidth/4)

rotated 30

dashed evenly

withcolor OverlayLineColor ;

\stopuniqueMPgraphic

We hook this graphic into the macro:

25 Math new style: are we better off?

\setupmathradical

[sqrt]

[alternative=mp,

mp=math:radical:extra,

color=darkred]

And this time we see a dashed line:

𝑦 = 𝑥2 + 𝑎𝑥+ 𝑏 𝑦 = 𝑥2 + 𝑎𝑥+ 𝑏2 𝑦 = 𝑥2+𝑎𝑥+𝑏
𝑐

3

Of course one can argue about esthetics but let’s face it: much ends up in

print, also by publishers, that doesn’t look pretty at all, so I tend to provide

the author the freedom to make what he or she likes most. If someone is

willing to spend time on typesetting (using TEX), let’s at least make it a

pleasant experience.

Here we see the symbol adapt. We can think of alternative symbols, for

instance the first part becomes wider dependent on the height, but this can

be made less prominent. Depending on user input I will provide some more

variants as it’s relatively easy to implement.

Before I wrap up, let’s see what exactly we have in stock deep down. Tradi-

tionally TEX provides a \surd command which is just the root symbol. Then

there is a macro \root..\of.. that wraps the last argument in a root and

typesets a degree as well (of given). In ConTEXt we now provide this:

$\surd x \quad \surdradical x \quad \rootradical{3}{x} \quad \sqrt[3]{x}$

I don’t remember ever having used the \surd command, but this is what it

renders:

√𝑥 √𝑥 3√𝑥 3√𝑥

Only the last command, \sqrt is a macro defined in one of the math mod-

ules, the others are automatically defined from the database:

[0x221A] = { -- there are a few more properties set

unicodeslot = 0x221A,

Math new style: are we better off? 26

description = "SQUARE ROOT",

adobename = "radical",

category = "sm",

mathspec = {

{ class = "root", name = "rootradical" },

{ class = "radical", name = "surdradical" },

{ class = "ordinary", name = "surd" },

},

}

So we get the following definitions:

command meaning usage

\surd \Umathchar"0"00"00221A \surd

\surdradical \protected macro:->\Uradical "0 "221A \surdradical{body}

\rootradical \protected macro:->\Uroot "0 "221A \rootradical{degree} {body}

So, are we better off? Given that a font sticks to how Cambria does it, we

only need a minimal amount of code to implement roots. This is definitely

an improvement at the engine level. However, in the font there are no fun-

damental differences between the traditional and more modern approach,

but we’ve lost the opportunity to make a proper two--dimensional extensi-

ble. Eventually the user won’t care as long as the macro package wraps it

all up in useable macros.

1.7 Primes

Another rather disturbing issue is with primes. A prime is an accent-like

symbol that as a kind of superscript is attached to a variable or function. In

good old TEX tradition this is entered as follows:

$ f'(x) $ and $ f''(x) $

which produces: 𝑓′(𝑥) and 𝑓″(𝑥). The upright quote symbols are never used
for anything else than primes and magically get remapped onto a prime

symbol. This might look trivial, but there are several aspects to deal with,

especially when using traditional fonts. In the eight-bit lmsy10math symbol

font, which is derived from the original cmsy10 the prime symbol looks like

this:

3

The bounding box is rather tight and the reason for this becomes clear when

we put it alongside another character:

27 Math new style: are we better off?

𝑥3

The prime is not only pretty large, it also sits on the baseline. It means that

in order to make it a real prime (basically an operator pointing back to the

preceding symbol), we need to raise it. Of course we can define a \prime

command that takes care of this, and indeed that is what happens in plain

TEX and derived formats. The more direct ' input is supported by making

that character an active character in math mode. Active characters behave

like commands and in this case the \prime command.

In the OpenType latin modern fonts the prime (U+2032) looks like this:

𝑥x2032

So here we have an already raised and also smaller prime symbol. And,

because we also have double (U+2033) and triple primes (U+2034) a few

more characters are available

𝑥x2032 𝑥x2033 𝑥x2034

In the traditional approach these second and third order primes are built

from the first order primes. And this introduces, in addition to the raising,

another complexity: the \prime command has to look ahead and intercept

future primes. And as there can also be a following raised symbol (or num-

ber) it needs to take a superscript trigger into account as well. So, let’s

look at some possible input:

$f'(x)$ 𝑓′(𝑥)
$f''(x)$ 𝑓″(𝑥)
$f'''(x)$ 𝑓‴(𝑥)
$f\prime ^2$ 𝑓′2

$f\prime \prime ^2$ 𝑓″2

$f\prime \prime \prime ^2$ 𝑓‴2

$f'\prime '^2$ 𝑓‴2

$f^'(x)$ 𝑓′(𝑥)
f'^2 𝑓′2

$f{\prime }^2$ 𝑓′2

Now imagine that you have this big prime character sitting on the baseline

and you need to turn ''' into a a triple prime, but don’t want ^' to be

double raised, while on the other hand ^2 should be. This is of course doable

with some macro juggling but how about supporting traditional fonts in

combination with OpenType, where the primes are already raised.

Math new style: are we better off? 28

When we started with LuaTEX and ConTEXt MkIV, one of the first decisions

I made was to go Unicode math and drop eight-bit. In order to compensate

for the lack of fonts, a mechanism was provided to construct virtual Uni-

code math fonts, as a prelude to the lm/gyre OpenType math fonts. In the

meantime we have these fonts and the virtual variants are only kept as

historic reference and for further experiments.

As a starter I wrote a variant of the traditional ConTEXt \prime command

that could recognize somehow if it was dealing with a Type1 or OpenType

font. As a consequence it also had the traditional raise and look ahead mess

on board. However, there was also some delegation to the Lua enhanced

math support code, so the macro was not that complex. When the real

OpenType math fonts showed up the macro was dropped and the virtual

fonts were adapted to the raised-by-default situation, which in itself was

somewhat complicated by the fact that a smaller symbol had to be used, i.e.

some more information about the current set of defined math sizes has to

be passed around.5

Anyhow, the current implementation is rather clean and supports collapsing

of combinations rather well. There are four prime symbols but only three

reverse prime symbols. If needed I can provide a virtual REVERSED TRIPLE

PRIME if needed, but I guess it’s not needed.

U+2032 PRIME ′ ′
U+2033 DOUBLE PRIME ″ ′′ ″
U+2034 TRIPLE PRIME ‴ ′′′ ′″ ″′ ‴
U+2057 QUADRUPLE PRIME ⁗ ′′′′ ′′″ ′″′ ″′′ ″″ ‴′ ′‴ ⁗
U+2035 REVERSED PRIME ‵ ‵
U+2036 REVERSED DOUBLE PRIME ‶ ‵‵ ‶
U+2037 REVERSED TRIPLE PRIME ‷ ‵‵‵ ‵‶ ‶‵ ‷

Of course no one will use this ligature approach but I’ve learned to be pre-

pared as it wouldn’t be the first time when we encounter input that is cut

and paste from someplace or clicked-till-it-looks-okay.

There is one big complication and that is that where in TEX there is only

one big prime that gets raised and repeated in case of multiple primes, in

OpenType the primes are already raised. They are in fact not supposed to

be superscripted, as they are already. In plain TEX the prime is entered

using an upright single quote and that one is made active: it is in fact a

macro. That macro looks ahead and intercepts following primes as well as

5 The actual solution for this qualifies as a dirty trick so we are not freed from tricks yet.

29 Math new style: are we better off?

subscripts. In the end, a superscript (the prime) and optional subscripts

are attached to the preceding symbol. If we want to benefit from the Uni-

code primes as well as support collapsing, such a macro quickly becomes

messy. Therefore, in MkIV the optional subscript is handled in the collapser.

We cheat a bit by relocating super- and subscripts and at the same time

remap the primes to virtual characters that are smashed to a smaller height,

lowered to the baseline, and eventually superscripted. Indeed, it sounds

somewhat complex and it is. In a next version I will also provide ways to

influence the size as one might want larger of smaller primes to show up.

This is one case where the traditional TEX fonts have a benefit as the primes

are superscriptable characters, but we have to admit that the Unicode and

OpenType approach is conceptually more correct. The only way out of this

is to have a primitive operation for primes just as we have for radicals but

that also has some drawbacks. Eventually I might come up with a cleaner

solution for this dilemma.

Let us summarize the situation and solution used in MkIV now:

• When (still) using the virtual Unicode math fonts, we construct a virtual

glyph that has properties similar to proper OpenType math fonts.

• We collapse a sequence of primes into proper double and triple primes.

• We unraise primes so that users who (for some reason) superscript them

(maybe because they still assume big ones sitting on the baseline) get

the desired outcome.

• We accept mixtures of ' and \prime.

We can do this because in ConTEXt MkIV we don’t care too much about

exact visual compatibility as long as we can make users happy with clean

mechanisms. So, this is one of the situations where the new situation is

better, thanks to on the one hand the way primes are provided in fonts, and

on the other hand the enhanced math machinery in MkIV.

1.8 Accents

There are a few special character types in math and accents are one of

them. Personally I think that the term accent is somewhat debatable but

as they are symbols drawn on top of or below something we can stick to

that description for the moment. In addition to some regular fixed width

variants, we have adaptive versions: \hat as well as \widehat and more.

̂ ̂ ̂ ̂ ̂ ̂

Math new style: are we better off? 30

I have no clue if wider variants are needed but such a partial coverage def-

initely looks weird. So, as an escape users can kick in their own code. After

all, who says that a user cannot come up with a new kind of math. The

following example demonstrates how this is done:

\startMPextensions

vardef math_ornament_hat(expr w,h,d,o,l) text t =

image (

fill

(w/2,10l) -- (w + o/2,o/2) --

(w/2, 7l) -- (- o/2,o/2) --

cycle shifted (0,h-o) t ;

setbounds

currentpicture

to

unitsquare xysized(w,h) enlarged (o/2,0)

)

enddef ;

\stopMPextensions

This defines a hat-like symbol. Once the sources of the math font project

are published I can imagine that an ambitious user defines a whole set of

proper shapes. Next we define an adaptive instance:

\startuniqueMPgraphic{math:ornament:hat}

draw

math_ornament_hat(

OverlayWidth,

OverlayHeight,

OverlayDepth,

OverlayOffset,

OverlayLineWidth

)

withpen

pencircle

xscaled (2OverlayLineWidth)

yscaled (3OverlayLineWidth/4)

rotated 30

withcolor

OverlayLineColor ;

\stopuniqueMPgraphic

Last we define a symbol:

31 Math new style: are we better off?

\definemathornament [mathhat] [mp=math:ornament:hat,color=darkred]

And use it as \mathhat{...}:

Of course this completely bypasses the accent handler and in fact even writ-

ing the normal stepwise one is not that hard to do in macros. But, there is a

built--in mechanism that helps us for those cases and it can even deal with

font based stretched alternatives of which there are a few: curly braces,

brackets and parentheses. The reason that these can stretch is that they

don’t have slopes and therefore can be constructed out of pieces: in the

case of a curly brace we have 4 snippets: begin, end, middle and repeated

rules, and in the case of braces and brackets 3 snippets will do. But, if we

really want we can use MetaPost code similar to the code shown above to

get a nicer outcome.

There are in good TEX tradition four accents that can also stretch horizon-

tally: bar, brace, parenthesis and bracket. When using fonts such an accent

looks like this:

𝑎 + 𝑏+ 𝑐+𝑑⏞⏞⏞⏞⏞⏞⏞ 𝑎+𝑏+ 𝑐+𝑑⏟⏟⏟⏟⏟⏟⏟ 𝑎+𝑏+ 𝑐+𝑑⏟⏟⏟⏟⏟⏟⏟⏞⏞⏞⏞⏞⏞⏞

this is coded like:

$ \overbrace{a+b+c+d} \quad \underbrace{a+b+c+d} \quad \doublebrace{a+b+c+d}

$

As with radicals, for more fancy math you can plug in MetaPost variants.

Of course this kind of rendering should fit into the layout of the document

but I can imagine that for schoolbooks this makes sense.

\useMPlibrary[mat]

\setupmathstackers

[vfenced]

[color=darkred,

alternative=mp]

Applied in an example we get:

𝑎 + 𝑏+ 𝑐+𝑑 𝑎+ 𝑏+ 𝑐+𝑑 𝑎+ 𝑏+ 𝑐+𝑑

𝑎+ 𝑏+ 𝑐+𝑑 𝑎+ 𝑏+ 𝑐+𝑑 𝑎+ 𝑏+ 𝑐+𝑑

Math new style: are we better off? 32

𝑎 + 𝑏+ 𝑐+𝑑 𝑎+ 𝑏+ 𝑐+𝑑 𝑎+ 𝑏+ 𝑐+𝑑

𝑎+ 𝑏+ 𝑐+𝑑 𝑎+ 𝑏+ 𝑐+𝑑 𝑎+ 𝑏+ 𝑐+𝑑

This kind of magic is partly possible because in LuaTEX (and thereforeMkIV)

we can control matters a bit better. And of course the fact that we have

MetaPost embedded means that the impact of using graphics is not that

large.

We used the term ‘stackers’ in the setup command so although these are

officially accents, in ConTEXt we implement them as instances of a more

generic mechanism: things stacked on top of each other. We will discuss

these in the next section.

1.9 Stackers

In plain TEX and derived work you will find lots of arrow builders. In most

cases we’re talking of a combination of one or more single or double arrow

heads combined with a rule. In any case it is something that is not so much

font driven but macro magic. Optionally there can be text before and/or

after as well as text above and/or below them. The later is for instance the

case in chemistry. This text is either math or upright properly kerned and

spaced non--mathematical text so we’re talking of some mixed math and

text usage. The size is normally somewhat smaller.

Arrows can also go on top or below regular math so in the end we end up

with several cases:

• Something stretchable on top of or centered around the baseline, option-

ally with text above or below.

• Something stretchable on top of a running (piece of) text or math.

• Something stretchable below a running (piece of) text or math.

• Something stretchable on top as well as below a running (piece of) text

or math.

These have in common that the symbol gets stretched. In fact the last three

cases are quite similar to accents but in traditional TEX and its fonts arrows

and alike never made it to accents. One reason is probably that because a

macro language was available and because fonts were limited, it was rather

easy to use rules to extend an arrowhead.

In ConTEXt this kind of vertically stacked stretchable material is imple-

mented as stackers. In the chapter mathstackers of about.pdf you can

33 Math new style: are we better off?

read more about the details so here I stick to a short summary to illustrate

what we’re dealing with. Say that you want an arrow that stretches over a

given width.

\hbox to 4cm{\leftarrowfill}

In traditional TEX with traditional fonts the definition of this arrow looks as

follows:

\def\leftarrowfill {$

\mathsurround=0pt

\mathord{\mathchar"2190}

\mkern-7mu

\cleaders

\hbox {$

\mkern-2mu

\mathchoice

{\setbox0\hbox{$\displaystyle -$}\ht0=0pt\dp0=0pt\box0}

{\setbox0\hbox{$\textstyle -$}\ht0=0pt\dp0=0pt\box0}

{\setbox0\hbox{$\scriptstyle -$}\ht0=0pt\dp0=0pt\box0}

{\setbox0\hbox{$\scriptscriptstyle-$}\ht0=0pt\dp0=0pt\box0}

\mkern-2mu

$}

\hfill

\mkern-7mu

\mathchoice

{\setbox0\hbox{$\displaystyle -$}\ht0=0pt\dp0=0pt\box0}

{\setbox0\hbox{$\textstyle -$}\ht0=0pt\dp0=0pt\box0}

{\setbox0\hbox{$\scriptstyle -$}\ht0=0pt\dp0=0pt\box0}

{\setbox0\hbox{$\scriptscriptstyle-$}\ht0=0pt\dp0=0pt\box0}

$}

When using Type1 fonts we don’t use a \mathchar but more something like

this:

\leftarrow = \mathchardef\leftarrow="3220

What we see in this macro is a left arrow head at the start and as minus

sign at the end. In between the \cleaders will take care of filling up the

available hsize with more minus signs. The overlap is needed in order to

avoid gaps due to rounding in the renderer and also obscures the rounded

caps of the used minus sign.

Math new style: are we better off? 34

Theminus sign is used because it magically connects well to the arrow head.

This is of course a property of the design but even then you can consider

it a dirty trick. We don’t specify a width here as this macro adapts itself to

the current width due to the leader. But if we do know the width an easier

approach becomes possible. Take this combination of a left and right arrow

on top of each other:

\mathstylehbox{\Umathaccent\fam\zerocount"21C4{\hskip4cm}}

The \mathstylehboxmacro is a ConTEXt helper. When we take a closer look

at the result (scaled up a bit) we see again snippets being used:6.

⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄⇄
But this time the engine itself deals with the filling. Unfortunately for the

accent approach to work we need to specify the width. Given how these

arrows are used, this is no problem: because we often put text on top and/or

below, we need to do some packaging and therefore know the dimensions,

but a generic alternative would be nice. This is why for LuaTEX we have on

the low priority agenda:

\leaders"2190\hfill

or a similar primitive. This way we can let the engine do some work and

keep macros simple. Normally \leaders delegate part of repeating to the

backend but in the case of math it has to be part of constructing the formula

because the extensible constructor has to be used.

If you’ve looked into the LuaTEX manual you might have noticed that there

is a new primitive that permits this:

\mathstylehbox{\Uoverdelimiter\fam"21C4{\hskip4cm}}

However, it is hardly useable for our purpose for several reasons. First

of all, when the argument is narrower than the smallest possible delimiter

both get left aligned, so the delimiter sticks out (this can be considered

a bug). But also, the placement is influenced by a couple of parameters

that we then need to force to zero values, which might interfere. Another

property of this mechanism is that the style is influenced and so we need

to mess more with that. These are enough reasons to ignore this extension

6 We cheat a bit here: as we use Xits in this document, and that font doesn’t yet provide this

magic we switch temporarily to the Pagella font

35 Math new style: are we better off?

for a while. Maybe at some point, when really needed, I will write a proper

wrapper for this primitive.

Whenwe startedwithMkIVwe stuckwith the leaders approach for a while if

only because there was no real need to redefine the old macros. But after a

while one starts wondering if this is still the way to go, especially when reim-

plementing the chemistry macros didn’t lead to nicer looking code. Part of

the problem was that putting two arrows on top of each other where each

one goes into another direction gave issues due to the fact that we don’t

have the right snippets to do it nicely. A way out was to create virtual char-

acters for combinations of begin and end snippets as well as middle pieces,

construct a proper virtual extensible and use the LuaTEX extensible con-

structor. Although we still have a character that gets built out of snippets,

at least the begin and end snippet indicate that we have to do with one

codepoint, contrary to two independent stacked arrows.

This was also the moment that I realized that it was somewhat weird that

OpenType math fonts didn’t have that kind of support. After discussing

this with Bogusław Jackowski of the math font project we decided that it

made sense to add proper native extensibles to the upcoming math fonts.

Of course I still had to support othermath fonts but at least we had a concep-

tually clean example font now. So, from that moment on the implementation

used extensibles when possible and falls back on the fake approach when

needed.

In ConTEXt all these vertically stacked items are now handled by the math

stacker subsystem, including a decent set of configuration options. As said,

the symbols that need to stretch currently use the accent primitives which is

okay but somewhat messy because that mechanism is hard to control (after

all it wants to put stuff on top or below something). For (mostly) chemistry

we can put text on top or below arrows and control offsets of the text as well

as the axis of the arrows. We can use color and set the style. In addition

there are constructs where there is text in the middle and arrows (or other

symbols that need to adapt) on top or at the bottom.

Many arrows come in sizes. For instance there are two sizes of right point-

ing arrows as well as stretched variants, and use as top and bottom accents.

$\rightarrow \quad \char "2192$ → →
$\longrightarrow \quad \char "27F6$ ⟶ ⟶

\hbox to 2cm{$\rightarrowfill $} −−−−−−−→
\hbox to 4cm{$\rightarrowfill $} −−−−−−−−−−−−−−−→

Math new style: are we better off? 36

$\overrightarrow {a+b+c}$ 𝑎 + 𝑏+ 𝑐
→→→→→→→→→→→→→→→→

$\underrightarrow {a+b+c}$ 𝑎 + 𝑏+ 𝑐→→→→→→→→→→→→→→→→

The first two arrows are just characters. The boxed ones are extensibles

using leaders that build the arrow from snippets (a hack till we have proper

character leaders) and the last two are implemented by abusing the accent

mechanism and thereby use the native extensibles of the first character.

The problem here is in names and standards. The first characters have a

fixed size while the later are composed. The short ones have the extensi-

bles and can therefore be used as accents (or when supported as character

leader). However from the user’s perspective, the distinction between the

two Unicode characters might be less clear, not so much when they are used

as character, but when used on top of or below something. As a coincidence,

while writing this section, a colleague dropped a snippet of MathML on my

desk:

<m:math>

<m:mrow>

<m:mover accent='true'>

<m:mrow>

<m:mi>A</m:mi>

<m:mi>S</m:mi>

</m:mrow>

<m:mo stretchy='true'>→</m:mo>

</m:mover>

</m:mrow>

</m:math>

However, instead of <m:mo>→</m:mo> therewas used <m:mo>⟶</m:mo>

and that entity is the long arrow. As is often the case in MathML the render-

ing is supposed to be quite tolerant and here both should stretch over the

row. When a TEX user renders his or her source and sees something wrong,

the search for what character or command should be used instead starts.

A MathML user probably just expects things to work. This means that in

a system like ConTEXt there will always be hacks and kludges to deal with

such matters. It is again one of these areas where optimally the TEX com-

munity could have influenced proper and systematic coding, but it didn’t

happen. So, no matter now good we make an engine or macro package, we

always need to be prepared to adapt to what users expect. Let’s face it: it’s

not that trivial to explain why one should favor one or the other arrow as

accent: the more it has to cover, the longer it gets and the more we think of

37 Math new style: are we better off?

long arrows, but adding a whole bunch of \longrightarrow... commands

to ConTEXt makes no sense.

Nevertheless, we might eventually provide more MathML compliant com-

mands at the TEX end. Just consider the following MathML snippets:7

<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">

<m:mrow>

<m:mi>a</m:mi>

<m:mover>

<m:mo>⟶</m:mo>

<m:ms>arrow + text</m:ms>

</m:mover>

<m:mi>b</m:mi>

<m:mover>

<m:ms>text + arrow</m:ms>

<m:mo>⟶</m:mo>

</m:mover>

<m:mi>c</m:mi>

</m:mrow>

</m:math>

This renders as:

a xrarr arrow + text b text + arrow xrarr c

Here the same construct is being used for two purposes: put an arrow on

top of content that sits on the math axis or put text on an arrow that sits on

the math axis. In TEX we have different commands for these:

$ a \overrightarrow{b+c} d $ and $ a \mrightarrow{b+c} d $

or

𝑎 𝑏 + 𝑐
→→→→→→→→→

𝑑 and 𝑎 →→→→→→→→→→
𝑏+ 𝑐

𝑑

The same is the case for:

<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">

<m:mrow>

<m:mi>a</m:mi>

<m:munder>

7 These examples are variations on what we run into in Dutch school math (age 14–16).

Math new style: are we better off? 38

<m:mo>⟶</m:mo>

<m:ms>arrow + text</m:ms>

</m:munder>

<m:mi>b</m:mi>

<m:munder>

<m:ms>text + arrow</m:ms>

<m:mo>⟶</m:mo>

</m:munder>

<m:mi>c</m:mi>

</m:mrow>

</m:math>

or:

a xrarr arrow + text b text + arrow xrarr c

When no arrow (or other stretchable character) is used, we still need to put

one on top of the other, but in any case we need to recognize the two cases

that need the special stretch treatment. There is also a combination of over

and under:

<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">

<m:mrow>

<m:mi>a</m:mi>

<m:munderover>

<m:mo>⟶</m:mo>

<m:ms>text 1</m:ms>

<m:ms>text 2</m:ms>

</m:munderover>

<m:mi>b</m:mi>

</m:mrow>

</m:math>

a xrarr text 1 text 2 b

And again we need to identify the special stretchable characters from any-

thing otherwise.

<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">

<m:mrow>

<m:mi>a</m:mi>

<m:munderover>

<m:ms>text 1</m:ms>

39 Math new style: are we better off?

<m:ms>text 2</m:ms>

<m:ms>text 3</m:ms>

</m:munderover>

<m:mi>b</m:mi>

</m:mrow>

</m:math>

or:

a text 1 text 2 text 3 b

And we even can have this:

<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">

<m:mrow>

<m:mi>a</m:mi>

<m:munderover>

<m:ms>text 1</m:ms>

<m:mo>⟶</m:mo>

<m:ms>text 2</m:ms>

</m:munderover>

<m:mi>b</m:mi>

</m:mrow>

</m:math>

a text 1 xrarr text 2 b

We have been supporting MathML in ConTEXt for a long time and will con-

tinue doing it. I will probably reimplement the converter (given a good rea-

son) using more recent subsystems. It doesn’t change the fact that in order

to support it, we need to have some robust analytical support macros (func-

tions) to deal with situations as mentioned. The TEX engine is not made for

that but in the meantime it has become more easy thanks to a combination

of TEX, Lua and data tables. Consistent availability of extensibles (either or

not virtual) helps too.

Among the conclusions we can draw is that quite a lot of development (font

as well as engine) is driven by what we have had for many years. A generic

multi--dimensional glyph handler could have covered all odd cases that used

to be done with macros but for historic reasons we could still be stuck with

several slightly different and overlapping mechanisms. Nevertheless we

can help macro writers by providing for instance leaders that accept char-

acters as well in which case in math mode extensibles can be used.

Math new style: are we better off? 40

1.10 Fences

Fences are symbols that are put left and/or right of a formula. They adapt

their height and depth to the content they surround, so they are vertical

extensibles. Users tend to minimize their coding but this is probably not a

good idea with fences as there is some magic involved. For instance, TEX

always wants a matching left and right fence, even if one is a phantom. So

you will normally have something like this:

\left\lparent x \right\rparent

and when you don’t want one of them you use a period:

\left\lparent x \right.

The question is, can we make the users live easier by magically turning

braces, brackets and parentheses etc. into growing ones. As with much in

MkIV, it could be that Lua can be of help. However, look at the following

cases:

\startformula (x) \stopformula

(𝑥)

This internally becomes something like this:

open noad : nucleus : mathchar : U+00028

ord noad : nucleus : mathchar : U+00078

close noad : nucleus : mathchar : U+00029

We get a linked list of three so-called noads where each nucleus is a math

character. In addition to a nucleus there can be super- and subscripts.

\startformula \mathinner { (x) } \stopformula

(𝑥)

inner noad : nucleus : submlist :

open noad : nucleus : mathchar : U+00028

ord noad : nucleus : mathchar : U+00078

close noad : nucleus : mathchar : U+00029

This is still simple, although the inner primitive results in three extra levels.

\startformula \left(x \right) \stopformula

41 Math new style: are we better off?

(𝑥)

Now it becomes more complex, although we can still quite well recognize

the input. The question is: how easily can we translate the previous exam-

ples into this structure.

inner noad : nucleus : submlist :

left fence : delim : U+00028

ord noad : nucleus : mathchar U+00078

right fence : delim : U+00029

\startformula ||x|| \stopformula

‖𝑥‖

Again, we can recognize the sequence in the input:

ord noad : nucleus : mathchar : U+0007C

ord noad : nucleus : mathchar : U+0007C

ord noad : nucleus : mathchar : U+00078

ord noad : nucleus : mathchar : U+0007C

ord noad : nucleus : mathchar : U+0007C

Here we would have to collapse the two bars into one. Now, say that we

manage to do this, even if it will cost a lot of code to check all border cases,

then how about this?

\startformula \left|| x \right|| \stopformula

||𝑥| |

inner noad : nucleus : submlist noad :

left fence : delim : U+00028

ord noad : nucleus : mathchar : U+0007C

ord noad : nucleus : mathchar : U+00078

right fence : delim : U+00029

ord noad : nucleus : mathchar : U+0007C

This time we have to look over the sublist and compare the last fence with

the character following the sublist. If you keep in mind that there can be all

kind of nodes in between, like glue, and that we can have multiple nested

fences, it will be clear that this is a no-go. Maybe for simple cases it could

work out but for a bit more complex math one ends up in constantly fighting

asymmetrical input at the Lua end and occasionally fighting the heuristics

at the TEX end.

Math new style: are we better off? 42

It is for this reason that we provide a mechanism that users can use to avoid

the primitives \left and \right.

\setupmathfences

[color=red]

\definemathfence

[fancybracket]

[bracket]

[command=yes,

color=blue]

\startformula

a \fenced[bar] {\frac{1}{b}} c \qquad

a \fenced[doublebar]{\frac{1}{b}} c \qquad

a \fenced[triplebar]{\frac{1}{b}} c \qquad

a \fenced[bracket] {\frac{1}{b}} c \qquad

a \fancybracket {\frac{1}{b}} c

\stopformula

So, you can either use a generic instance of fences (\fenced) or you can

define your own commands. There can be several classes of fences and

they can inherit and be cloned.

𝑎 ∣1𝑏∣ 𝑐 𝑎 ∥1𝑏∥𝑐 𝑎 1
𝑏 𝑐 𝑎[1𝑏]𝑐 𝑎[1𝑏]𝑐

As a bonus ConTEXt provides a few wrappers:

\startformula

\Lparent \frac{1}{a} \Rparent \quad

\Lbracket \frac{1}{b} \Rbracket \quad

\Lbrace \frac{1}{c} \Rbrace \quad

\Langle \frac{1}{d} \Rangle \quad

\Lbar \frac{1}{e} \Rbar \quad

\Ldoublebar \frac{1}{f} \Rdoublebar \quad

\Ltriplebar \frac{1}{f} \Rtriplebar \quad

\Lbracket \frac{1}{g} \Rparent \quad

\Langle \frac{1}{h} \Rnothing

\stopformula

which gives:

(1𝑎) [1𝑏] {1𝑐} ⟨1𝑑⟩ ∣1𝑒∣ ∥1𝑓∥ 1
𝑓 [1𝑔) ⟨1ℎ

43 Math new style: are we better off?

For bars, the same applies as for primes: we collapse them into proper

Unicode characters when applicable:

U+007C VERTICAL LINE | |
U+2016 DOUBLE VERTICAL LINE ‖ || ‖
U+2980 TRIPLE VERTICAL BAR DELIMITER ? ||| |‖ ‖| ?

The question is always: to what extent do users want to structure their

input. For instance, you can define this:

\definemathfence [weirdrange] [left="0028,right="005D]

and use it as:

$ (a,b] = \fenced[weirdrange]{a,b}$

This gives (𝑎,𝑏] = (𝑎,𝑏] and unless you want to apply color or use specific

features there is nothing wrong with the direct way. Interesting is that the

complications are seldom in regular TEX input, but MathML is a different

story. There is an mfenced element but as users can also use the more

direct route, a bit more checking is needed in order to make sure that we

have matching open and close symbols. For reasons mentioned before we

cannot delegate this to Lua but have to use special versions of the \left

and \right commands.

One complication of making a nice mechanism for this is that we cannot use

the direct characters. For instance curly braces are also used for grouping

and the less and equal signs serve different purposes. So, no matter what

we come up with, these cases remain special. However, in ConTEXt the

following is valid:

\setupmathfences[color=darkgreen]

\setupmathfences[mirrored][color=darkred]

\startformula

\left { \frac{1}{a} \right } \quad

\left [\frac{1}{b} \right] \quad

\left (\frac{1}{c} \right) \quad

\left < \frac{1}{d} \right > \quad

\left ⟨ \frac{1}{d} \right ⟩ \quad

\left | \frac{1}{e} \right | \quad

\left \frac{1}{e} \right \quad

\left \frac{1}{e} \right \quad

Math new style: are we better off? 44

\left [\frac{1}{d} \right [\quad

\left] \frac{1}{d} \right [\quad

\stopformula

In the background mapping onto the mentioned left and right commands

happens so we do get color support as well. And, it doesn’t look that bad in

your document source either. Of course other combinations are also possi-

ble.

{1𝑎} [1𝑏] (1𝑐) ⟨1𝑑⟩ ⟨1𝑑⟩ ∣1𝑒∣ ⟪1
𝑒⟫ ⟫1

𝑒⟪ [1𝑑[]1𝑑[

As there are many ways to get fences and users can come from other macro

packages (or use them mixed) we support them all as well as possible.

\left (\frac{1}{x} \right) =

(\frac{1}{x}) =

\left\(\frac{1}{x} \right\) =

\(\frac{1}{x} \) =

\left\lparent \frac{1}{x} \right\rparent =

\lparent \frac{1}{x} \rparent =

\Lparent \frac{1}{x} \Rparent

(1
𝑥) = (1

𝑥) = (1
𝑥) = (1

𝑥) = (1
𝑥) = (1

𝑥) = (1
𝑥)

Unfortunately Unicode math doesn’t free us from some annoyances with

respect to paired fences. On the one hand coding math is a symbolic, ab-

stract matter: a left parenthesis opens something and a right one closes

something. The same is true for brackets and braces. However, the bar

is used for left and right fencing as well as separating pieces of a formula

(e.g. in conditions). Because traditionally these left and right bars were

purely vertical with no slope, or hooks, or other thingies attached, in Uni-

code there is only one slot for it. Where paired fences can play a role in

analyzing content, bars are rather useless for that. It also means that when

coding a formula one cannot rely on the bar symbol to determine a left or

right property. Normally this is no problem as we can use symbolic names

(that include the \left or \right directive) but for instance in rendering

MathML it demands some fuzzy logic to be applied. It would have been nice

to have code points for the three cases.

\ruledhbox{$\left|x\right|$}

\ruledhbox{$\left(x\middle|x\right)$}

\ruledhbox{$\startcheckedfences\left(x\leftorright|x\right)\stopcheckedfences$}

45 Math new style: are we better off?

\ruledhbox{$\startcheckedfences\leftorright|x\leftorright|\stopcheckedfences$}

\ruledhbox{$\startcheckedfences\leftorright|x\stopcheckedfences$}

\ruledhbox{$\startcheckedfences\left(x\leftorright|\stopcheckedfences$}

Believe me: we run into any combination of these bars and parentheses.

And we’re no longer surprised to see code like this (generated from appli-

cations):

<math>

<mrow>

<mo>(</mo>

<mi>y</mi>

<mrow>

<mo>|</mo>

</mrow>

<mi>y</mi>

<mo>)</mo>

</mrow>

</math>

Here the bar sits in its own group, so what is it? A lone left, right or middle

symbol, meant to stretch with the surroundings or not?

To summarize: there is no real difference (or progress) with respect to

fences in LuaTEX compared to traditional TEX. We still need matching \left

and \right usage and catchingmismatches automatically is hard. By adding

some hooks at the TEX end we can easily check for a missing \right but a

missing \left needs a two-pass approach. Maybe some day in ConTEXt we

will end up with multipass math processing and then I’ll look into this again.

1.11 Directions

The first time I saw right-to-left math was at a Dante and later at a TUG

meeting hosted in Morocco where Azzeddine Lazrek again demonstrated

right-to-left math. It was only after Khaled Hosny added some support to

the Xits font that I came to supporting it in ConTEXt. Apart from some house-

keeping nothing special is needed: the engine is ready for it. Of course it

would be nice to extend the lm and gyre fonts as well but currently it’s not

on the agenda. I expect to add some more control and features in the fu-

ture, if only because it is a nice visual experience. And writing code for

such features is kind of fun.

Math new style: are we better off? 46

As this is about as complex as it can gets, it makes a nice example of how

we control math font definitions, so let’s see how we can define a Xits use

case. Because we have a bold (heavy) font too, we define that as well. First

we define the two fonts.

\starttypescript [math] [xits,xitsbidi] [name]

\loadfontgoodies [xits-math]

\definefontsynonym

[MathRoman]

[file:xits-math.otf]

[features=math\mathsizesuffix,goodies=xits-math]

\definefontsynonym

[MathRomanBold]

[file:xits-mathbold.otf]

[features=math\mathsizesuffix,goodies=xits-math]

\stoptypescript

Discussing font goodies is beyond this article so I stick to a simple expla-

nation. We use so-called goodie files for setting special properties of fonts,

but also for defining special treatment, for instance runtime patches. The

current xits-math goodie file looks as follows:

return {

name = "xits-math",

version = "1.00",

comment = "Goodies that complement xits (by Khaled Hosny).",

author = "Hans Hagen",

copyright = "ConTeXt development team",

mathematics = {

italics = {

["xits-math"] = {

defaultfactor = 0.025,

disableengine = true,

corrections = {

[0x1D453] = -0.0375, -- f

},

},

},

alternates = {

cal = { feature = 'ss01', value = 1,

comment = "Mathematical Calligraphic Alphabet" },

greekssup = { feature = 'ss02', value = 1,

47 Math new style: are we better off?

comment = "Mathematical Greek Sans Serif Alphabet" },

greekssit = { feature = 'ss03', value = 1,

comment = "Mathematical Italic Sans Serif Digits" },

monobfnum = { feature = 'ss04', value = 1,

comment = "Mathematical Bold Monospace Digits" },

mathbbbf = { feature = 'ss05', value = 1,

comment = "Mathematical Bold Double-Struck Alphabet" },

mathbbit = { feature = 'ss06', value = 1,

comment = "Mathematical Italic Double-Struck Alphabet" },

mathbbbi = { feature = 'ss07', value = 1,

comment = "Mathematical Bold Italic Double-Struck Alphabet"

},

upint = { feature = 'ss08', value = 1,

comment = "Upright Integrals" },

vertnot = { feature = 'ss09', value = 1,

comment = "Negated Symbols With Vertical Stroke" },

},

}

}

There can be many more entries but here the most important one is the

alternates table. It defines the additional styles available in the font. Al-

ternaties are chosen using commands like

\mathalternate{cal}\cal

and of course shortcuts for this can be defined.

Of course there is more than math, so we define a serif collection too:

\starttypescript [serif] [xits] [name]

\setups[font:fallback:serif]

\definefontsynonym[Serif] [xits-regular.otf] [features=default]

\definefontsynonym[SerifBold] [xits-bold.otf] [features=default]

\definefontsynonym[SerifItalic] [xits-italic.otf] [features=default]

\definefontsynonym[SerifBoldItalic][xits-bolditalic.otf] [features=default]

\stoptypescript

If needed you can redefine the default feature before this typescript is

used. Once we have the fonts defined we can start building a typeface:

\starttypescript[xits]

\definetypeface [xits] [rm] [serif] [xits] [default]

Math new style: are we better off? 48

\definetypeface [xits] [ss] [sans] [heros] [default] [rscale=0.9]

\definetypeface [xits] [tt] [mono] [modern] [default] [rscale=1.05]

\definetypeface [xits] [mm] [math] [xits] [default]

\stoptypescript

We can now switch to this typeface with:

\setupbodyfont[xits]

But, as we wanted bidirectional math, something more is needed. Instead

of the two fonts we define six. We could have a more abstract reference

to the Xits fonts but in cases like this we prefer file names because then at

least we can be sure that we get what we ask for.

So, we use the same fonts several times but apply different features to them.

This time the typeface definition explicitly turns on both directions. When

we don’t do that we get only left to right support, which is of course more

efficient in terms of font usage.

We can now switch to the bidirectional typeface with:

\setupbodyfont[xitsbidi]

However, in order to get bidirectional math indeed, we need to turn it on.

\setupmathematics[align=r2l]

You might have wondered what this special way of defining the features

using \mathsizesuffixmeans? The value of this macro is set at font defin-

ition time, and can be one of three values: text, script and scriptscript.

At this moment the features are defined as follows:

\definefontfeature

[mathematics]

[mode=base,

liga=yes,

kern=yes,

tlig=yes,

trep=yes,

mathalternates=yes,

mathitalics=yes,

% nomathitalics=yes, % don't pass to tex

language=dflt,

script=math]

49 Math new style: are we better off?

From this we clone:

\definefontfeature

[mathematics-l2r]

[mathematics]

[]

\definefontfeature

[mathematics-r2l]

[mathematics]

[language=ara,

rtlm=yes,

locl=yes]

Watch how we enable two specific features, where rtlm is a Xits-specific

one. The eventually used features are defined as follows.

\definefontfeature[math-text] [mathematics] [ssty=no]

\definefontfeature[math-script] [mathematics] [ssty=1,mathsize=yes]

\definefontfeature[math-scriptscript] [mathematics] [ssty=2,mathsize=yes]

\definefontfeature[math-text-l2r] [mathematics-l2r][ssty=no]

\definefontfeature[math-script-l2r] [mathematics-l2r][ssty=1,mathsize=yes]

\definefontfeature[math-scriptscript-l2r][mathematics-l2r][ssty=2,mathsize=yes]

\definefontfeature[math-text-r2l] [mathematics-r2l][ssty=no]

\definefontfeature[math-script-r2l] [mathematics-r2l][ssty=1,mathsize=yes]

\definefontfeature[math-scriptscript-r2l][mathematics-r2l][ssty=2,mathsize=yes]

Even if it is relatively simple to do, it makes no sense to build complex mixed

mode system, so currently we have to decide before we typeset a formula:

\setupmathematics[align=l2r]

\startformula

\sqrt{x^2\over 4x} \qquad

{\bf \sqrt{x^2\over 4x}} \qquad

{\mb \sqrt{x^2\over 4x}}

\stopformula

This gives a left to right formula:

√𝑥2

4𝑥
√𝐱𝟐

𝟒𝐱
√𝒙𝟐

𝟒𝒙

Math new style: are we better off? 50

\setupmathematics[align=r2l]

\startformula

\sqrt{2^ف\over {ب4 \qquad

{\bf \sqrt{2^ف\over {{ب4 \qquad

{\mb \sqrt{2^ف\over {{ب4

\stopformula

And here we get an Arabic formula, where the quality of course is deter-

mined by the completeness of the font.

√
2��

√��4
?𝟐

𝟒?
2��√

��4

The bold font has a partial bold implementation so unless I implement a

more complex pseudo-bold mechanism you should not expect results. Be-

cause we have no official Arabic math alphabets they are not seen by the

ConTEXt MkIV analyzers that normally take care of this. It’s all a matter

of demand and supply (combined with a dose of motivation). For instance

while a base size might be covered, the extensibles might be missing.

About the time of writing this another variationwas requested at themailing

list. For Persian math we keep the direction from left to right but the digits

have to be in an Arabic font. We cannot use the bidirectional handler for

this so we need to swap regular and bold digits in another way. We can use

the fallback mechanism for this and a definition roughly boils down to this:

\definefontfallback

[mathdigits]

[dejavusansmono]

[digitsarabicindic]

[check=yes,

force=yes,

offset=digitsnormal]

This is used in:

\definefontsynonym

[MathRoman]

[file:xits-math.otf]

[features=math\mathsizesuffix,

goodies=xits-math,

fallbacks=mathdigits]

51 Math new style: are we better off?

The problem with this kind of feature is not so much in the implementa-

tion, because by now in ConTEXt we have plenty of ways to deal with such

issues in a convenient way. The biggest challenge is to come up with an

interface that somehow fits in the model of typescripts and with a couple of

predefined typescripts we now have:

\usetypescriptfile[mathdigits]

\usetypescript [mathdigits] [xits-dejavu] [arabicindic]

\setupbodyfont[dejavu]

After that a formula like $2 + 3 = 5$ comes out as ٢ + ٣ = ٥. In fact, if

you want that in text mode, you can just use the ConTEXt MkIV font feature

anum:

\definefontfeature [persian-fake-math] [arabic] [anum=yes]

\definefont[persianfakemath][dejavusans*persian-fake-math]

But of course you won’t have proper math then. But as right-to-left math is

still under construction, in due time we might end up with more advanced

rendering. Currently you can exercise a little control. For instance by using

the align parameter in combination with the bidi parameter. Of course

support for special symbols like square roots depends on the font as well.

We probably need to mirror a few more characters.

\m{ (1 = 1) }\quad

\m{ (123 = 123) }\quad

\m{ a (1 = 1) b }\quad

\m{ a (123 = 123) b }\quad

\m{ x = 123 y + (1 / \sqrt {x}) }

As in math we can assume sane usage of fences, we don’t need extensive

tests on pairing.

align bidi

l2r no (1 = 1) (123 = 123) 𝑎(1 = 1)𝑏 𝑎(123 = 123)𝑏 𝑥 = 123𝑦+ (1/√𝑥)
l2r yes (1 = 1) (123 = 123) 𝑎(1 = 1)𝑏 𝑎(123 = 123)𝑏 𝑥 = 123𝑦+ (1/√𝑥)
r2l no (1=1) (123=123) 𝑎(1=1)𝑏 𝑎(123=123)𝑏 𝑥=123𝑦+(1/√𝑥)
r2l yes)1=1()123=123(𝑎)1=1(𝑏 𝑎)123=123(𝑏 𝑥=123𝑦+)1/√𝑥(

1.12 Structure

At some point publishers started asking for tagged pdf and as a conse-

quence a typeset math formula suddenly becomes more than a blob of ink.

Math new style: are we better off? 52

There are several arguments for tagging content. One is accessibility and

another is reflow. Personally I think that both arguments are not that rel-

evant. For instance, if you want to help a visually impaired reader, it’s far

better to start from a well structured original and ship that along with the

typeset version. And, if you want reflow, you can better provide a (probably)

simplified version in for instance html format.

We are surrounded by all kinds of visualizations, and text on paper or some

medium is one. We don’t make a painting accessible either. If accessibility

is a demand, it should be done as best as can be, and the source is then the

starting point. Of course publishers don’t like that because when a source

is available, it’s one step closer to reuse by others. But that problem can

simply be ignored as we consider publishers to be some kind of facilitating

organization that deliver content from others. Alas publishers don’t play

that humble role so as long as they’re around they can demand from their

suppliers tagging of something visual.

Of course when you use TEX tagging is no real issue as you can make the

input as verbose and structured as you like. But authors don’t always want

to be verbose, take this:

$ f(x) = x^2 + 3x + 7 $

This enters TEX as a sequence of characters: 𝑓(𝑥) = 𝑥2 + 3𝑥 + 7. These
characters can have properties, for instance they can represent a relation

or be an opening or closing symbol, but in most cases they are just clas-

sified as ordinary. These properties to some extent control spacing and

interplay between math elements. They are not structure. If you have seen

presentationMathML you have noticed that there are operators (mo), identi-

fiers (mi) and numbers (mn), as well as some structural elements like fences

(mfenced), superscripts (msup), subscripts (msub). Because it is a presenta-

tional encoding, there is no guarantee about the quality of the input as well

as the rendering, but it somehow made it into a standard that is also used

for tagging pdf content.

Going from mostly unstructured TEX math input to more structured output

is complicated by the fact that the intermediate somewhat structured math

lists eventually become regular boxes, glyphs, kerns, glue etc. In ConTEXt

we carry some persistent information around so that we can still reverse

engineer the output to structured input but this can be improved by more

explicit tagging. We plan to add some more of that to future versions but

here is an example:

53 Math new style: are we better off?

$ \apply{f}{(x)} = x^2 + 3x + 7 $

You can go over the top too:

$ \apply{f}{(x)} = \mi{x}^\mi{2} + \mi{3}\mi{x} + \mi{7} $

The trick is to find an optimal mix of structure and readability. For instance,

in \sin we already have the apply done by default, so often extra tagging

is only needed in situations where there are several ways to interpret the

text. Of course we’re not enforcing this, but by providing some structure

related features, at least we hope to make users aware of the issue. Directly

inputting MathML is also an option but has never become popular.

All this is mostly a macro package issue, and ConTEXt has the basics on

board. Because there is no need to adapt LuaTEX the most we will do is add

a bit more consistency in building the lists (two way pointers) and carrying

over properties (like attributes). We also have on the agenda a math table

model that suits MathML, because some of those tables are somewhat hard

to deal with.

How the export and tagging evolves depends on demand. I must admit that

I implemented it as an exercise mostly because these are features I don’t

need myself (and no one really asked for it anyway).

1.13 Italic correction

Here we face a special situation. In regular OpenType italic correction is

not part of the game, although one can cook up some positioning feature

that does a similar job. In OpenType math there is italic correction, but

also a more powerful sharpe-related kerning which is to be preferred. In

traditional TEX the italic correction was present but since it is a font specific

feature there is no way to make it work across fonts, and Type1 based math

has lots of them.

At some point we have discussed throwing italic correction out of the en-

gine, if only because it was unclear how and when to apply it. In the mean-

time there is some compromise reached. Because ConTEXt is always in sync

with the latest LuaTEX, we oscillated between solutions and this was com-

plicated by the fact that we had to support a mix of OpenType math fonts

and virtualized Type1 legacy fonts.

The italic correction related code is still somewhat experimental, but we

have several options.8 In most cases we insert the italic correction ourselves

Math new style: are we better off? 54

and as the engine then sees a kern already it will not add another one. This

has the advantage that we can be more consistent if only because not all

fonts have these corrections and not all cases are considered by the engine.

1. A math font can have italic correction per glyph. The engine gets this

passed but before it can apply themwe already inject them into themath-

list where needed.

2. This is a variant of the first one, but is always applied, and not controlled

by the font. This makes it possible to add additional corrections. This

method is kind of obsolete as we no longer generate missing corrections

at font definition time.9

3. This variant looks at the shape and if it is italic (or bolditalic) then cor-

rection is applied. Here the correction is related to the emwidth and

controlled by a factor. We use this method by default.

4. The fourth variant is a mixture of the first (font driven) and the third

(emwidth driven).

Are we better off? I honestly don’t know. It is a bit of a mess and will always

be, simply because the reference font (cambria) and reference implemen-

tation (msword) is not clear about it and we follow them. In that respect I

consider it a macro package issue mostly. In ConTEXt at least we can offer

some options.

1.14 Big

When migrating math to MkIV I couldn’t resist looking into some function-

ality that currently uses macro magic. An example is big delimiters.

$ (\big(\Big(\bigg(\Bigg(x $

((((⎛⎜
⎝
𝑥

Personally I never use these, I just trust \left and \right to do the right

job, but I’m no reference at all when it comes to math. The reason for

looking into the bigs is that in plain TEX there are some magic numbers

8 In text mode we also have an advanced mechanism for italic correction but this operates

independent from math.
9 Because the font loader is also used for the generic code, we don’t want to add such fea-

tures there.

55 Math new style: are we better off?

involved. The macros, when translated to ConTEXt boil down to this:

\left<delimiter>\vbox to 0.85\bodyfontsize{}\right.

\left<delimiter>\vbox to 1.15\bodyfontsize{}\right.

\left<delimiter>\vbox to 1.45\bodyfontsize{}\right.

\left<delimiter>\vbox to 1.75\bodyfontsize{}\right.

Knowing that we have a chain of sizes in the font, I was tempted to go for

a solution where a specific size is chosen from the linked list of next sizes.

There are several strategies possible when we delegate this to Lua but we

don’t provide a high level interface yet. Personally I’d like to set the low

level configuration options as:

\setconstant\bigmathdelimitermethod \plusone

\setconstant\bigmathdelimitervariant\plusthree

But as users might expect plain--like behaviour, ConTEXt also provides the

command

\plainbigdelimiters

which sets the method to 2. Currently that is the default. When method 1

is chosen there are four variants and the reason for keeping them all is that

they are part of experiments and explorations.

1 choose size n from the available sizes

2 choose size 2n from the available sizes

3 choose the first variant that has 1.33n × (ht + dp) > size
4 choose the first variant that has 1.33n × bodyfontsize > size

The last three variants give similar results but they are not always the same

as the plain method. This is because not all fonts provide the same range.

pagella latin modern cambria

plain ((((⎛⎜
⎝
𝑥 (((((𝑥 (൫ቀቆ൭𝑥

variant 1 (((((𝑥 (((((𝑥 (൫ቀ൬ቆ𝑥

variant 2 (((((𝑥 (((((𝑥 (ቀቆቌ൮𝑥

Math new style: are we better off? 56

variant 3 (((((𝑥 (((((𝑥 (ቀቀቆ൭𝑥

variant 4 (((((𝑥 (((((𝑥 (ቀ൬ቆቌ𝑥

So, we are somewhat unpredictable but at least we have several ways to

control the situation and better solutions might show up.

1.15 Macros

I already discussed roots and the traditional \root command is a nice ex-

ample of one that can be simplified in LuaTEX thanks to a new primitive.

A macro package often has quite a lot of macros related to math that deal

with tables and LuaTEX doesn’t change that. But there is a category of com-

mands that became obsolete: the ones that are used to construct characters

that are not in the fonts. Keep in mind that the number of fonts as well as

their size was limited at the time TEX was written, so by providing build-

ing blocks additional characters could be made. Think of for instance the

negated symbols: a new symbol could be made by overlaying a slash. The

same is true for arrows: by prepending or appending minus signs, arrows

of arbitrary length could be constructed.

Here I will stick to another example: dots. In plain TEX we have this def-

inition:

\def\vdots

{\vbox

{\baselineskip4pt

\lineskiplimit0pt

\kern6pt

\hbox{.}%

\hbox{.}%

\hbox{.}}}

This will typeset vertical dots, while the next does them diagonally:

\def\ddots

{\mathinner

{\mkern1mu

\raise7pt\vbox{\kern7pt\hbox{.}}%

\mkern2mu

\raise4pt\hbox{.}%

57 Math new style: are we better off?

\mkern2mu

\raise1pt\hbox{.}%

\mkern1mu}}

Of course these dimensions relate to the font size of plain TEX so in ConTEXt

MkII we have something like this:

\def\vdots

{\vbox

{\baselineskip4\points

\lineskiplimit\zeropoint

\kern6\points

\hbox{$\mathsurround\zeropoint.$}%

\hbox{$\mathsurround\zeropoint.$}%

\hbox{$\mathsurround\zeropoint.$}}}

\def\ddots

{\mathinner

{\mkern1mu

\raise7\points\vbox{\kern 7\points\hbox{$\mathsurround\zeropoint.$}}%

\mkern2mu

\raise4\points\hbox{$\mathsurround\zeropoint.$}%

\mkern2mu

\raise \points\hbox{$\mathsurround\zeropoint.$}%

\mkern1mu}}

These two symbols are rendered (in MkII) as follows:

... . . .

I must admit that I only noticed the rather special height when I turned

these macros into virtual characters for the initial virtual Unicode math

that we needed in the first versions of MkIV. This is a side effect of their use

in matrices. However, in MkIV we just use the characters in the font and

get:

⋮ ⋱

These characters look different because instead of three text periods a real

symbol is used. The fact that we have more complete fonts and rely less

on special font properties to achieve effects is a good thing, and in this

respect it cannot be denied that LuaTEX triggered the development of more

complete fonts. Of course from the user’s perspective the outcome is often

Math new style: are we better off? 58

the same, although . . . using a single character instead of three has the

advantage of smaller files (neglectable), less runtime (really neglectable)

and cleaner output files (undeniable) from where such characters can now

be copied as one.

1.16 Unscripting

If you ever looked into plain TEX you might have noticed this following sec-

tion. The symbols are more related to programming languages than to

math.

% The following changes define internal codes as recommended

% in Appendix C of The TeXbook:

\mathcode`\^^@="2201 % \cdot

\mathcode`\^^A="3223 % \downarrow

\mathcode`\^^B="010B % \alpha

\mathcode`\^^C="010C % \beta

\mathcode`\^^D="225E % \land

\mathcode`\^^E="023A % \lnot

\mathcode`\^^F="3232 % \in

\mathcode`\^^G="0119 % \pi

\mathcode`\^^H="0115 % \lambda

\mathcode`\^^I="010D % \gamma

\mathcode`\^^J="010E % \delta

\mathcode`\^^K="3222 % \uparrow

\mathcode`\^^L="2206 % \pm

\mathcode`\^^M="2208 % \oplus

\mathcode`\^^N="0231 % \infty

\mathcode`\^^O="0140 % \partial

\mathcode`\^^P="321A % \subset

\mathcode`\^^Q="321B % \supset

\mathcode`\^^R="225C % \cap

\mathcode`\^^S="225B % \cup

\mathcode`\^^T="0238 % \forall

\mathcode`\^^U="0239 % \exists

\mathcode`\^^V="220A % \otimes

\mathcode`\^^W="3224 % \leftrightarrow

\mathcode`\^^X="3220 % \leftarrow

\mathcode`\^^Y="3221 % \rightarrow

\mathcode`\^^Z="8000 % \ne

\mathcode`\^^[="2205 % \diamond

59 Math new style: are we better off?

\mathcode`\^^\="3214 % \le

\mathcode`\^^]="3215 % \ge

\mathcode`\^^^="3211 % \equiv

\mathcode`\^^_="225F % \lor

This means as much as: when I hit Ctrl-Z on my keyboard and my editor

honors that by injecting character U+1A into the input then TEX will turn that

into ≠, given that you’re in math mode. I’m not sure how many keyboards

and editors there are around that still do that but it illustrates that inputting

in some kind of wysiwyg is not alien to TEX.
10

One of the subprojects of the ongoing TEX user group font project is to

extend the already extensive Dejavu font with all relevant math characters

so that we can edit a document in a more Unicode savvy way. So, after more

than three decades we might arrive where Don Knuth started: you see what

you input and a similar shape will end up on paper.

Does this mean that all such input is good? Definitely not, because in Uni-

code we find all kinds of characters that somehow ended up there as a result

of merging existing encodings. At work we’re accustomed to getting input

that is a mix of everything a word processor can produce and often we run

into characters that users find normal but are not that handy from a TEX

perspective. It’s the main reason why in math mode we intercept some of

them, for instance in:

$ y = x² + x³ + x²³ + x²ᵃ $ % not all characters are in monospace

These superscripts are an inconsistent bunch so they will never be real

substitutes for the ^ syntax, simply because a mix like above looks bad. But

fortunately it comes out well: 𝑦 = 𝑥2 + 𝑥3 + 𝑥23 + 𝑥2𝑎. This is because

ConTEXt will transform such super- and subscripts into real ones and in the

process also collapse multiple scripts into a group. This is typically one of

the features that already showed up early in MkIV.

Here we have a feature that doesn’t relate to fonts, the math machinery or

the engine, but is just a macro package goodie. It’s a way to respond to the

variation in input, although probably hardly any TEX math user will need it.

It’s one of those features that comes in handy when you use TEX as invisible

backend where the input is never seen by humans.

10 There are more such hidden features, for instance, in some fonts special ligatures can be

implemented that no one ever uses.

Math new style: are we better off? 60

1.17 Combining fonts

I already mentioned that we started out with virtual math fonts. Defining

them is not that hard and boils down to defining what fonts make up the de-

sired math font. Normally one starts out with a decent complete OpenType

math font followed bymapping Type1 fonts onto specific alphabets and sym-

bols. On top of this there are additional virtual characters constructed (in-

cluding extensibles). However, this method will become kind of obsolete

(read: not used) when all relevant OpenType math fonts are available.

Does this mean that we have only simple font setups? In practice yes: you

can set up a math font in a few lines in a regular typescript. There are of

course a fewmore lines needed when defining bold and/or right-to-left math

but users don’t need to bother about it. All is predefined. There are signals

that users want to combine fonts so the already present fallback mechanism

for text fonts has been made to work with math fonts as well. This permits

for instance to complement the not-yet-finished OpenType Euler math fonts

with Pagella. Of course you always need to keep consistency into account,

but in principle you can overload for instance specific alphabets, something

that can make sense when simple math is mixed with a font that has no

math companion. In that case using the text italic in math mode might look

better. For the at the time of this writing incomplete Euler font we can add

characters like this:

\loadtypescriptfile[texgyre]

\loadtypescriptfile[dejavu]

\resetfontfallback [euler]

\definefontfallback [euler] [texgyrepagella-math] [0x02100-0x02BFF]

\definefontfallback [euler] [texgyrepagella-math] [0x1D400-0x1D7FF]

\starttypescript [serif] [euler] [name]

\setups[font:fallback:serif]

\definefontsynonym [Serif] [euler] [features=default]

\stoptypescript

\starttypescript [math] [euler] [name]

\definefontsynonym [MathRoman] [euler] [features=math\mathsizesuffix,fallbacks=euler]

\stoptypescript

\starttypescript [euler]

61 Math new style: are we better off?

\definetypeface [\typescriptone] [rm] [serif] [euler] [default]

\definetypeface [\typescriptone] [tt] [mono] [dejavu] [default]

[rscale=0.9]

\definetypeface [\typescriptone] [mm] [math] [euler] [default]

\stoptypescript

If needed one can use names instead of code ranges (like uppercasescript)

as well as map one range onto another. This last option is handy for merg-

ing a regular text font into an alphabet (in which case the Unicode’s don’t

match).

We expect math fonts to be rather complete because after all, a font de-

signer has a large repertoire of free alphabets to choose from. So, in prac-

tice combining math fonts will happen seldom. In text mode this is more

common, especially when multiple scripts are mixed. There is a whole

bunch of modules that can generate all kind of tables and overviews for

testing.

1.18 Experiments

I won’t describe all experiments here. An example of an experiment is a

better way of dealing with punctuation, especially the cultural determined

period/comma treatment. I still have the code somewhere but the heuristics

are too messy to keep around.

There are also some planned experiments, like breaking and aligning dis-

play math, but they have a low priority. It’s not that hard to do, but I need a

good reason. The same is true for equation number placement where prim-

itives are used that can sometimes interfere or not be used in all cases.

Currently that placement in combination with alignments is implemented

with quite a lot of fuzzy macro code.

One of the areas where experimenting will continue is with fonts. Early in

the development of MkIV font goodies showed up. A font (or collection of

fonts) can have a file (or more files) that control functionality and can have

fixes. There are some in place for math fonts. It is a convenient way to use

the latest greatest fonts as we have ways to circumvent issues, for instance

with math parameters. The virtual math fonts are also defined as goodies.

Some mechanisms will probably be made accessible from the TEX end so

that users can exercise more control. And because we’re not done yet,

additional features will show up for sure. There are some math related

Math new style: are we better off? 62

subsystems like physics and chemistry and these already demanded some

extensions and might need more. Introducing math symbol (and property)

dictionaries as in OpenMath is probably a next step.

I already mentioned that typesetting and rendering related technology is

driven by the web. This also reflects on Unicode and OpenType. For in-

stance, we find not only emoticons like U+1F632 (ASTONISHED FACE) in

the standard but also ‘MOUNT FUJI’, TOKYO TOWER, STATUE OF LIBERTY,

SILHOUETTE OF JAPAN. On the other hand, in one of our older projects we

still have to provide some tweak for the unary minus (as when discussing

scientific calculators used in math lessons) a distinction has to be made

with a regular minus sign. And there are no symbols to refer to use of me-

dia (simulation, applet, etc.) and there is as far as I know no emoticon for

a student asking a question. Somehow it’s hard to defend that the Planck

constant is as different from a math italic h as a ‘GRINNING FACE’ is from

a ‘GRINNING FACE WITH SMILING EYES’, but the last both got a code

point. I wonder with an UNAMUSED FACE.

Of course we can argue that this is all too visual to end up in Unicode, but

the main point that I want to make is that as a TEX community (which is

also related to education) we are of not that much importance and influ-

ence. Maybe it is because we always had a programmable system at hand,

and folks who could make fonts, and were already extending and exploring

before the web became a factor. Anyhow, in ConTEXt we solve these issues

by making mechanisms extensible. For instance we can extend fonts with

virtual glyphs and add features to existing fonts on the fly. Simple examples

are adding some glyphs and properties to math fonts or adding color prop-

erties to whatever font. More complex examples are implementing para-

graph optimizers using feature sets of fonts (most noticeably the upcoming

Husayni font for advanced arabic typesetting). And, math typesetting is a

speciality anyway.

Upcoming extensions to Unicode and OpenType will demonstrate that the

TEX community could have been a bit more demanding and innovative, given

that it had known what to demand. Interesting is that some innovation al-

ready happened by providing special fonts and macros and engines, but I

guess much gets unnoticed. On the other hand, I must admit that exper-

imenting and providing solutions independent of evolving technology also

has benefits: it made (and makes) some user group meetings interesting

to go to and creates interesting niches of users. Without this experimental

playground I for sure would not be around.

63 Math new style: are we better off?

1.19 Tracing

Tracing is available for nearly all mechanisms and math is no exception.

Most tracing happens at the Lua end and can be enabled with the tracker

mechanism. Users will seldom use this, but for development the situation

is definitely more comfortable in MkIV. Of course it helps that the penalty

of tracing and logging has become less in recent times because memory as

well as runtime is hardly influenced.

We provide several styles (modules) for generating lists and tables of char-

acters and extensibles, visualizing features and comparing fonts. Here we

benefit from Lua because we can use the database embedded in ConTEXt

and looping and testing is more convenient in this language. Of course the

rendering is done by TEX, so this is a typical example of hybrid usage.

1.20 Conclusion

It is somewhat ironic that while ConTEXt is sometimes tagged as ‘not to be

used when you need to do math typesetting’ it is this macro package that

drives the development of LuaTEX with its updated math engine, which in

turn influences the updated math engine in XƎTEX, that is used by other

macro packages. In a similar fashion the possibility to process OpenType

math fonts in LuaTEX triggered the development of such fonts as follow up

on the Latin Modern and TEX Gyre projects. So, the fact that in ConTEXt

we have a bit more freedom in experimenting with math (and engines) has

some generic benefits as well.

I think that overall we’re better off. The implementation at the TEX end

is much cleaner because we no longer have to deal with different math

encodings and multiple families. Because in ConTEXt we’re less bound to

traditional approaches and don’t need to be code compatible with other

engines we can follow different routes than usual. After all, that was also

one of the main motivations behind starting the LuaTEX project: clean (bet-

ter understandable code), less mean (no more hacks at the TEX end), even

if that means to be less lean (quite a lot of Lua code). Between the lines

above you can read that I think that we’ve missed some opportunities but

that’s a side effect of the community not being that innovative which in turn

is probably driven by more or less standard expectations of publishers, as

they are more served by good old stability instead of progress. Therefore,

we’re probably stuck for a while, if not forever, with what we have now. And

a decent ConTEXt math implementation is not going to change that. What

Math new style: are we better off? 64

matters is that we can (still) keep up with developments outside our sphere

of influence.

I don’t claim that the current implementation of math in MkIV is flawless,

but eventually we will get there.

65 Math new style: are we better off?

Removing something (typeset) 66

2 Removing something (typeset)

2.1 Introduction

The primitive \unskip often comes in handy when you want to remove a

space (or more precisely: a glue item) but sometimes you want to remove

more. Consider for instance the case where a sentence is built up stepwise

from data. At some point you need to insert some punctuation but as you

cannot look ahead it needs to be delayed. Keeping track of accumulated

content is no fun, and a quick and dirty solution is to just inject it and remove

it when needed. One way to achieve this is to wrap this optional content

in a box with special dimensions. Just before the next snippet is injected

we can look back for that box (that can then be recognized by those special

dimensions) and either remove it or unbox it back into the stream.

To be honest, one seldom needs this feature. In fact I never needed it until

Alan Braslau and I were messing around with (indeed messy) bibliographic

rendering and we thought it would be handy to have a helper that could

remove punctuation. Think of situations like this:

John Foo, Mary Bar and others.

John Foo, Mary Bar, and others.

One can imagine this list to be constructed programmatically, in which case

the comma before the and can be superfluous. So, the and others can be

done like this:

\def\InjectOthers

{\removeunwantedspaces

\removepunctuation

\space and others}

John Foo, Mary Bar, \InjectOthers.

Notice that we first remove spaces. This will give:

John Foo, Mary Bar and others.

where the commas after the names are coming from some not-too-clever au-

tomatism or are the side effect of lazy programming. In the sections below

I will describe a bit more generic mechanism and also present a solution

for non-ConTEXt users.

67 Removing something (typeset)

2.2 Marked content

The example above can be rewritten in a more general way. We define a

couple macros (using ConTEXt functionality):

\def\InjectComma

{\markcontent

[punctuation]

{\removeunwantedspaces,\space}}

\def\InjectOthers

{\removemarkedcontent[punctuation]%

\space and others}

These can be used as:

John Foo\InjectComma Mary Bar\InjectComma \InjectOthers.

Which gives us:

John Foo, Mary Bar and others.

Normally one doesn’t need this kind of magic for lists because the length of

the list is known and injection can be done using the index in the list. Here

is a more practical example:

\def\SomeTitle {Just a title}

\def\SomeAuthor{Just an author}

\def\SomeYear {2015}

We paste the three snippets together:

\SomeTitle,\space \SomeAuthor\space (\SomeYear).

Just a title, Just an author (2015).

But to get even more abstract, we can do this:

\def\PlaceTitle

{\SomeTitle

\markcontent[punctuation]{.}}

\def\PlaceAuthor

{\removemarkedcontent[punctuation]%

Removing something (typeset) 68

\markcontent[punctuation]{,\space}%

\SomeAuthor

\markcontent[punctuation]{,\space}}

\def\PlaceYear

{\removemarkedcontent[punctuation]%

\space(\SomeYear)%

\markcontent[punctuation]{.}}

Used as:

\PlaceTitle\PlaceAuthor\PlaceYear

we get the output:

Just a title, Just an author (2015).

but when we have no author,

\def\SomeAuthor{}

\PlaceTitle\PlaceAuthor\PlaceYear

Now we get:

Just a title (2015).

Even more clever is this:

\def\SomeAuthor{}

\def\SomeYear{}

\def\SomePeriod{\removemarkedcontent[punctuation].}

\PlaceTitle\PlaceAuthor\PlaceYear\SomePeriod

The output is:

Just a title.

Of course we can just test for a variable like \SomeAuthor being empty be-

fore we place punctuation, but there are cases where a period becomes a

comma or a comma becomes a semicolon. Especially with bibliographies

your worst typographical nightmares come true, so it is handy to have such

a mechanism available when it’s needed.

69 Removing something (typeset)

2.3 A plain solution

For users of LuaTEX who don’t want to use ConTEXt I will now present an

alternative implementation. Of course more clever variants are possible

but the principle remains. The trick is simple enough to show here as an

example of Lua coding as it doesn’t need much help from the infrastructure

that the macro package provides. The only pitfall is the used signal (at-

tribute number) but you can set another one if needed. We use the gadgets

namespace to isolate the code.

\directlua {

gadgets = gadgets or { }

local marking = { }

gadgets.marking = marking

local marksignal = 5001

local lastmarked = 0

local marked = { }

local local_par = 6

local whatsit_node = 8

function marking.setsignal(n)

marksignal = tonumber(n) or marksignal

end

function marking.mark(str)

local currentmarked = marked[str]

if not currentmarked then

lastmarked = lastmarked + 1

currentmarked = lastmarked

marked[str] = currentmarked

end

tex.setattribute(marksignal,currentmarked)

end

function marking.remove(str)

local attr = marked[str]

if not attr then

return

end

local list = tex.nest[tex.nest.ptr]

if list then

Removing something (typeset) 70

local head = list.head

local tail = list.tail

local last = tail

if last[marksignal] == attr then

local first = last

while true do

local prev = first.prev

if not prev or prev[marksignal] ~= attr or

(prev.id == whatsit_node and

prev.subtype == local_par) then

break

else

first = prev

end

end

if first == head then

list.head = nil

list.tail = nil

else

local prev = first.prev

list.tail = prev

prev.next = nil

end

node.flush_list(first)

end

end

end

}

These functions are called from macros. We use symbolic names for the

marked snippets. We could have used numbers but meaningful tags can

be supported with negligible overhead. The remover starts at the end of

the current list and goes backwards till no matching attribute value is seen.

When a valid range is found it gets removed.

\def\setmarksignal#1%

{\directlua{gadgets.marking.setsignal(\number#1)}}

\def\marksomething#1#2%

{{\directlua{gadgets.marking.mark("#1")}{#2}}}

\def\unsomething#1%

71 Removing something (typeset)

{\directlua{gadgets.marking.remove("#1")}}

The working of these macros can best be shown from a few examples:

before\marksomething{gone}{\em HERE}\unsomething{gone}after

before\marksomething{kept}{\em HERE}\unsomething{gone}after

\marksomething{gone}{\em HERE}\unsomething{gone}last

\marksomething{kept}{\em HERE}\unsomething{gone}last

This renders as:

beforeafter

beforeHEREafter

last

HERElast

The remover needs to look at the beginning of a paragraph marked by a

local par whatsit. If we removed that, LuaTEX would crash because the list

head (currently) cannot be set to nil. This is no big deal because this macro

is not meant to clean up across paragraphs.

A close look at the definition of \marksomething will reveal an extra group-

ing in the definition. This is needed to make content that uses \aftergroup

trickery work correctly. Here is another example:

\def\SnippetOne {first\marksomething{punctuation}{, }}

\def\SnippetTwo {second\marksomething{punctuation}{, }}

\def\SnippetThree{\unsomething{punctuation} and third.}

We can paste these snippets together and make the last one use and instead

of a comma.

\SnippetOne \SnippetTwo \SnippetThree\par

\SnippetOne \SnippetThree\par

We get:

first, second and third.

first and third.

Of course in practice one probably knows how many snippets there are

and using a counter to keep track of the state is more efficient than first

typesetting something and removing it afterwards. But still it looks like a

Removing something (typeset) 72

cool feature and it can come in handy at some point, as with the title-author-

year example given before.

The plain code shown here is in the distribution in the file luatex-gadgets

and gets preloaded in the luatex-plain format.

73 Removing something (typeset)

Scanning input 74

3 Scanning input

3.1 Introduction

Tokens are the building blocks of the input for TEX and they drive the process

of expansion which in turn results in typesetting. If you want to manipu-

late the input, intercepting tokens is one approach. Other solutions are

preprocessing or writing macros that do something with their picked-up

arguments. In ConTEXt MkIV we often forget about manipulating the input

but manipulate the intermediate typesetting results instead. The advantage

is that only at that moment do you know what you’re truly dealing with, but

a disadvantage is that parsing the so-called node lists is not always efficient

and it can even be rather complex, for instance in math. It remains a fact

that until LuaTEX version 0.80 ConTEXt hardly used the token interface.

In version 0.80 a new scanner interface was introduced, demonstrated by

Taco Hoekwater at the ConTEXt conference 2014. Luigi Scarso and I inte-

grated that code and I added a fewmore functions. Eventually the team will

kick out the old token library and overhaul the input-related code in LuaTEX,

because no callback is needed any more (and also because the current code

still has traces of multiple Lua instances). This will happen stepwise to give

users who use the old mechanism an opportunity to adapt.

Here I will show a bit of the new token scanners and explain how they can

be used in ConTEXt. Some of the additional scanners written on top of the

built-in ones will probably end up in the generic LuaTEX code that ships with

ConTEXt.

3.2 The TEX scanner

The new token scanner library of LuaTEX provides a way to hook Lua into

TEX in a rather natural way. I have to admit that I never had any real demand

for such a feature but now that we have it, it is worth exploring.

The TEX scanner roughly provides the following sub-scanners that are used

to implement primitives: keyword, token, token list, dimension, glue and

integer. Deep down there are specific variants for scanning, for instance,

font dimensions and special numbers.

A token is a unit of input, and one or more characters are turned into a

token. How a character is interpreted is determined by its current catcode.

75 Scanning input

For instance a backslash is normally tagged as `escape character’ which

means that it starts a control sequence: a macro name or primitive. This

means that once it is scanned a macro name travels as one token through

the system. Take this:

\def\foo#1{\scratchcounter=123#1\relax}

Here TEX scans \def and turns it into a token. This particular token triggers

a specific branch in the scanner. First a name is scanned with optionally an

argument specification. Then the body is scanned and themacro is stored in

memory. Because \scratchcounter, \relax and #1 are turned into tokens,

this body has 7 tokens.

When the macro \foo is referenced the body gets expanded which here

means that the scanner will scan for an argument first and uses that in

the replacement. So, the scanner switches between different states. Some-

times tokens are just collected and stored, in other cases they get expanded

immediately into some action.

3.3 Scanning from LUA

The basic building blocks of the scanner are available at the Lua end, for

instance:

\directlua{print(token.scan_int())} 123

This will print 123 to the console. Or, you can store the number and use it

later:

\directlua{SavedNumber = token.scan_int())} 123

We saved: \directlua{tex.print(SavedNumber)}

The number of scanner functions is (on purpose) limited but you can use

them to write additional ones as you can just grab tokens, interpret them

and act accordingly.

The scan_int function picks up a number. This can also be a counter, a

named (math) character or a numeric expression. In TEX, numbers are in-

tegers; floating-point is not supported naturally. With scan_dimen a dimen-

sion is grabbed, where a dimen is either a number (float) followed by a unit,

a dimen register or a dimen expression (internally, all become integers).

Scanning input 76

Of course internal quantities are also okay. There are two optional argu-

ments, the first indicating that we accept a filler as unit, while the second

indicates that math units are expected. When an integer or dimension is

scanned, tokens are expanded till the input is a valid number or dimension.

The scan_glue function takes one optional argument: a boolean indicating

if the units are math.

The scan_toks function picks up a (normally) brace-delimited sequence of

tokens and (LuaTEX 0.80) returns them as a table of tokens. The function

get_token returns one (unexpanded) token while scan_token returns an

expanded one.

Because strings are natural to Lua we also have scan_string. This one con-

verts a following brace-delimited sequence of tokens into a proper string.

The function scan_keyword looks for the given keyword and when found

skips over it and returns true. Here is an example of usage:11

function ScanPair()

local one = 0

local two = ""

while true do

if token.scan_keyword("one") then

one = token.scan_int()

elseif token.scan_keyword("two") then

two = token.scan_string()

else

break

end

end

tex.print("one: ",one,"\\par")

tex.print("two: ",two,"\\par")

end

This can be used as:

\directlua{ScanPair()}

You can scan for an explicit character (class) with scan_code. This function

takes a positive number as argument and returns a character or nil.

1 0 escape

2 1 begingroup

11 In LuaTEX 0.80 you should use newtoken instead of token.

77 Scanning input

4 2 endgroup

8 3 mathshift

16 4 alignment

32 5 endofline

64 6 parameter

128 7 superscript

256 8 subscript

512 9 ignore

1024 10 space

2048 11 letter

4096 12 other

8192 13 active

16384 14 comment

32768 15 invalid

So, if you want to grab the character you can say:

local c = token.scan_code(2^10 + 2^11 + 2^12)

In ConTEXt you can say:

local c = tokens.scanners.code(

tokens.bits.space +

tokens.bits.letter +

tokens.bits.other

)

When no argument is given, the next character with catcode letter or other

is returned (if found).

In ConTEXt we use the tokens namespace which has additional scanners

available. That way we can remain compatible. I can add more scanners

when needed, although it is not expected that users will use this mechanism

directly.

(new)token tokens arguments

scanners.boolean

scan_code scanners.code (bits)

scan_dimen scanners.dimension (fill,math)

scan_glue scanners.glue (math)

scan_int scanners.integer

scan_keyword scanners.keyword

scanners.number

Scanning input 78

scan_token scanners.token

scan_tokens scanners.tokens

scan_string scanners.string

scan_word scanners.word

get_token getters.token

set_macro setters.macro (catcodes,cs,str,global)

All except get_token (or its alias getters.token) expand tokens in order

to satisfy the demands.

Here are some examples of how we can use the scanners. When we would

call Foo with regular arguments we do this:

\def\foo#1{%

\directlua {

Foo("whatever","#1",{n = 1})

}

}

but when Foo uses the scanners it becomes:

\def\foo#1{%

\directlua{Foo()} {whatever} {#1} n {1}\relax

}

In the first case we have a function Foo like this:

function Foo(what,str,n)

--

-- do something with these three parameters

--

end

and in the second variant we have (using the tokens namespace):

function Foo()

local what = tokens.scanners.string()

local str = tokens.scanners.string()

local n = tokens.scanners.keyword("n") and

tokens.scanners.integer() or 0

--

-- do something with these three parameters

--

end

79 Scanning input

The string scanned is kind of special as the result depends ok what is seen.

Given the following definition:

\def\bar {bar}

\unexpanded\def\ubar {ubar} % \protected in plain etc

\def\foo {foo-\bar-\ubar}

\def\wrap {{foo-\bar}}

\def\uwrap{{foo-\ubar}}

We get:

{foo} foo

{foo-\bar } foo-bar

{foo-\ubar } foo-\ubar

foo-\bar foo-bar

foo-\ubar foo-ubar

foobar foo𝑏𝑎𝑟
\foo foo-bar-ubar

\wrap foo-bar

\uwrap foo-\ubar

Because scanners look ahead the following happens: when an open brace

is seen (or any character marked as left brace) the scanner picks up tokens

and expands them unless they are protected; so, effectively, it scans as if

the body of an \edef is scanned. However, when the next token is a control

sequence it will be expanded first to see if there is a left brace, so there we

get the full expansion. In practice this is convenient behaviour because the

braced variant permits us to pick up meanings honouring protection. Of

course this is all a side effect of how TEX scans.12

With the braced variant one can of course use primitives like \detokenize

and \unexpanded (in ConTEXt: \normalunexpanded, as we already had this

mechanism before it was added to the engine).

12 This lookahead expansion can sometimes give unexpected side effects because often TEX

pushes back a token when a condition is not met. For instance when it scans a number,

scanning stops when no digits are seen but the scanner has to look at the next (expanded)

token in order to come to that conclusion. In the process it will, for instance, expand con-

ditionals. This means that intermediate catcode changes will not be effective (or applied)

to already-seen tokens that were pushed back into the input. This also happens with, for

instance, futurelet.

Scanning input 80

3.4 Considerations

Performance-wise there is not much difference between these methods.

With some effort you can make the second approach faster than the first but

in practice you will not notice much gain. So, the main motivation for us-

ing the scanner is that it provides a more TEX-ified interface. When playing

with the initial version of the scanners I did some tests with performance-

sensitive ConTEXt calls and the difference was measurable (positive) but de-

ciding if and when to use the scanner approach was not easy. Sometimes

embedded Lua code looks better, and sometimes TEX code. Eventually we

will end up with a mix. Here are some considerations:

• In both cases there is the overhead of a Lua call.

• In the pure Lua case the whole argument is tokenized by TEX and then

converted to a string that gets compiled by Lua and executed.

• When the scan happens in Lua there are extra calls to functions but scan-

ning still happens in TEX; some token to string conversion is avoided and

compilation can be more efficient.

• When data comes from external files, parsing with Lua is in most cases

more efficient than parsing by TEX.

• A macro package like ConTEXt wraps functionality in macros and is con-

trolled by key/value specifications. There is often no benefit in terms of

performance when delegating to the mentioned scanners.

Another consideration is that when using macros, parameters are often

passed between {}:

\def\foo#1#2#3%

{...}

\foo {a}{123}{b}

and suddenly changing that to

\def\foo{\directlua{Foo()}}

and using that as:

\foo {a} {b} n 123

means that {123} will fail. So, eventually you will end up with something:

81 Scanning input

\def\myfakeprimitive{\directlua{Foo()}}

\def\foo#1#2#3{\myfakeprimitive {#1} {#2} n #3 }

and:

\foo {a} {b} {123}

So in the end you don’t gain much here apart from the fact that the fake

primitive can be made more clever and accept optional arguments. But

such new features are often hidden for the user who uses more high-level

wrappers.

When you code in pure TEX and want to grab a number directly you need

to test for the braced case; when you use the Lua scanner method you still

need to test for braces. The scanners are consistent with the way TEXworks.

Of course you can write helpers that do some checking for braces in Lua,

so there are no real limitations, but it adds some overhead (and maybe also

confusion).

One way to speed up the call is to use the \luafunction primitive in combi-

nations with predefined functions and although both mechanisms can ben-

efit from this, the scanner approach gets more out of that as this method

cannot be used with regular function calls that get arguments. In (rather

low level) Lua it looks like this:

luafunctions[1] = function()

local a token.scan_string()

local n token.scan_int()

local b token.scan_string()

-- whatever --

end

And in TEX:

\luafunction1 {a} 123 {b}

This can of course be wrapped as:

\def\myprimitive{\luafunction1 }

3.5 Applications

The question now pops up: where can this be used? Can you really make

new primitives? The answer is yes. You can write code that exclusively

Scanning input 82

stays on the Lua side but you can also do some magic and then print back

something to TEX. Here we use the basic token interface, not ConTEXt:

\directlua {

local token = newtoken or token

function ColoredRule()

local w, h, d, c, t

while true do

if token.scan_keyword("width") then

w = token.scan_dimen()

elseif token.scan_keyword("height") then

h = token.scan_dimen()

elseif token.scan_keyword("depth") then

d = token.scan_dimen()

elseif token.scan_keyword("color") then

c = token.scan_string()

elseif token.scan_keyword("type") then

t = token.scan_string()

else

break

end

end

if c then

tex.sprint("\\color[",c,"]{")

end

if t == "vertical" then

tex.sprint("\\vrule")

else

tex.sprint("\\hrule")

end

if w then

tex.sprint("width ",w,"sp")

end

if h then

tex.sprint("height ",h,"sp")

end

if d then

tex.sprint("depth ",d,"sp")

end

if c then

tex.sprint("\\relax}")

83 Scanning input

end

end

}

This can be given a TEX interface like:

\def\myhrule{\directlua{ColoredRule()} type {horizontal} }

\def\myvrule{\directlua{ColoredRule()} type {vertical} }

And used as:

\myhrule width \hsize height 1cm color {darkred}

giving:

Of course ConTEXt users can use the following commands to color an otherwise-

black rule (likewise):

\blackrule[width=\hsize,height=1cm,color=darkgreen]

The official ConTEXt way to define such a new command is the following. The

conversion back to verbose dimensions is needed because we pass back to

TEX.

\startluacode

local myrule = tokens.compile {

{

{ "width", "dimension", "todimen" },

{ "height", "dimension", "todimen" },

{ "depth", "dimension", "todimen" },

{ "color", "string" },

{ "type", "string" },

}

}

interfaces.scanners.ColoredRule = function()

local t = myrule()

context.blackrule {

Scanning input 84

color = t.color,

width = t.width,

height = t.height,

depth = t.depth,

}

end

\stopluacode

With:

\unprotect \let\myrule\clf_ColoredRule \protect

and

\myrule width \textwidth height 1cm color {maincolor} \relax

we get:

There are many ways to use the scanners and each has its charm. We will

look at some alternatives from the perspective of performance. The tim-

ings are more meant as relative measures than absolute ones. After all it

depends on the hardware. We assume the following shortcuts:

local scannumber = tokens.scanners.number

local scankeyword = tokens.scanners.keyword

local scanword = tokens.scanners.word

We will scan for four different keys and values. The number is scanned

using a helper scannumber that scans for a number that is acceptable for

Lua. Thus, 1.23 is valid, as are 0x1234 and 12.12E4.

function getmatrix()

local sx, sy = 1, 1

local rx, ry = 0, 0

while true do

if scankeyword("sx") then

sx = scannumber()

elseif scankeyword("sy") then

sy = scannumber()

elseif scankeyword("rx") then

rx = scannumber()

elseif scankeyword("ry") then

85 Scanning input

ry = scannumber()

else

break

end

end

-- action --

end

Scanning the following specification 100000 times takes 1.00 seconds:

sx 1.23 sy 4.5 rx 1.23 ry 4.5

The ‘tight’ case takes 0.94 seconds:

sx1.23 sy4.5 rx1.23 ry4.5

We can compare this to scanning without keywords. In that case there

have to be exactly four arguments. These have to be given in the right

order which is no big deal as often such helpers are encapsulated in a user-

friendly macro.

function getmatrix()

local sx, sy = scannumber(), scannumber()

local rx, ry = scannumber(), scannumber()

-- action --

end

As expected, this is more efficient than the previous examples. It takes 0.80

seconds to scan this 100000 times:

1.23 4.5 1.23 4.5

A third alternative is the following:

function getmatrix()

local sx, sy = 1, 1

local rx, ry = 0, 0

while true do

local kw = scanword()

if kw == "sx" then

sx = scannumber()

elseif kw == "sy" then

sy = scannumber()

elseif kw == "rx" then

Scanning input 86

rx = scannumber()

elseif kw == "ry" then

ry = scannumber()

else

break

end

end

-- action --

end

Here we scan for a keyword and assign a number to the right variable. This

one call happens to be less efficient than calling scan_keyword 10 times

(4+3+2+1) for the explicit scan. This run takes 1.11 seconds for the next
line. The spaces are really needed as words can be anything that has no

space.13

sx 1.23 sy 4.5 rx 1.23 ry 4.5

Of course these numbers need to be compared to a baseline of no scanning

(i.e. the overhead of a Lua call which here amounts to 0.10 seconds. This

brings us to the following table.

keyword checks 0.9 sec

no keywords 0.7 sec

word checks 1.0 sec

The differences are not that impressive given the number of calls. Even in a

complex document the overhead of scanning can be negligible compared to

the actions involved in typesetting the document. In fact, there will always

be some kind of scanning for such macros so we’re talking about even less

impact. So you can just use the method you like most. In practice, the extra

overhead of using keywords in combination with explicit checks (the first

case) is rather convenient.

If you don’t want to have many tests you can do something like this:

local keys = {

sx = scannumber, sy = scannumber,

rx = scannumber, ry = scannumber,

}

13 Hard-coding the word scan in a C helper makes little sense, as different macro packages

can have different assumptions about what a word is. And we don’t extend LuaTEX for

specific macro packages.

87 Scanning input

function getmatrix()

local values = { }

while true do

for key, scan in next, keys do

if scankeyword(key) then

values[key] = scan()

else

break

end

end

end

-- action --

end

This is still quite fast although one now has to access the values in a table.

Working with specifications like this is clean anyway so in ConTEXt we have

a way to abstract the previous definition.

local specification = tokens.compile {

{

{ "sx", "number" }, { "sy", "number" },

{ "rx", "number" }, { "ry", "number" },

},

}

function getmatrix()

local values = specification()

-- action using values.sx etc --

end

Although one can make complex definitions this way, the question remains

if it is a better approach than passing Lua tables. The standard ConTEXt

way for controlling features is:

\getmatrix[sx=1.2,sy=3.4]

So it doesn’t matter much if deep down we see:

\def\getmatrix[#1]%

{\getparameters[@@matrix][sx=1,sy=1,rx=1,ry=1,#1]%

\domatrix

\@@matrixsx

\@@matrixsy

Scanning input 88

\@@matrixrx

\@@matrixry

\relax}

or:

\def\getmatrix[#1]%

{\getparameters[@@matrix][sx=1,sy=1,rx=1,ry=1,#1]%

\domatrix

sx \@@matrixsx

sy \@@matrixsy

rx \@@matrixrx

ry \@@matrixry

\relax}

In the second variant (with keywords) can be a scanner like we defined

before:

\def\domatrix#1#2#3#4%

{\directlua{getmatrix()}}

but also:

\def\domatrix#1#2#3#4%

{\directlua{getmatrix(#1,#2,#3,#4)}}

given:

function getmatrix(sx,sy,rx,ry)

-- action using sx etc --

end

or maybe nicer:

\def\domatrix#1#2#3#4%

{\directlua{domatrix{

sx = #1,

sy = #2,

rx = #3,

ry = #4

}}}

assuming:

function getmatrix(values)

89 Scanning input

-- action using values.sx etc --

end

If you go for speed the scanner variant without keywords is the most ef-

ficient one. For readability the scanner variant with keywords or the last

shown example where a table is passed is better. For flexibility the table

variant is best as it makes no assumptions about the scanner — the token

scanner can quit on unknown keys, unless that is intercepted of course.

But as mentioned before, even the advantage of the fast one should not

be overestimated. When you trace usage it can be that the (in this case

matrix) macro is called only a few thousand times and that doesn’t really add

up. Of course many different sped-up calls can make a difference but then

one really needs to optimize consistently the whole code base and that can

conflict with readability. The token library presents us with a nice chicken--

egg problem but nevertheless is fun to play with.

3.6 Assigning meanings

The token library also provides a way to create tokens and access prop-

erties but that interface can change with upcoming versions when the old

library is replaced by the new one and the input handling is cleaned up.

One experimental function is worth mentioning:

token.set_macro("foo","the meaning of bar")

This will turn the given string into tokens that get assigned to \foo. Here

are some alternative calls:

set_macro("foo") \def \foo{}

set_macro("foo","meaning") \def \foo{meaning}

set_macro("foo","meaning","global") \gdef \foo{meaning}

The conversion to tokens happens under the current catcode regime. You

can enforce a different regime by passing a number of an allocated catcode

table as the first argument, as with tex.print. As we mentioned perfor-

mance before: setting at the Lua end like this:

token.set_macro("foo","meaning")

is about two times as fast as:

tex.sprint("\\def\\foo{meaning}")

or (with slightly more overhead) in ConTEXt terms:

Scanning input 90

context("\\def\\foo{meaning}")

The next variant is actually slower (even when we alias setvalue):

context.setvalue("foo","meaning")

but although 0.4 versus 0.8 seconds looks like a lot on a TEX run I need a mil-

lion calls to see such a difference, and a million macro definitions during a

run is a lot. The different assignments involved in, for instance, 3000 entries

in a bibliography (with an average of 5 assignments per entry) can hardly

be measured as we’re talking about milliseconds. So again, it’s mostly a

matter of convenience when using this function, not a necessity.

3.7 Conclusion

For sure we will see usage of the new scanner code in ConTEXt, but to what

extent remains to be seen. The performance gain is not impressive enough

to justify many changes to the code but as the low-level interfacing can

sometimes become a bit cleaner it will be used in specific places, even if

we sacrifice some speed (which then probably will be compensated for by

a little gain elsewhere).

The scanners will probably never be used by users directly simply because

there are no such low level interfaces in ConTEXt and because manipulating

input is easier in Lua. Even deep down in the internals of ConTEXt we will

use wrappers and additional helpers around the scanner code. Of course

there is the fun-factor and playing with these scanners is fun indeed. The

macro setters have as their main benefit that using them can be nicer in

the Lua source, and of course setting a macro this way is also conceptually

cleaner (just like we can set registers).

Of course there are some challenges left, like determining if we are scan-

ning input of already converted tokens (for instance in a macro body or

tokenlist expansion). Once we can properly feed back tokens we can also

look ahead like \futurelet does. But for that to happen we will first clean

up the LuaTEX input scanner code and error handler.

91 Scanning input

Profiling lines 92

4 Profiling lines

4.1 Introduction

Although TEX is pretty good at typesetting simple texts like novels, in prac-

tice it’s often used for getting more complex stuff on paper (or screen).

Math is of course the first thing that comes to mind. If for instance you look

at the books typeset by Don Knuth you will see a rendering that is rather

consistent in spacing. This is no surprise as the author pays a lot of atten-

tion to detail and uses inline versus display math properly. No publisher

will complain about the result.

In the documents that I have to write styles for, the content is rather mixed,

and in particular inline math can have display math properties. In a one-

column layout this is not a real problem especially because lots of short

sentences and white space is used: we’re talking of secondary-school edu-

cational math where arguments for formatting something this or that way

is not always rational and consistent but more based on “this is what the

student expects”, “the competitor also does it that way” or just “we like this

more”. For instance in a recent project, the books with answers to questions

had to be typeset in a multicolumn layout and because math was involved,

we end up with lines with more height and depth than normal. That can not

only result in more pages but also can make the result look a bit messy.

This paragraph demonstrates how lines are handled: when a paragraph isH__

broken into lines each line becomes a horizontal box with a height and depthH__

determined by the size of the characters that make up the line. There is aH__

minimal distance between baselines (baselineskip) and when lines touchH__

there can optionally be a \lineskip. In the end we get a vertical list ofH__

boxes and glue (either of not flexible) mixed with penalties that determineH__

optimal paragraph breaks. This paragraph shows that there is normallyH__

enough space available to do the job.H__

We already have some ways to control this. For instance the dimensions of

math can be limited a bit and lines can be made to snap on a grid (which

is what publishers often want anyway). However, another alternative is to

look at the line and decide if successive lines can be moved closer, of course

within the constraints of the height and and depth of the lines. There is no

real way to see if some ugly clash can happen simply because when we run

into boxed material there can be anything inside and the dimensions can

be set on purpose. This means that we have to honour all dimensions and

93 Profiling lines

only can mess around with dimensions when we’re reasonably confident.

In ConTEXt this messing is called profiling and that is what we will discuss

next.

4.2 Line heights and depths

In this section we will use some (Dutch) examples from documents that

we’ve processed. We show unprofiled versions, with two different para-

graph widths, in figure 4.1. All three examples shown demonstrate that as

soon as we use something more complex than a number or variable in a sub-

script we exceed the normal line height, and thus the line spacing becomes

somewhat irregular.

The profiled rendering of the same examples are shown in figure 4.2. Here

we use the minimal heights and depths plus a minimum distance of 1pt.

This default method is called strict.

In the first and last example there are some lines where the depth of one

line combined with the height of the following exceeds the standard line

height. This forces TEX to insert \lineskip (mentioned in the demonstra-

tion paragraph above), a dimension that is normally set to a fraction of the

line spacing (for instance 1pt for a 10pt body font and 12pt line spacing).

When we are profiling, \lineskip is ignored and we use a settable distance

instead. The second example (with superscripts) normally comes out fine

as the math stays within limits and we make sure that smaller fractions and

scripts stay within the natural limits of the line, but nested scripts can be

an issue.

In figure 4.3 we see the profile of a regular text with no math. The average

text stays well within the limits of height and depth. If this doesn’t happen

for prose then you need to adapt the height/depth ratio to the ascender/

descender ratio of the bodyfont. For regular text it makes no sense to use

the profiler, it only slows down typesetting.

4.3 When lines exceed boundaries

Let’s now take a more detailed look at what happens when lines get too high

or low. First we’ll zoom in on a simple example: in figure 4.4, we compare a

sample text rendered using the variants of profiling currently implemented.

(This is still experimental code so theremight bemore in the future). Seeing

profiles helps to get a picture of the complications we have to deal with. In

Profiling lines 94

hsize 12cm

unprofiled

Regelmatig kom je procenten tegen. ‘Pro centum’ is Latijn en be-

tekent per honderd, dus één van elke honderd, dus
1

100 deel. Met

procenten rekenen is daarom rekenen met honderdsten: 45% =
45

100 = 0,45. Dus 45% van een geheel is het
45

100 deel ervan en dat

kun je berekenen door te vermenigvuldigen met 0,45.

hsize 10cm

unprofiled

Regelmatig kom je procenten tegen. ‘Pro centum’ is

Latijn en betekent per honderd, dus één van elke hon-

derd, dus
1

100 deel. Met procenten rekenen is daarom

rekenen met honderdsten: 45% = 45
100 = 0,45. Dus

45% van een geheel is het
45

100 deel ervan en dat kun je

berekenen door te vermenigvuldigen met 0,45.

example 1

hsize 12cm

unprofiled

Je gaat uit van de bekende eigenschappen van machten. Bijvoor-

beeld: 𝑔𝑟 ∗ 𝑔𝑠 = 𝑔(𝑟+𝑠). Neem je hierin 𝑟 =𝑔 log(𝑎) en 𝑠 =𝑔 log𝑏,
dan vind je: 𝑔𝑔 log(𝑎)+𝑔log(𝑏) = 𝑔𝑔 log 𝑎 × 𝑔𝑔 log 𝑏 = 𝑎 × 𝑏. Hierbij
gebruik je de definitieformules.

hsize 10cm

unprofiled

Je gaat uit van de bekende eigenschappen van mach-

ten. Bijvoorbeeld: 𝑔𝑟 ∗𝑔𝑠 = 𝑔(𝑟+𝑠). Neem je hierin 𝑟 =𝑔

log(𝑎) en 𝑠 =𝑔 log𝑏, dan vind je: 𝑔𝑔 log(𝑎)+𝑔log(𝑏) =
𝑔𝑔 log 𝑎 × 𝑔𝑔 log 𝑏 = 𝑎 × 𝑏. Hierbij gebruik je de definitie-
formules.

example 2

hsize 12cm

unprofiled

Omdat volgens de eigenschappen van machten en exponenten

geldt
1

𝑥4 = 𝑥−4 is ook hier sprake van een machtsfunctie, namelijk

𝑓(𝑥) = 6
𝑥4 = 6 × 1

𝑥4 = 6𝑥−4.

hsize 10cm

unprofiled

Omdat volgens de eigenschappen van machten en ex-

ponenten geldt
1

𝑥4 = 𝑥−4 is ook hier sprake van een

machtsfunctie, namelijk 𝑓(𝑥) = 6
𝑥4 = 6 × 1

𝑥4 = 6𝑥−4.

example 3

Figure 4.1 Unprofiled examples.

addition to the normal vbox variant (used in the previous examples), we

show none which only analyzes, strict that uses the natural dimensions of

lines and fixed that is supposed to cooperate with grid snapping.

Figure 4.4 we showwhat happens when we add somemore excessive height

and depth to lines. The samples are:

line 1 x\lower2ex\hbox{xxx}\par

line 2 x\raise2ex\hbox{xxx}\par

line 3 \par

95 Profiling lines

hsize 12cm

profiled

Regelmatig kom je procenten tegen. ‘Pro centum’ is Latijn en be-

tekent per honderd, dus één van elke honderd, dus
1

100 deel. Met

procenten rekenen is daarom rekenen met honderdsten: 45% =
45

100 = 0,45. Dus 45% van een geheel is het
45

100 deel ervan en dat

kun je berekenen door te vermenigvuldigen met 0,45.

hsize 10cm

profiled

Regelmatig kom je procenten tegen. ‘Pro centum’ is

Latijn en betekent per honderd, dus één van elke hon-

derd, dus
1

100 deel. Met procenten rekenen is daarom

rekenen met honderdsten: 45% = 45
100 = 0,45. Dus

45% van een geheel is het
45

100 deel ervan en dat kun je

berekenen door te vermenigvuldigen met 0,45.

example 1

hsize 12cm

profiled

Je gaat uit van de bekende eigenschappen van machten. Bijvoor-

beeld: 𝑔𝑟 ∗ 𝑔𝑠 = 𝑔(𝑟+𝑠). Neem je hierin 𝑟 =𝑔 log(𝑎) en 𝑠 =𝑔 log𝑏,
dan vind je: 𝑔𝑔 log(𝑎)+𝑔log(𝑏) = 𝑔𝑔 log 𝑎 × 𝑔𝑔 log 𝑏 = 𝑎 × 𝑏. Hierbij
gebruik je de definitieformules.

hsize 10cm

profiled

Je gaat uit van de bekende eigenschappen van mach-

ten. Bijvoorbeeld: 𝑔𝑟 ∗𝑔𝑠 = 𝑔(𝑟+𝑠). Neem je hierin 𝑟 =𝑔

log(𝑎) en 𝑠 =𝑔 log𝑏, dan vind je: 𝑔𝑔 log(𝑎)+𝑔log(𝑏) =
𝑔𝑔 log 𝑎 × 𝑔𝑔 log 𝑏 = 𝑎 × 𝑏. Hierbij gebruik je de definitie-
formules.

example 2

hsize 12cm

profiled

Omdat volgens de eigenschappen van machten en exponenten

geldt
1

𝑥4 = 𝑥−4 is ook hier sprake van een machtsfunctie, namelijk

𝑓(𝑥) = 6
𝑥4 = 6 × 1

𝑥4 = 6𝑥−4.

hsize 10cm

profiled

Omdat volgens de eigenschappen van machten en ex-

ponenten geldt
1

𝑥4 = 𝑥−4 is ook hier sprake van een

machtsfunctie, namelijk 𝑓(𝑥) = 6
𝑥4 = 6 × 1

𝑥4 = 6𝑥−4.

example 3

Figure 4.2 Profiled examples.

Coming back to the use of typefaces in electronic publishing: many of the new typogra-

phers receive their knowledge and information about the rules of typography from books,

from computer magazines or the instruction manuals which they get with the purchase of

a PC or software. There is not so much basic instruction, as of now, as there was in the

old days, showing the differences between good and bad typographic design. Many people

are just fascinated by their PC’s tricks, and think that a widely--praised program, called up

on the screen, will make everything automatic from now on.

Figure 4.3 Normal lines profiled (quote by Hermann Zapf)

and:

x\lower2ex\hbox{xxx} line 1 \par

line 2 x\raise2ex\hbox{xxx}\par

Profiling lines 96

line 1H__

line 2H__

line 3H____V

line 1H__

line 2H__

line 3H____V

line 1H__

line 2H__

line 3H____V

line 1H__

line 2H__

line 3H____V

line 1H__

line 2H__

line 3H____V

none strict/0pt strict/1pt fixed/0pt fixed/1pt

no excessive height and depth

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

none strict/0pt strict/1pt fixed/0pt fixed/1pt

some excessive height and depth (overlapping)

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

none strict/0pt strict/1pt fixed/0pt fixed/1pt

some excessive height and depth (out of touch)

Figure 4.4 Variants of profiling,

using a constructed two-line text.

line 3 \par

Here the strict variant has some effect while fixed only has some influ-

ence on the height and depth of lines. Later we will see that fixed operates

in steps and the default step is large so here we never meet the criteria for

closing up.14

A profiled box is typeset with \profiledbox. There is some control possi-

ble but the options are not yet set in stone so we won’t use them all here.

Profiling can be turned on for the whole document with \setprofile but

I’m sure that will seldom happen, and these examples show why: one can-

not beforehand say if the result looks good. Let’s now apply profiling to a

real text. If you play with this yourself you can show profiles in gray with a

tracker:

\enabletrackers[profiling.show]

14 In ConTEXt we normally use \high and \low and both ensure that we don’t exceed the

natural height and depth.

97 Profiling lines

Regelmatig kom je procenten tegen. ‘Pro centum’ is Latijn en betekent per

honderd, dus één van elke honderd, dus
1

100 deel. Met procenten rekenen

is daarom rekenen met honderdsten: 45% = 45
100 = 0,45. Dus 45% van een

geheel is het
45

100 deel ervan en dat kun je berekenen door te vermenigvul-

digen met 0,45.
zero distance, resulting height 83.5265pt

Regelmatig kom je procenten tegen. ‘Pro centum’ is Latijn en betekent per

honderd, dus één van elke honderd, dus
1

100 deel. Met procenten rekenen

is daarom rekenen met honderdsten: 45% = 45
100 = 0,45. Dus 45% van een

geheel is het
45

100 deel ervan en dat kun je berekenen door te vermenigvul-

digen met 0,45.
distance, resulting height 85.5265pt

Regelmatig kom je procenten tegen. ‘Pro centum’ is Latijn en betekent per

honderd, dus één van elke honderd, dus
1

100 deel. Met procenten rekenen

is daarom rekenen met honderdsten: 45% = 45
100 = 0,45. Dus 45% van een

geheel is het
45

100 deel ervan en dat kun je berekenen door te vermenigvul-

digen met 0,45.
distance, double height and depth, resulting height 151.302pt

Figure 4.5 Examples width different dimensions.

We show the effects of setting distances in figure 4.5. We start with a zero

distance:

\profiledbox

[strict]

[distance=0pt]

{\nl\getbuffer[example-1]}

Because we don’t want lines to touch we then set the minimum distance to

a reasonable value (1pt).

\profiledbox

[strict]

[distance=1pt]

{\nl\getbuffer[example-1]}

Profiling lines 98

Finally we also double the height and depth of lines, something that nor-

mally will not be done. The defaults are the standard height and depth (the

ones you get when you inject a so-called \strut).

\profiledbox

[strict]

[height=2\strutht,

depth=2\strutdp,

distance=1pt]

{\nl\getbuffer[example-1]}

The problem with this kind of analysis is that deciding when and how to

use this information to improve spacing is non-trivial. One of the charac-

teristics of user demand is that it nearly always concerns rather specific

situations and that suggested solutions could work only in those cases. But

as soon as we have one exceptional situation, intervention is needed which

in turn means that a mechanism has to be under complete user control.

That itself assumes that the user still has control, which is not the case in

automated workflows. In fact, as soon as one is in control over the source

and rendering, there are often easier ways to deal with the few cases that

need treatment. Possible interference can come from, for instance:

• whitespace between paragraphs

• section titles (using different fonts and spacing)

• descriptions and other intermezzos

• images that interrupt the flow, or end up next to text

• ornaments like margin words (we catch some)

• text backgrounds making spacing assumptions

After a few decades of using TEX and writing solutions, it has become pretty

clear that fully automated typesetting is a dream, if only because the input

can be pretty weird and inconsistent and demands (from those who are ac-

customed to tweaking manually in a desktop publishing application) can

be pretty weird and inconsistent too. So, the only real solution is to use

some kind of artificial intelligence that one can feed with demands and con-

straints and that hopefully is clever enough to deal with the inconsistencies.

As this kind of computing is unlikely to happen in my lifetime, poor man ex-

plicit solutions have to do the job for now. One can add all kinds of heuristics

to the profiler but this can backfire when control is needed. Alternatively

one can end up with many options like we have in grid snapping.

99 Profiling lines

4.4 Where to use profiling

In ConTEXt there are four places (maybe a few more eventually) where this

kind of control over spacing makes sense:

• the main text flow in single column mode

• multi-column mode, especially mixed columns

• framed texts, used for all kinds of content

• explicitly (balanced) split boxes

Because framed texts are used all over, for instance in tables, it means that

if we provide control over spacing using profiles, many ConTEXt mecha-

nisms can use it. However, enabling this for all packaging has a significant

overhead so it has to be used with care so that there is no performance hit

when it is not used. Here is an easy example using \framed:

\framed

[align=normal,

profile=fixed,

frame=off]

{some text ...}

For the following examples we define this helper:

\starttexdefinition demo-profile-1 #1

\framed

[align=normal,profile=#1]

{xxx$\frac{1}{\frac{1}{\frac{1}{2}}}$

\par

$\frac{\frac{1}{\frac{1}{2}}}{2}$xxx}

\stoptexdefinition

We apply this to predefined profiles. The macro is called like this:

\texdefinition{demo-profile-1}{fixed}

The outcome can depend on the font used: in figure 4.6 we show Latin

Modern, TEX Gyre Pagella and Dejavu. Because in ConTEXt the line height

depends on the bodyfont; each case is different.

Profiling lines100

xxx 1
1
1
2

1
1
2
2 xxx

xxx 1
1
1
2

1
1
2
2 xxx

xxx 1
1
1
21

1
2
2 xxx

xxx 1
1
1
2

1
1
2
2 xxx

xxx 1
1
1
2

1
1
2
2 xxx

vbox fixed halffixed quarterfixed eightsfixed

Latin Modern

xxx 1
1
1
2

1
1
2
2 xxx

xxx 1
1
1
2

1
1
2
2 xxx

xxx 1
1
1
21

1
2
2 xxx

xxx 1
1
1
2

1
1
2
2 xxx

xxx 1
1
1
2

1
1
2
2 xxx

vbox fixed halffixed quarterfixed eightsfixed

Pagella

xxx
1
1
1
2

1
1
2
2 xxx

xxx
1
1
1
2

1
1
2
2 xxx

xxx
1
1
1
21

1
2
2 xxx

xxx
1
1
1
2

1
1
2
2 xxx

xxx
1
1
1
2

1
1
2
2 xxx

vbox fixed halffixed quarterfixed eightsfixed

Dejavu

Figure 4.6 A few fonts compared.

As mentioned, we need this kind of profiling in multi-column typesetting,

so let us have a look at that now. Columns are processed in grid mode but

this is taken into account. We can simulate this by using boxed columns;

see figure 4.7. One of the biggest problems is what to do with the bottom

and top of a page or column. This will probably take a bit more to get

right, and likely we will end up with different strategies. We can also think

of special handlers but that will come with a high speed penalty. In the

strict variant we don’t mess with the dimension of a line too much, but

the fixed alternative will get some more control.

Although using this feature looks promising it is also dangerous. For in-

stance a side effect can be that interline spacing becomes inconsistent and

even ugly. It really depends on the content. Also, as soon as some grid

snapping is used, the gain becomes less, simply because the solution space

is smaller. Then of course there is the matter of overall look and feel: most

documents that need this kind of magic look bad anyway, so why bother. In

this respect it is comparable to applying protrusion and expansion. There

101Profiling lines

Regelmatig kom je procenten tegen.

‘Pro centum’ is Latijn en betekent

per honderd, dus één van elke hon-

derd, dus
1

100 deel. Met procenten

rekenen is daarom rekenenmet hon-

derdsten: 45% = 45
100 = 0,45. Dus

45% van een geheel is het
45

100 deel

ervan en dat kun je berekenen door

te vermenigvuldigen met 0,45.

none on grid

Regelmatig kom je procenten tegen.

‘Pro centum’ is Latijn en betekent
per honderd, dus één van elke hon-

derd, dus
1

100 deel. Met procenten

rekenen is daarom rekenenmet hon-

derdsten: 45% = 45
100 = 0,45. Dus

45% van een geheel is het
45

100 deel
ervan en dat kun je berekenen door
te vermenigvuldigen met 0,45.

strict on grid

Regelmatig kom je procenten tegen.

‘Pro centum’ is Latijn en betekent

per honderd, dus één van elke hon-

derd, dus
1

100 deel. Met procenten

rekenen is daarom rekenenmet hon-

derdsten: 45% = 45
100 = 0,45. Dus

45% van een geheel is het
45

100 deel

ervan en dat kun je berekenen door

te vermenigvuldigen met 0,45.

fixed on grid

Figure 4.7 Boxed columns without profile.

are hardly any combinations of design and content where micro-typogra-

phy makes sense to use: in prose perhaps, but not in mixed content. On the

other hand, profiling makes more sense in mixed content than in prose.

Not everything that is possible should be used. In figure 4.8 we show some

fake paragraphs with profiles applied, the first series (random range 2) has

a few excessive snippets, the last one (random range 5) has many. In fig-

ure 4.9 we show them in a different arrangement. Although there are dif-

ferences it is hard to say if the results look better. We scaled down the

results and used gray fake blurs instead of real text in order to get a better

impression of the so-called (overall) grayness of a text.

4.5 Conclusion

Although profiling seems interesting, in practice it does not have much

value in an automated flow. Ultimately, in the project for which I inves-

Profiling lines102

none / 2 strict / 2 fixed / 2 halffixed / 2

none / 3 strict / 3 fixed / 3 halffixed / 3

none / 4 strict / 4 fixed / 4 halffixed / 4

none / 5 strict / 5 fixed / 5 halffixed / 5

Figure 4.8 Some examples, each row has progressively more excessive

snippets.

tigated this trickery, only in the final stage was some last minute optimiza-

tion of the rendering done. We did that by injecting directives. Think of

page breaks that make the result look more balanced. Optimizing image

placement happens in an earlier stage because the text can refer to images

like “in the picture on the left, we see . . .”. Controlling profiles is much

harder. In fact, the more clever we are, the harder it gets to beat it when

we want an exception. All these mechanisms: spacing, snapping, profiling,

103Profiling lines

none / 2 none / 3 none / 4 none / 5

strict / 2 strict / 3 strict / 4 strict / 5

fixed / 2 fixed / 3 fixed / 4 fixed / 5

halffixed / 2 halffixed / 3 halffixed / 4 halffixed / 5

Figure 4.9 The same examples, rearranged such that each row has a dif-

ferent profiling variant.

breaking pages, image placement, to mention a few, have to work together.

For projects that depend on such placement, it might be better to write

dedicated mechanisms than to try to fight with clever built-in features.

Profiling lines104

vbox 1 strict 1 fixed 1

vbox 2 strict 2 fixed 2

vbox 3 strict 3 fixed 3

Figure 4.10 Three similar random cases.

In practice, probably only the fixed alternativemakes sense and as that one

has a boundary condition similar to (or equal, depending on other settings)

snapping on gridsteps, the end result might not be that different from doing

nothing. In figure 4.10 you see that the vbox variant is not that bad. And

extremely difficult content is unlikely to ever look perfect unless some man-

ual intervention happens. Therefore, from the perspective of “fine points

of text typesetting” some local (manual) control might be more interesting

and relevant.

In the end, I didn’t need this profiling feature at all: because there are ex-

pectations with respect to how many pages a book should have, typesetting

in columns was not needed. It didn’t save that many pages, and the result

would never look that much better, simply because of the type of content.

Large images were also spoiling the game. Nevertheless we will keep pro-

files in the core and it might even get extended. One question remains: at

what point do we stop adding such features? The answer would be easier

if TEX wasn’t so flexible.

105Profiling lines

Opentype math106

5 Opentype math

5.1 Introduction

When TEX typesets mathematics it makes some assumptions about the prop-

erties of fonts and dimensions of glyphs. Due to practical limitations in the

traditional eight-bit fonts, such as the number of available characters in a

font and a limited number of heights and depths, some juggling takes place.

For instance, TEX sometimes uses dimensions as a signal to treat some char-

acters as special. This is not a problem as long as one knows how to make a

font and in practice that was done by looking at the properties of Computer

Modern to implement similar shapes. After all, there are not that many

math fonts around and basically there is only one engine that can deal with

them properly.

However, when Microsoft set the standard for OpenType math fonts it also

steered the direction of their use in rendering mathematics. This means

that the LuaTEX engine, which handles OpenType fonts, has to implement

some alternative code paths. At the start, this involved a bit of gambling

because there was no real specification; since then we now have a better

picture. One of the more complex changes that took place is in the way

italic correction is applied. A dirty way out of this dilemma would be to

turn the math fonts into virtual ones that match traditional TEX properties,

but this would not be a nice solution.

It must be noted that in the process of implementing support for the new

fonts, Taco turned some noad types (see below) into a generic noad with a

subtype. This simplified the transition. At the same time, a lot of detailed

control was added in the way successive characters are spaced.

In LuaTEX pre 0.85, the italic correction was always added when a character

got boxed (a frequently used preparation in the math builder). Now this is

only done for the traditional fonts because, concerning italic correction, the

OpenType standard states:15

1. When a run of slanted characters is followed by a straight character

(such as an operator or a delimiter), the italics correction of the last

glyph is added to its advance width.

2. When positioning limits on an N-ary operator (e.g., integral sign), the

horizontal position of the upper limit is moved to the right by ½ of the

15 Recently version 1.7 was published on the Microsoft website.

107Opentype math

italics correction, while the position of the lower limit is moved to the

left by the same distance.

3. When positioning superscripts and subscripts, their default horizontal

positions are also different by the amount of the italics correction of the

preceding glyph.

And, with respect to kerning:

4. Set the default horizontal position for the superscript as shifted relative

to the position of the subscript by the italics correction of the base glyph.

I must admit that when the first implementation showed up, my natural

reaction to unexpected behaviour was just to compensate it. One such so-

lution was simply not to pass the italic correction to the engine and deal

with it in Lua. In practice, that didn’t work out well for all cases; one rea-

son was that the engine saw the combination of old fonts as a new one and

followed a mixed code path.16 Another approach I tried was a mix of manip-

ulated italic values and Lua, but finally as specifications settled I decided

to leave it to the engine completely, if only because successive versions of

LuaTEX behaved much better.

So, as we are closing in on the first release of LuaTEX, I decided to fix the

pending issues and sat down to look at the math related code. I must admit

that I had never looked in depth into that part of the machinery. In the next

sections I will discuss some of the outcome of this exercise.

I will also discuss some extensions that have been on the agenda for years.

They are rather generic and handy, but I must also admit that theMkIV code

related to math has so many options to control rendering that I’m not sure

if they will ever be used in ConTEXt. Nevertheless, these generic extensions

fit will into the set of basic features of LuaTEX.

5.2 Italic correction

As stated above, the normal code path included italic correction in all the

math boxes that are made. This meant that, in some places, this correction

had to be removed and/or moved to another place in the chain. This is

a natural side effect of the fact that TEX runs over the intermediate list

of math nodes (noads) and turns them into regular nodes, mostly glyphs,

kerns, glue and boxes.

16 ConTEXt employed Unicode math right from the start of LuaTEX.

Opentype math108

The complication is not so much these italic corrections themselves, be-

cause we could just continue to do the same, but the fact that these cor-

rections are to be interpreted differently in case of integrals. There, the

problem is that we have to (kind of) look back at what is done in order to

determine what italic corrections are to be applied.

The original solution was to keep track of the applied correction via vari-

ables but that still made some analysis necessary. In the new implementa-

tion, more information is stored in the processed noads. This is a logical

choice given that we have already added other information. It also makes

it possible to fix cases that will (for sure) show up in the future.

∫H__

2H__

H__ ∫H__ 2H__
H__ ∫H__

2H__

2H____V
H__ 𝑓2H__

H__ 𝑓2H__
H__ 𝑓2H__

2H____V
H__

Figure 5.1 Some examples of italic correction (1).

In figure 5.1 we show two examples of inline italic correction. The super-

scripts are shifted to the right and the subscripts to the left. In the case of

an integral sign, we need to move half the correction. This is triggered by

the \nolimits primitive. In figure 5.2 we show the difference between just

an integral character and one tagged as having limits.17

∫H__

2H__

H__ ∫H__ 2H__
H__ ∫H__

2H__

2H____V
H__ ∫H__

2H__

H__ ∫H__ 2H__
H__ ∫H__

2H__

2H____V
H__

Figure 5.2 Some examples of italic correction (2).

The amount of correction, if present at all, depends on the font, and in this

document we use Dejavu math. Figure 5.3 shows a few variants. As you

can see, the amount of correction is very font dependent.

5.3 Vertical delimiters

When we go into display math, there is a good chance that an integral has

to be enlarged. The integral sign in Unicode has slot 0x222B, so we can

define a bigger one as follows:

17 We show some boxes so that you get an idea what TEX is doing. Basically TEX puts super-

scripts and subscripts on top of each other with some kern in between and then corrects

the dimensions.

109Opentype math

∫H__

2H__

H__ ∫H__ 2H__
H__ ∫H__

2H__

2H____V
H__ 𝑓 2H__

H__ 𝑓2H__
H__ 𝑓 2H__

2H____V
H__

cambria

∫H__

ଶH__

H__ ∫H__
ଶH__

H__ ∫H__

ଶH__

ଶH____V
H__ 𝑓ଶH__

H__ 𝑓ଶH__
H__ 𝑓ଶH__

ଶH____V
H__

pagella

∫H__

2H__

H__ ∫H__
2H__

H__ ∫H__

2H__

2H____V
H__ 𝑓2H__

H__ 𝑓2H__
H__ 𝑓2H__

2H____V
H__

latin modern

∫H__
2H__

H__ ∫H__ 2H__
H__ ∫H__

2H__

2H____V
H__ 𝑓2H__

H__ 𝑓2H__H__ 𝑓2H__

2H____V
H__

lucida ot

Figure 5.3 Some examples of italic correction (3).

\def\standardint{

\Umathchar "1 "0 "222B

}

\def\wrappedint{\mathop{

\Umathchar "1 "0 "222B

}}

\def\biggerint{\mathop{

\Uleft height 3ex depth 3ex axis \Udelimiter "0 "0 "222B

\Uright .

}}

\def\evenbiggerint{\mathop{

\Uleft height 6ex depth 6ex axis \Udelimiter "0 "0 "222B

\Uright .

}}

The axis keyword will apply a shift up over the size of the current styles

math axis. We use this in some examples as:

Opentype math110

$

\displaystyle\standardint ^a_b\enspace

\displaystyle\wrappedint ^a_b\enspace

\displaystyle\biggerint ^a_b\enspace

\displaystyle\evenbiggerint^a_b\enspace

$

In figure 5.4 you can see some subtle differences. The wrapped version

doesn’t shift the superscript and subscript. The reason is that the operator

is hidden in its own wrapper and the scripts attach at an outer level. So,

unless we start analyzing the innermost noad and apply that to the outer,

we cannot know the shift. Such analyzing is asking for problems: where do

we stop and what slight variations do we take into account? It’s better to

be predictable.

𝑎H__

∫H__

𝑏H__

__V

𝑎H__

∫H____V

𝑏H__

__V

𝑎H__

∫H__H__
H__

H__

𝑏H__

__V

𝑎H__

∫H__⎮H__⎮H__⎮H__⎮H__⎮H__⎮H__

∫H____V

H__
H__

H__

𝑏H__

__V

௔H__

නH__H__

௕H__

__V

௔H__

නH__H____V

௕H__

__V

௔H__

඲H__H__
H__

H__

௕H__

__V

௔H__

⌠H__

⎮H__

⎮H__

⎮H__

⌡H____V

H__
H__

H__

௕H__

__V

𝑎H__

∫H__

𝑏H__

__V

𝑎H__

∫H____V

𝑏H__

__V

𝑎H__

∫H__H__
H__

H__

𝑏H__

__V

𝑎H__

∫H__H__
H__

H__

𝑏H__

__V

𝑎H__

∫H__H__

𝑏H__

__V

𝑎H__

∫H__H____V

𝑏H__

__V

𝑎H__

⌠H__⎮H__⎮H__

⌡H____V

H__
H__

H__

𝑏H__

__V

𝑎H__

⌠H__⎮H__⎮H__⎮H__⎮H__⎮H__⎮H__⎮H__⎮H__

⌡H____V

H__
H__

H__

𝑏H__

__V

Figure 5.4 pagella, cambria, latin modern and lucida

Another observation is that Latin Modern does not provide (at least not yet)

large integrals at all.

The following four cases are equivalent:

\Uleft height 3ex depth 3ex axis \Udelimiter "0 "0 "222B

\Uright .

\Uleft .

\Uright height 3ex depth 3ex axis \Udelimiter "0 "0 "222B

\Uleft .

\Umiddle height 3ex depth 3ex axis \Udelimiter "0 "0 "222B

\Uright .

\Uleft .

\Umiddle height 3ex depth 3ex axis \Udelimiter "0 "0 "222B

\Uright .

111Opentype math

However, because this all looks a bit clumsy, we now provide a new primi-

tive:

\Uvextensible

height <dimension>

depth <dimension>

axis

exact

<delimiter>

The symbol to be constructed will have size height plus depth. When an

axis is specified, the symbol will be shifted up, which is normally the case

for such symbols. The keyword exact will correct the dimensions when no

exact match is made, and this can be the case as long as we use the stepwise

larger glyphs and before we end up using the composed shapes. When no

dimensions are specified, the normal construction takes place and the only

keyword that can be used then is noaxis which keeps the axis out of the

calculations. After about a week of experimenting and exploring options,

this combinationmademost sense, read: no fuzzy heuristics but predictable

behaviour; after all, one might need different solutions for different fonts

or circumstances and the applied logic (and expectations) can (and will, for

sure) differ per macro package.

∫ ∫ ∫ ඲

⌠
⎮
⎮
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮

⌡

∫ ∫ ∫ ඲

⌠
⎮
⎮
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮

⌡

∫ ∫ ∫ ඲

⌠
⎮
⎮
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮

⌡

∫ ∫ ∫ ඲

⌠
⎮
⎮
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮

⌡

axis exact axis exact

Figure 5.5 cambria integrals with dimensions

((൫ ቆ

⎛
⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎜
⎜
⎜

⎝

((൫ ቆ

⎛
⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎜
⎜
⎜

⎝

((൫ ቆ

⎛
⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎜
⎜
⎜

⎝

((൫ ቆ

⎛
⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎜
⎜
⎜

⎝

axis exact axis exact

Figure 5.6 cambria left parenthesis with dimensions

Opentype math112

∫ ∫ න ඲

⌠
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮
⎮
⎮

⌡

∫ ∫ ∫ න ඳ

⌠
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮
⎮
⎮

⌡

noaxis

Figure 5.7 cambria integrals adaptive

(൫ ቀ ൭
⎛
⎜

⎝

⎛
⎜
⎜
⎜

⎝

⎛
⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎜
⎜
⎜
⎜

⎝

(((ቆ ൮

⎛
⎜
⎜

⎝

⎛
⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎜
⎜
⎜
⎜
⎜

⎝

noaxis

Figure 5.8 cambria left parenthesis adaptive

5.4 Horizontal delimiters

Horizontal extenders also got some new options. Although one can achieve

similar results with macros, the following might look a bit more natural.

Also, some properties are lost once the delimiter is constructed, so macros

can become complex when trying to determine the original dimensions in-

volved.

We start with the new \Uhextensible primitive that accepts a dimension.

It’s just a variant of the over and under delimiters with no content part.

\Uhextensible

height <dimension>

depth <dimension>

left | middle | right

<family>

<slot>

So for example you can say:

$\Uhextensible width 30pt 0 "2194$

113Opentype math

The left, middle and right keywords are only interpreted when the re-

quested size can’t be met due to stepwise larger glyph selection (i.e., before

we start using arbitrary sizes made of snippets). Figure 5.9 shows what we

get when we step from 2 up to 20 points with increments of 2 points in

cambria.

(default) ↔ ↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ

↔ ↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ
left ↔↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ

↔↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ
middle ↔↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ

↔↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ
right ↔↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ

↔↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ

Figure 5.9 Stepwise wider

\Uhextensible with options (cambria).

The dimensions and options can also be given to the \Uoverdelimiter,

\Uunderdelimiter, \Udelimiterover and \Udelimiterunder primitives.

Figure 5.10 shows what happens when the delimiter is smaller than re-

quested. The samples look like this:

$\Udelimiterunder width 1pt 0 "2194 {\hbox{\strut !}}

When no dimension is given the keywords are ignored as it makes no sense

to mess with the extensible then.

(default) !
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

left !
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

middle !
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

right !
↔
!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔
!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

Figure 5.10 Stepwisewider \Udelimiterunder

with options (cambria).

Opentype math114

5.5 Accents

Already many years ago, I observed that overlaying characters (which hap-

pens when we negate an operator that has no composed glyph) didn’t al-

ways give nice results and, therefore, a tracker item was created. When

going over the todo list, I ran across a suggested patch by Khaled Hosny

that added an overlay accent type. As the suggested solution fits in with

the other extensions, a variant has been implemented.

The results really depend on the quality and completeness of the font, so

here we will show xits. The placement of an overlay also depends on the

top accent shift as specified in the font for the used glyph. Instead of a

fixed criterion for trying to find the best match, an additional fraction

(numerator) parameter can be specified. A value of 800 means that the

target width is 800/1000.

The \Umathaccent command now has the following syntax:

\Umathaccent

[top|bottom|overlay]

[fixed]

[fraction <number>]

<delimiter>

{content}

When we have an overlay, the fraction concerns the height; otherwise it

concerns the width of the nucleus. In both cases, it is only applied when

searching for stepwise larger glyphs, as extensibles are not influenced. An

example of a specification is:

\Umathaccent

overlay "0 "0 "0338

fraction 950

{\Umathchar"1"0"2211}

Figure 5.11 shows what we get when we use different fractions (from 800

upto 1500 with a step of 100). We see that \overlay is not always useful.

Normally you can forget about the factor because overlays make most sense

for inline math, which uses relative small glyphs, so we can get �̸� x̸ ̸xxx with

the following code:

$\Umathaccent overlay "0 "0 "0338 {x}$

115Opentype math

∑̸800 ∑̸900 ∑̸1000 ∑̸1100 ∑̸1200 ∑̸1300 ∑̸1400 ∑̸1500

xits – has variants

∑̸800 ∑̸900 ∑̸1000 ∑̸1100 ∑̸1200 ∑̸1300 ∑̸1400 ∑̸1500

cambria – lacks variants

∑̸800 ∑̸900 ∑̸1000 ∑̸1100 ∑̸1200 ∑̸1300 ∑̸1400 ∑̸1500

pagella – lacks variants

Figure 5.11 Using overlay in \Umathaccent.

$\Umathaccent overlay "0 "0 "0338 {\tf x}$

$\Umathaccent overlay "0 "0 "0338 {\tf xxx}$

A normal accent can also be influenced by fraction:

⏞𝑎× 𝑏 ⏞𝑎× 𝑏 ⏞𝑎×𝑏 ⏞𝑎×𝑏 ⏞⏞⏞𝑎× 𝑏

5.6 Fractions

A normal fraction has a reasonable thick rule but as soon as you make it

bigger you will notice a peculiar effect:

𝑥+ (𝑎𝑏) 𝑥 + (𝑎
𝑏
) 𝑥 + (

𝑎

𝑏
) 𝑥 + (

𝑎

𝑏
) 𝑥 + (

𝑎

𝑏
)

1pt 2pt 3pt 4pt 5pt

Such a fraction is specified as:

x + { {a} \abovewithdelims () 5pt {b} }

A new keyword exact will nil the excessive spacing:

x + { {a} \abovewithdelims () exact 5pt {b} }

Now we get:

𝑥+ (𝑎𝑏) 𝑥 + (𝑎𝑏) 𝑥 + (𝑎
𝑏
) 𝑥 + (𝑎

𝑏
) 𝑥 + (𝑎

𝑏
)

1pt 2pt 3pt 4pt 5pt

One way to get consistent spacing in such fractions is to use struts:

x + { {\strut a} \abovewithdelims () exact 5pt {\strut b} }

Opentype math116

Now we get:

𝑥+ (
𝑎
𝑏
) 𝑥 + (

𝑎

𝑏
) 𝑥 + (

𝑎

𝑏
) 𝑥 + (

𝑎

𝑏
) 𝑥 + (

𝑎

𝑏
)

1pt 2pt 3pt 4pt 5pt

Yet another way to increase the distance between the rule and text a bit is:

\Umathfractionnumvgap \displaystyle4pt

\Umathfractiondenomvgap\displaystyle4pt

This looks quite consistent:

𝑥+ (𝑎
𝑏
) 𝑥 + (𝑎

𝑏
) 𝑥 + (

𝑎
𝑏
) 𝑥 + (

𝑎
𝑏
) 𝑥 + (

𝑎

𝑏
)

1pt 2pt 3pt 4pt 5pt

Here we use code like:

$\displaystyle x + {{a} \abovewithdelims() exact 2pt {b}}$

Using struts, it is best to zero the gap:

𝑥+ (𝑎
𝑏
) 𝑥 + (

𝑎
𝑏
) 𝑥 + (

𝑎
𝑏
) 𝑥 + (

𝑎
𝑏
) 𝑥 + (

𝑎

𝑏
)

1pt 2pt 3pt 4pt 5pt

Here we use code like:

$\displaystyle x + {{\strut a} \abovewithdelims() exact 2pt {\strut

b}}$

5.7 Skewed fractions

The math parameter table contains some parameters that specify a horizon-

tal and a vertical gap for skewed fractions. Some guessing is needed in or-

der to implement something that uses them, so we now provide a primitive

similar to the other fraction related ones but with a few options that one can

use to influence the rendering. Of course, a user can mess around a bit with

the parameters \Umathskewedfractionhgap and \Umathskewedfractionvgap.

The syntax used here is:

117Opentype math

{ {1} \Uskewed / <options> {2} }

{ {1} \Uskewedwithdelims / () <options> {2} }

The options can be noaxis and exact, a combination of them or just nothing.

By default we add half the axis to the shifts and also by default we zero the

width of the middle character. For Latin Modern the result looks as follows:

𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
noaxis 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact noaxis 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥

5.8 Side effects

Not all bugs reported as such are really bugs. Here is one that came from

a misunderstanding: In Eijkhout’s “TEX by Topic”, the rules for handling

styles in scripts are described as follows:

• In any style superscripts and subscripts are taken from the next smaller

style. Exception: in display style they are taken in script style.

• Subscripts are always in the cramped variant of the style; superscripts

are only cramped if the original style was cramped.

• In an ..\over.. formula in any style the numerator and denominator

are taken from the next smaller style.

• The denominator is always in cramped style; the numerator is only in

cramped style if the original style was cramped.

• Formulas under a \sqrt or \overline are in cramped style.

In LuaTEX, one can set the styles in more detail, which means that you some-

times have to set both normal and cramped styles to get the effect you want.

If we force styles in the script using \scriptstyle and \crampedscriptstyle

we get the following (all render the same):

default 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

script 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

crampedscript 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

This is coded like:

$b_{x=xx}^{x=xx}$

Opentype math118

$b_{\scriptstyle x=xx}^{\scriptstyle x=xx}$

$b_{\crampedscriptstyle x=xx}^{\crampedscriptstyle x=xx}$

Now we set the following parameters

\Umathordrelspacing\scriptstyle=30mu

\Umathordordspacing\scriptstyle=30mu

This gives:

default 𝑏𝑥 =𝑥 𝑥
𝑥=𝑥𝑥

script 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

crampedscript 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

Since the result is not what is expected (visually), we should say:

\Umathordrelspacing\scriptstyle=30mu

\Umathordordspacing\scriptstyle=30mu

\Umathordrelspacing\crampedscriptstyle=30mu

\Umathordordspacing\crampedscriptstyle=30mu

Now we get:

default 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

script 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

crampedscript 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

5.9 Fixed scripts

We have three parameters that are used for anchoring superscripts and

subscripts, alone or in combinations.

𝑑 \Umathsubshiftdown

𝑢 \Umathsupshiftup

𝑠 \Umathsubsupshiftdown

When we set \mathscriptsmode to a value other than zero, these are used

for calculating fixed positions. This is something that is needed in, for in-

stance, chemical equations. You can manipulate the mentioned variables to

achieve different effects, and the logic is shown in the following table. In

order to see the differences in more detail, they are enlarged in figure 5.12.

mode down up

0 dynamic dynamic CH2 +CH+
2 +CH2

2

119Opentype math

1 𝑑 𝑢 CH2 +CH+
2 +CH2

2
2 𝑠 𝑢 CH2 +CH+

2 +CH2
2

3 𝑠 𝑢 + 𝑠 − 𝑑 CH2 +CH+
2 +CH2

2
4 𝑑+ (𝑠 − 𝑑)/2 𝑢 + (𝑠 − 𝑑)/2 CH2 +CH+

2 +CH2
2

5 𝑑 𝑢+ 𝑠 − 𝑑 CH2 +CH+
2 +CH2

2

CH2 +CH+
2 +CH2

2 CH2 +CH+
2 +CH2

2 CH2 +CH+
2 +CH2

2
0 1 2

CH2 +CH+
2 +CH2

2 CH2 +CH+
2 +CH2

2 CH2 +CH+
2 +CH2

2
3 4 5

Figure 5.12 The effect of setting \mathscriptsmode.

5.10 Remark

The changes that we have made are hopefully not too intrusive. Instead of

extending existing commands, new ones were introduced so that compat-

ibility should not really be a problem. To some extend, these extensions

violate the principle that extensions should be done in Lua, but TEX being

a math renderer and OpenType replacing old font technology, we felt that

we should make an exception here. Hopefully, not too many bugs were

introduced.

Possibly useful extensions120

6 Possibly useful extensions

6.1 Introduction

While working on LuaTEX, it is tempting to introduce all kinds of new fancy

programming features. Arguments for doing this can be characterized by

descriptions like ‘handy’, ‘speedup’, ‘less code’, ‘necessity’. It must be

stated that traditional TEX is rather complete, and one can do quite a lot

of macro magic to achieve many goals. So let us look a bit more at the

validity of these arguments.

The ‘handy’ argument is in fact a valid one. Of course, one can always wrap

clumsy code in a macro to hide the dirty tricks, but, still, it would be nicer

to avoid needing to employ extremely dirty tricks. I found myself looking at

old code wondering why something has to be done in such a complex way,

only to realize, after a while, that it comes with the concept; one can get

accustomed to it. After all, every programming language has its stronger

and weaker aspects.

The ‘speedup’ argument is theoretically a good one too, but, in practice, it’s

hard to prove that a speedup really occurs. Say we save 5% on a job. This

is nice for multipass on a server where many jobs run at the same time or

after each other, but a little bit of clever macro coding will easily gain much

more. Or, as we often see: sloppy macro or style writing will easily negate

those gains. Another pitfall is that you can measure (say) half a million calls

to a macro can indeed be brought down to a fraction of its runtime thanks to

some helper, but, in practice, you will not see that gain because saving 0.1

seconds on a 10 second run can be neglected. Furthermore, adding a single

page to the document will already make such a gain invisible to the user as

that will itself increase the runtime. Of course, many small speedups can

eventually accumulate to yield a significant overall gain, but, if the macro

package is already quite optimized, it might not be easy to squeeze out

much more. At least in ConTEXt, I find it hard to locate bottlenecks that

could benefit from extensions, unless one adds very specific features, which

is not what we want.

Of course one can create ‘less’ code by using more wrappers. But this can

definitely have a speed penalty, so this argument should be used with care.

An appropriate extra helper can make wrappers fast and the fewer helpers

the better. The danger is in choosing what helpers. A good criterion is that

it should be hard otherwise in TEX. Adding more primitives (and overhead)

121Possibly useful extensions

merely because some macro package would like it would be bad practice.

I’m confident that helpers for ConTEXt would not be that useful for plain

TEX, L
ATEX, etc., and vice versa.

The ‘necessity’ argument is a strong one. Many already present extensions

from 𝜀-TEX fall into this category: fully expandable expressions (although

the implementation is somewhat restricted), better macro protection, ex-

pansion control, and the ability to test for a so-called csname (control se-

quence name) are examples.

In the end, the only valid argument is ‘it can’t be done otherwise’, which is

a combination of all these arguments with ‘necessity’ being dominant. This

is why in LuaTEX there are not that many extensions to the language (nor

will there be). I must admit that even after years of working with TEX, the

number of wishes for more facilities is not that large.

The extensions in LuaTEX, compared to traditional TEX, can be summarized

as follows:

• Of course we have the 𝜀-TEX extensions, and these already have a long

tradition of proven usage. We did remove the limited directional support.

• From Aleph (follow-up on Omega), part of the directional support and

some font support was inherited.

• From pdfTEX, we tookmost of the backend code, but it has been improved

in the meantime. We also took the protrusion and expansion code, but

especially the latter has been implemented a bit differently (in the fron-

tend as well as in the backend).

• Some handy extensions from pdfTEX have been generalized; other ob-

scure or specialized ones have been removed. So we now have frontend

support for position tracking, resources (images) and reusable content

in the core. The backend code has been separated a bit better and only

a few backend-related primitives remain.

• The input encoding is now utf-8, exclusively, but one can easily hook in

code to preprocess data that enters TEX’s parser using Lua. The charac-

teristic catcode settings for TEX can be grouped and switched efficiently.

• The font machinery has been opened wide so that we can use the embed-

ded Lua interpreter to implement any technology that we might want,

with the usual control that TEXies like. Some further limitations have

Possibly useful extensions122

been lifted. One interesting point is that one can now construct virtual

fonts at runtime.

• Ligature construction, kerning and paragraph building have been sepa-

rated as a side effect of Lua control. There are some extensions in that

area. For instance, we store the language and min/max values in the

glyph nodes, and we also store penalties with discretionaries. Patterns

can be loaded at runtime, and character codes that influence hyphen-

ation can be manipulated.

• The math renderer has been upgraded to support OpenType math. This

has resulted in many new primitives and extensions, not only to define

characters and spacing, but also to control placement of superscripts

and subscripts and generally to influence the way things are constructed.

A couple of mechanisms have gained control options.

• Several Lua interfaces are available making it possible to manipulate

the (intermediate) results. One can pipe text to TEX, write parsers, mess

with node lists, inspect attributes assigned at the TEX end, etc.

Some of the features mentioned above are rather LuaTEX specific, such as

catcode tables and attributes. They are present as they permit more ad-

vanced Lua interfacing. Other features, such as utf-8 and OpenType math,

are a side effect of more modern techniques. Bidirectional support is there

because it was one of the original reasons for going forward with LuaTEX.

The removal of backend primitives and thereby separating the code in a

better way (see companion article) comes from the desire to get closer to

the traditional core, so that most documentation by Don Knuth still applies.

It’s also the reason why we still speak of ‘tokens’, ‘nodes’ and ‘noads’.

In the following sections I will discuss a few new low-level primitives. This

is not a complete description (after all, we have reported on much already),

and one can consult the LuaTEX manual to get the complete picture. The

extensions described below are also relatively new and date from around

version 0.85, the prelude to the stable version 1 release.

6.2 Rules

For insiders, it is no secret that TEX has no graphic capabilities, apart from

the ability to draw rules. But with rules you can do quite a lot already. Add

to that the possibility to insert arbitrary graphics or even backend drawing

directives, and the average user won’t notice that it’s not true core func-

tionality.

123Possibly useful extensions

Whenwe startedwith LuaTEX, we used code from pdfTEX andOmega (Aleph),

and, as a consequence, we ended up with many whatsits. Normal running

text has characters, kerns, some glue, maybe boxes, all represented by a

limited set of so-called nodes. A whatsit is a kind of escape as it can be

anything an extension to TEX needs to wrap up and put in the current list.

Examples are (in traditional TEX already) whatsits that write to file (using

\write) and whatsits that inject code into the backend (using \special).

The directional mechanism of Omega uses whatsits to indicate direction

changes.

For a long time images were also included using whatsits, and basically one

had to reserve the right amount of space and inject a whatsit with a directive

for the backend to inject something there with given dimensions or scale.

Of course, one then needs methods to figure out the image properties, but,

in the end, all of this could be done rather easily.

In pdfTEX, two new whatsits were introduced: images and reusable so-

called forms, and, contrary to other whatsits, these do have dimensions.

As a result, suddenly the TEX code base could no longer just ignore what-

sits, but it had to check for these two when dimensions were important, for

instance in the paragraph builder, packager, and backend.

So what has this to do with rules? Well, in LuaTEX all the whatsits are now

back to where they belong, in the backend extension code. Directions are

now first-class nodes, and we have native resources and reusable boxes. Th-

ese resources and boxes are an abstraction of the pdfTEX images and forms,

and, internally, they are a special kind of rule (i.e. a blob with dimensions).

Because checking for rules is part of the (traditional) TEX kernel, we could

simply remove the special whatsit code and let existing rule-related code

do the job. This simplified the code a lot.

Because we suddenly had two more types of rules, we took the opportunity

to add a few more.

\nohrule width 10cm height 2cm depth 0cm

\novrule width 10cm height 2cm depth 0cm

This is a way to reserve space, and it’s nearly equivalent to the following

(respectively):

{\setbox0\hbox{}\wd0=10cm\ht0=2cm\dp0=0cm\box0\relax}

{\setbox0\vbox{}\wd0=10cm\ht0=2cm\dp0=0cm\box0\relax}

Possibly useful extensions124

There is no real gain in efficiency because keywords also take time to parse,

but the advantage is that no Lua callbacks are triggered.18 Of course, this

variant would not have been introduced had we still had just rules and no

further subtypes; it was just a rather trivial extension that fit in the reper-

toire.19

So, while we were at it, yet another rule type was introduced, but this one

has been made available only in Lua. As this text is about LuaTEX, a bit of

Lua code does fit into the discussion, so here we go. The code shown here

is rather generic and looks somewhat different in ConTEXt, but it does the

job.

First, let’s create a straightforward rectangle drawing routine. We initialize

some variables first, then scan properties using the token scanner, and, fi-

nally, we construct the rectangle using four rules. The packaged (so-called)

hlist is written to TEX.

\startluacode

function FramedRule()

local width = 0

local height = 0

local depth = 0

local linewidth = 0

--

while true do

if token.scan_keyword("width") then

width = token.scan_dimen()

elseif token.scan_keyword("height") then

height = token.scan_dimen()

elseif token.scan_keyword("depth") then

depth = token.scan_dimen()

elseif token.scan_keyword("line") then

linewidth = token.scan_dimen()

else

break

end

end

local doublelinewidth = 2*linewidth

--

18 I still am considering adding variants of \hbox and \vbox where no callback would be

triggered.
19 This is one of the things I wanted to have for a long time but seems less useful today.

125Possibly useful extensions

local left = node.new("rule")

local bottom = node.new("rule")

local right = node.new("rule")

local top = node.new("rule")

local back = node.new("kern")

local list = node.new("hlist")

--

left.width = linewidth

bottom.width = width - doublelinewidth

bottom.height = -depth + linewidth

bottom.depth = depth

right.width = linewidth

top.width = width - doublelinewidth

top.height = height

top.depth = -height + linewidth

back.kern = -width + linewidth

list.list = left

list.width = width

list.height = height

list.depth = depth

list.dir = "TLT"

--

node.insert_after(left,left,bottom)

node.insert_after(left,bottom,right)

node.insert_after(left,right,back)

node.insert_after(left,back,top)

--

node.write(list)

end

\stopluacode

This function can be wrapped in a macro:

\def\FrameRule{\directlua{FramedRule()}}

and the macro can be used as follows:

\FrameRule width 3cm height 1cm depth 1cm line 2pt

The result is:

Possibly useful extensions126

A different approach follows. Again, we define a rule, but, this time we

only set dimensions and assign some attributes to it. Normally, one would

reserve some attribute numbers for this purpose, but, for our example here,

high numbers are safe enough. Now there is no need to wrap the rule in a

box.

\startluacode

function FramedRule()

local width = 0

local height = 0

local depth = 0

local linewidth = 0

local radius = 0

local type = 0

--

while true do

if token.scan_keyword("width") then

width = token.scan_dimen()

elseif token.scan_keyword("height") then

height = token.scan_dimen()

elseif token.scan_keyword("depth") then

depth = token.scan_dimen()

elseif token.scan_keyword("line") then

linewidth = token.scan_dimen()

elseif token.scan_keyword("type") then

type = token.scan_int()

elseif token.scan_keyword("radius") then

radius = token.scan_dimen()

else

break

end

end

--

local r = node.new("rule")

r.width = width

r.height = height

r.depth = depth

r.subtype = 4 -- user rule

r[20000] = type

r[20001] = linewidth

r[20002] = radius or 0

127Possibly useful extensions

node.write(r)

end

\stopluacode

Nodes with subtype 4 (user) are intercepted and passed to a callback func-

tion, when set. Here we show a possible implementation:

\startluacode

local bpfactor = (7200/7227)/65536

local f_rectangle = "%f w 0 0 %f %f re %s"

local f_radtangle = [[

%f w %f 0 m

%f 0 l %f %f %f %f y

%f %f l %f %f %f %f y

%f %f l %f %f %f %f y

%f %f l %f %f %f %f y

h %s

]]

callback.register("process_rule",function(n,h,v)

local t = n[20000] == 0 and "f" or "s"

local l = n[20001] * bpfactor -- linewidth

local r = n[20002] * bpfactor -- radius

local w = h * bpfactor

local h = v * bpfactor

if r > 0 then

p = string.format(f_radtangle,

l, r, w-r, w,0,w,r, w,h-r, w,h,w-r,h,

r,h, 0,h,0,h-r, 0,r, 0,0,r,0, t)

else

p = string.format(f_rectangle, l, w, h, t)

end

pdf.print("direct",p)

end)

\stopluacode

We can now also specify a radius and type, where 0 is a filled and 1 a stroked

shape.

\FrameRule

Possibly useful extensions128

type 1

width 3cm

height 1cm

depth 5mm

line 0.2mm

radius 2.5mm

Since we specified a radius we get round corners:

The nice thing about these extensions to rules is that the internals of TEX

are not affected much. Rules are just blobs with dimensions and the par

builder, for instance, doesn’t care what they are. There is no need for fur-

ther inspection. Maybe future versions of LuaTEX will provide more useful

subtypes.

6.3 Spaces

Multiple successive spaces in TEX are normally collapsed into one. But,

what if you don’t want any spaces at all? It turns out this is rather hard

to achieve. You can, of course, change the catcodes, but that won’t work

well if you pass text around as macro arguments. Also, you would not want

spaces that separate macros and text to be ignored, but only those in the

typeset text. For such use, LuaTEX introduces \nospaces.

This new primitive can be used to overrule the usual \spaceskip-related

heuristics when a space character is seen in a text flow. The value 1 specifies

no injection, a value of 2 results in injection of a zero skip, and the default

0 gets the standard behavior. Below we see the results for four characters

separated by spaces.

x x x

x

xxxx xxxx

0 / hsize 10mm 1 / hsize 10mm 2 / hsize 10mm

x

x

x

x

xxxx x

x

x

x

0 / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

In case youwonder why setting the space related skips to zero is not enough:

evenwhen it is set to zero youwill always get something. What gets inserted

129Possibly useful extensions

depends on \spaceskip, \xspaceskip, \spacefactor and font dimensions.

I must admit that I always have to look up the details, as, normally, it’s

wrapped up in a spacing system that you implement once then forget about.

In any case, with \nospaces, you can completely get rid of even an inserted

zero space.

6.4 Token lists

The following four primitives are provided because they are more efficient

than macro-based variants: \toksapp, \tokspre, and \e... (expanding)

versions of both. They can be used to append or prepend tokens to a token

register.

However, don’t overestimate the gain that can be brought in simple situa-

tions with not that many tokens involved (read: there is no need to instantly

change all code that does it the traditional way). The new method avoids

saving tokens in a temporary register. Then, when you combine registers

(which is also possible), the source gets appended to the target and, after-

wards, the source is emptied: we don’t copy but combine!

Their use can best be demonstrated by examples. We employ a scratch reg-

ister \ToksA. The examples here show the effects of grouping; in fact, they

were written for testing this effect. Because we don’t use the normal as-

signment code, we need to initialize a local copy in order to get the original

content outside the group.

\ToksA{}

\bgroup

\ToksA{}

\bgroup \toksapp\ToksA{!!} [\the\ToksA=!!] \egroup

[\the\ToksA=]

\egroup

[\the\ToksA=]

result: [!!=!!][=][=]

\ToksA{}

\bgroup

\ToksA{A}

\bgroup \toksapp\ToksA{!!} [\the\ToksA=A!!] \egroup

[\the\ToksA=A]

\egroup

Possibly useful extensions130

[\the\ToksA=]

result: [A!!=A!!][A=A][=]

\ToksA{}

\bgroup

\ToksA{}

\bgroup

\ToksA{A} \toksapp\ToksA{!!} [\the\ToksA=A!!]

\egroup

[\the\ToksA=]

\egroup

[\the\ToksA=]

result: [A!!=A!!][=][=]

\ToksA{}

\bgroup

\ToksA{A}

\bgroup

\ToksA{} \toksapp\ToksA{!!} [\the\ToksA=!!]

\egroup

[\the\ToksA=A]

\egroup

[\the\ToksA=]

result: [!!=!!][A=A][=]

\ToksA{}

\bgroup

\ToksA{}

\bgroup

\tokspre\ToksA{!!} [\the\ToksA=!!]

\egroup

[\the\ToksA=]

\egroup

[\the\ToksA=]

result: [!!=!!][=][=]

\ToksA{}

\bgroup

\ToksA{A}

131Possibly useful extensions

\bgroup

\tokspre\ToksA{!!} [\the\ToksA=!!A]

\egroup

[\the\ToksA=A]

\egroup

[\the\ToksA=]

result: [!!A=!!A][A=A][=]

\ToksA{}

\bgroup

\ToksA{}

\bgroup

\ToksA{A} \tokspre\ToksA{!!} [\the\ToksA=!!A]

\egroup

[\the\ToksA=]

\egroup

[\the\ToksA=]

result: [!!A=!!A][=][=]

\ToksA{}

\bgroup

\ToksA{A}

\bgroup

\ToksA{} \tokspre\ToksA{!!} [\the\ToksA=!!]

\egroup

[\the\ToksA=A]

\egroup

[\the\ToksA=]

result: [!!=!!][A=A][=]

Here we used \toksapp and \tokspre, but there are two more primitives,

\etoksapp and \etokspre; these expand the given content while it gets

added.

The next example demonstrates that you can also append another token

list. In this case the original content is gone after an append or prepend.

\ToksA{A}

\ToksB{B}

\toksapp\ToksA\ToksB

Possibly useful extensions132

\toksapp\ToksA\ToksB

[\the\ToksA=AB]

result: [AB=AB]

This is intended behaviour! The original content of the source is not copied

but really appended or prepended. Of course, grouping works well.

\ToksA{A}

\ToksB{B}

\bgroup

\toksapp\ToksA\ToksB

\toksapp\ToksA\ToksB

[\the\ToksA=AB]

\egroup

[\the\ToksA=AB]

result: [AB=AB][AB=AB]

6.5 Active characters

We now enter an area of very dirty tricks. If you have read the TEX book

or listened to talks by TEX experts, you will, for sure, have run into the

term ‘active’ characters. In short, it boils down to this: each character has

a catcode and there are 16 possible values. For instance, the backslash

normally has catcode zero, braces have values one and two, and normal

characters can be 11 or 12. Very special are characters with code 13 as

they are ‘active’ and behave like macros. In Plain TEX, the tilde is one such

active character, and it’s defined to be a ‘non-breakable space’. In Con-

TEXt, the vertical bar is active and used to indicate compound and fence

constructs.

Below is an example of a definition:

\catcode`A=13

\def A{B}

This will make the A into an active character that will typeset a B. Of course,

such an example is asking for problems since any A is seen that way, so a

macro name that uses one will not work. Speaking of macros:

\def\whatever

{\catcode`A=13

133Possibly useful extensions

\def A{B}}

This won’t work out well. When the macro is read it gets tokenized and

stored and at that time the catcode change is not yet done so when this

macro is called the A is frozen with catcode letter (11) and the \def will not

work as expected (it gives an error). The solution is this:

\bgroup

\catcode`A=13

\gdef\whatever

{\catcode`A=13

\def A{B}}

\egroup

Here we make the A active before the definition and we use grouping be-

cause we don’t want that to be permanent. But still we have a hard-coded

solution, while we might want a more general one that can be used like this:

\whatever{A}{B}

\whatever{=}{{\bf =}}

Here is the definition of whatever:

\bgroup

\catcode`~=13

\gdef\whatever#1#2%

{\uccode`~=`#1\relax

\catcode`#1=13

\uppercase{\def\tempwhatever{~}}%

\expandafter\gdef\tempwhatever{#2}}

\egroup

If you read backwards, you can imagine that \tempwhatever expands into

an active A (the first argument). So how did it become one? The trick is

in the \uppercase (a \lowercase variant will also work). When casing an

active character, TEX applies the (here) uppercase and makes the result

active too.

We can argue about the beauty of this trick or its weirdness, but it is a

fact that for a novice user this indeed looks more than a little strange. And

so, a new primitive \letcharcode has been introduced, not so much out of

necessity but simply driven by the fact that, in my opinion, it looks more

natural. Normally the meaning of the active character can be put in its own

macro, say:

Possibly useful extensions134

\def\MyActiveA{B}

We can now directly assign this meaning to the active character:

\letcharcode`A=\MyActiveA

Now, when A is made active this meaning kicks in.

\def\whatever#1#2%

{\def\tempwhatever{#2}%

\letcharcode`#1\tempwhatever

\catcode`#1=13\relax}

We end up with less code but, more important, it is easier to explain to a

user and, in my eyes, it looks less obscure, too. Of course, the educational

gain here wins over any practical gain because a macro package hides such

details and only implements such an active character installer once.

6.6 \csname and friends

You can check for a macro being defined as follows:

\ifdefined\foo

do something

\else

do nothing

\fi

which, of course, can be obscured to:

do \ifdefined\foo some\else no\fi thing

A bit more work is needed when a macro is defined using \csname, in which

case arbitrary characters (like spaces) can be used:

\ifcsname something or nothing\endcsname

do something

\else

do nothing

\fi

Before 𝜀-TEX, this was done as follows:

\expandafter\ifx\csname something or nothing\endcsname\relax

135Possibly useful extensions

do nothing

\else

do something

\fi

The \csname primitive will do a lookup and create an entry in the hash for

an undefined name that then defaults to \relax. This can result in many

unwanted entries when checking potential macro names. Thus, 𝜀-TEX’s
\ifcsname test primitive can be qualified as a ‘necessity’.

Now take the following example:

\ifcsname do this\endcsname

\csname do this\endcsname

\else\ifcsname do that\endcsname

\csname do that\endcsname

\else

\csname do nothing\endcsname

\fi\fi

If do this is defined, we have two lookups. If it is undefined and do that is

defined, we have three lookups. So there is always one redundant lookup.

Also, when no match is found, TEX has to skip to the \else or \fi. One can

save a bit by uglifying this to:

\csname do%

\ifcsname do this\endcsname this\else

\ifcsname do that\endcsname that\else

nothing\fi\fi

\endcsname

This, of course, assumes that there is always a final branch. So let’s get

back to:

\ifcsname do this\endcsname

\csname do this\endcsname

\else\ifcsname do that\endcsname

\csname do that\endcsname

\fi\fi

As said, when there is some match, there is always one test too many. In

case you think this might be slowing down TEX, be warned: it’s hard to

measure. But as there can be (m)any character(s) involved, including multi-

Possibly useful extensions136

byte utf-8 characters or embedded macros, there is a bit of penalty in terms

of parsing token lists and converting to utf strings used for the lookup. And,

because TEX has to give an error message in case of troubles, the already-

seen tokens are stored too.

So, in order to avoid this somewhat redundant operation of parsing, mem-

ory allocation (for the lookup string) and storing tokens, the new primitive

\lastnamedcs is now provided:

\ifcsname do this\endcsname

\lastnamedcs

\else\ifcsname do that\endcsname

\lastnamedcs

\fi\fi

In addition to the (in practice, often negligible) speed gain, there are other

advantages: TEX has less to skip, and although skipping is fast, it still isn’t

a nice side effect (also useful when tracing). Another benefit is that we

don’t have to type the to-be-looked-up text twice. This reduces the chance

of errors. In our example we also save 16 tokens (taking 64 bytes) in the

format file. So, there are enough benefits to gain from this primitive, which

is not a specific feature, but just an extension to an existing mechanism.

It also works in this basic case:

\csname do this\endcsname

\lastnamedcs

And even this works:

\csname do this\endcsname

\expandafter\let\expandafter\dothis\lastnamedcs

And after:

\bgroup

\expandafter\def\csname do this\endcsname{or that}

\global\expandafter\let\expandafter\dothis\lastnamedcs

\expandafter\def\csname do that\endcsname{or this}

\global\expandafter\let\expandafter\dothat\lastnamedcs

\egroup

We can use \dothis that gives or that and \dothat that gives or this, so

we have the usual freedom to be able to use something meant to make code

137Possibly useful extensions

clean for the creation of obscure code.

A variation on this is the following:

\begincsname do this\endcsname

This call will check if \do this is defined, and, if so, will expand it. How-

ever, when \do this is not found, it does not create a hash entry. It is

equivalent to:

\ifcsname do this\endcsname\lastnamedcs\fi

but it avoids the \ifcsname, which is sometimes handy as these tests can

interfere.

I played with variations like \ifbegincsname, but we then quickly end up

with dirty code due to the fact that we first expand something and then

need to deal with the following \else and \fi. The two above-mentioned

primitives are non-intrusive in the sense that they were relatively easy to

add without obscuring the code base.

As a bonus, LuaTEX also provides a variant of \string that doesn’t add the

escape character: \csstring. There is not much to explain to this:

\string\whatever<>\csstring\whatever

This gives: \whatever<>whatever.

The main advantage of these several new primitives is that a bit less code

is needed and (at least for ConTEXt) leads to a bit less tracing output. When

you enable \tracingall for a larger document or example, which is some-

times needed to figure out a problem, it’s not much fun to work with the

resulting megabyte (or sometimes even gigabyte) of output so the more we

can get rid of, the better. This consequence is just an unfortunate side ef-

fect of the ConTEXt user interface with its many parameters. As said, there

is no real gain in speed.

6.7 Packing

Deep down in TEX, horizontal and vertical lists eventually get packed. Pack-

ing of an \hbox involves:

1. ligature building (for traditional TEX fonts),

2. kerning (for traditional TEX fonts),

Possibly useful extensions138

3. calling out to Lua (when enabled) and

4. wrapping the list in a box and calculating the width.

When a Lua function is called, in most cases, the location where it happens

(group code) is also passed. But say that you try the following:

\hbox{\hbox{\hbox{\hbox foo}}}

Here we do all four steps, while for the three outer boxes, only the last step

makes any sense. And it’s not trivial to avoid the application of the Lua

function here. Of course, one can assign an attribute to the boxes and use

that to intercept, but it’s kind of clumsy. This is why we now can say:

\hpack{\hpack{\hpack{\hbox foo}}}

There are also \vpack for a \vbox and \tpack for a \vtop. There can be a

small gain in speed when many complex manipulations are done, although

in, for instance, ConTEXt, we already have provisions for that. It’s just that

the new primitives are a cleaner way out of a conceptually nasty problem.

Similar functions are available on the Lua side.

6.8 Errors

We end with a few options that can be convenient to use if you don’t care

about exact compatibility.

\suppresslongerror

\suppressmathparerror

\suppressoutererror

\suppressifcsnameerror

When entering your document on a paper teletype terminal, starting TEX,

and then going home in order to have a look at the result the next day, it

does make sense to catch runaway cases, like premature ending of a para-

graph (using \par or equivalent empty lines), or potentially missing $$s.

Nowadays, it’s less important to catch such coding issues (and be more tol-

erant) because editing takes place on screen and running (and restarting)

TEX is very fast.

The first two flags given above deal with this. If you set the first to any

value greater than zero, macros not defined as \long (not accepting para-

graph endings) will not complain about par tokens in arguments. The se-

cond setting permits and ignores empty lines (also pars) in math without

139Possibly useful extensions

reverting to dirty tricks. Both are handy when your content comes from pla-

ces that are outside of your control. The job will not be aborted (or hang)

because of an empty line.

The third setting suppresses the \outer directive so that macros that ori-

ginally can only be used at the outer level can now be used anywhere. It’s

hard to explain the concept of outer (and the related error message) to a

user anyway.

The last one is a bit special. Normally, when you use \ifcsname you will get

an error when TEX sees something unexpandable or that can’t be part of a

name. But sometimes you might find it to be quite acceptable and can just

consider the condition as false. When the fourth variable is set to non-zero,

TEX will ignore this issue and try to finish the check properly, so basically

you then have an \iffalse.

6.9 Final remarks

I mentioned performance a number of times, and it’s good to notice that

most changes discussed here will potentially be faster than the alternatives,

but this is not always noticeable, in practice. There are several reasons.

For one thing, TEX is already highly optimized. It has speedy memory ma-

nagement of tokens and nodes and unnecessary code paths are avoided.

However, due to extensions to the original code, a bit more happens in the

engine than in decades past. For instance, Unicode fonts demand sparse

arrays instead of fixed-size, 256-slot data structures. Handling utf involves

more testing and construction of more complex strings. Directional type-

setting leads to more testing and housekeeping in the frontend as well as

the backend. More keywords to handle, for instance \hbox, result in more

parsing and pushing back unmatched tokens. Some of the penalty has been

compensated for through the changing of whatsits into regular nodes. In

recent versions of LuaTEX, scanning of \hbox arguments is somewhat more

efficient, too.

In any case, any speedup we manage to achieve, as said before, can easily

become noise through inefficient macro coding or user’s writing bad styles.

And we’re pretty sure that not much more speed can be squeezed out. To

achieve higher performance, it’s time to buy a machine with a faster cpu

(and a huge cache), faster memory (lanes), an ssd, and regularly check your

coding.

The LuaTEX pdf backend140

7 The LUATEX PDF backend

7.1 Introduction

The original design of TEX has a clear separation between the frontend and

backend code. In principle, shipping out a page boils down to traversing

the to-be-shipped-out box and translating the glyph, rule, glue, kern and list

nodes into positioning just glyphs and rules on a canvas. The dvi backend

is therefore relatively simple, as the dvi output format delegates to other

programs the details of font inclusion and such into the final format; it just

describes the pages.

Because we eventually want color and images as well, there is a mechanism

to pass additional information to post-processing programs. One can insert

\specials with directives like insert image named foo.jpg. The frontend

as well as the backend are not concerned with what goes into a special; the

dvi post-processor of course is.

The pdf backend, on the other hand, is more complex as it immediately

produces the final typeset result and, as such, offers possibilities to in-

sert verbatim code (\pdfliteral), images (\pdfximage cum suis), anno-

tations, destinations, threads and all kinds of objects, reuse typeset con-

tent (\pdfxform cum suis); in the end, there are all kinds of \pdf... com-

mands. The way these were implemented in LuaTEX prior to 0.82 violates

the separation between frontend and backend, an inheritance from pdfTEX.

Additional features such as protrusion and expansion add to that entangle-

ment. However, because pdf is an evolving standard, occasionally we need

to adapt the related code. A separation of code makes sure that the frontend

can become stable (and hopefully frozen) at some point.20

In LuaTEX we had already started making this separation of specialized

code, such as a cleaner implementation of font expansion, but all these

\pdf... commands were still pervasive, leading to fuzzy dependencies,

checks for backend modes, etc. so a logical step was to straighten all this

out. That way we give LuaTEX a cleaner core constructed from traditional

TEX, extended with 𝜀-TEX, Aleph/Omega, and LuaTEX functionality.

20 In practice nowadays, the backend code changes little, because the pdf produced by LuaTEX

is rather simple and is easily adapted to the changing standard.

141The LuaTEX pdf backend

7.2 Extensions

A first step, then, was to transform generic (i.e. independent from the bac-

kend) functionality which was still (sort of) bound to Aleph and pdfTEX, into

core functionality. A second step was to reorganize the backend specific pdf

code, i.e. move it out of the core and into the group of extension commands.

This extension group is somewhat special and originates in traditional TEX;

it is the way to add your own functionality to TEX, the program.

As an example for future programmers, Don Knuth added four (connec-

ted) primitives as extensions: \openout, \closeout, \write and \special.

The Aleph and pdfTEX engines, on the other hand, put some functionality

in extensions and some in the core. This arose from the fact that dealing

with variables in extensions is often inconvenient, as they are then seen

as (unexpandable) commands instead of integers, token lists, etc. That the

write-related commands are there is almost entirely due to being the de-

monstration of the mechanism; everything related to reading files is in the

core. There is one property that perhaps forces us to keep the writers there,

and that’s the \immediate prefix.21

In the process of separating, we reshuffled the code base a bit; the current

use of the extensions mechanism still suits as an example and also gives us

backward compatibility. However, new backend primitives will not be added

there but rather in specific plugins (if needed at all).

7.3 From whatsits to nodes

The pdf backend introduced two new concepts into the core: (reusable)

images and (reusable) content (wrapped in boxes). In keeping with good

TEX practice, these were implemented as whatsits (a node type for extensi-

ons); but this created, as a side effect, an anomaly in the handling of such

nodes. Consider looping over a node list where we need to check dimensions

of nodes; in Lua, we can write something like this:

while n do

if n.id == glyph then

-- wd ht dp

elseif n.id == rule then

21 Unfortunately we’re stuck with \immediate in the backend; a deferred keyword would

have been handier, especially since other backend-related commands can also be immedi-

ate.

The LuaTEX pdf backend142

-- wd ht dp

elseif n.id == kern then

-- wd

elseif n.id == glue then

-- size stretch shrink

elseif n.id == whatsits then

if n.subtype == pdfxform then

-- wd ht dp

elseif n.subtype == pdfximage then

-- wd ht dp

end

end

n = n.next

end

So for each node in the list, we need to check these two whatsit subtypes.

But as these two concepts are rather generic, there is no evident need to

implement it this way. Of course the backend has to provide the inclusion

and reuse, but the frontend can be agnostic about this. That is, at the input

end, in specifying these two injects, we only have to make sure we pass the

right information (so the scanner might differentiate between backends).

Thus, in LuaTEX these two concepts have been promoted to core features:

\pdfxform \saveboxresource

\pdfximage \saveimageresource

\pdfrefxform \useboxresource

\pdfrefximage \useimageresource

\pdflastxform \lastsavedboxresourceindex

\pdflastximage \lastsavedimageresourceindex

\pdflastximagepages \lastsavedimageresourcepages

The index should be considered an arbitrary number set to whatever the

backend plugin decides to use as an identifier. These are no longer whatsits,

but a special type of rule; after all, TEX is only interested in dimensions.

Given this change, the previous code can be simplified to:

while n do

if n.id == glyph then

-- wd ht dp

elseif n.id == rule then

-- wd ht dp

elseif n.id == kern then

143The LuaTEX pdf backend

-- wd

elseif n.id == glue then

-- size stretch shrink

end

n = n.next

end

The only consequence for the previously existing rule type (which, in fact,

is also something that needs to be dealt with in the backend, depending on

the target format) is that a normal rule now has subtype 0 while the box

resource has subtype 1 and the image subtype 2.

If a package writer wants to retain the pdfTEX names, the previous table

can be used; just prefix \let. For example, the first line would be (spaces

optional, of course):

\let\pdfxform\saveboxresource

7.4 Direction nodes

A similar change has been made for ``direction’’ nodes, which were also

previously whatsits. These are now normal nodes so again, instead of con-

sulting whatsit subtypes, we can now just check the id of a node.

It should be apparent that all of these changes from whatsits to normal

nodes already greatly simplify the code base.

7.5 Promoted commands

Many more commands have been promoted to the core. Here is an additio-

nal list of original pdfTEX commands and their new counterparts (this time

with the \let included):

\let\pdfpagewidth \pagewidth

\let\pdfpageheight \pageheight

\let\pdfadjustspacing \adjustspacing

\let\pdfprotrudechars \protrudechars

\let\pdfnoligatures \ignoreligaturesinfont

\let\pdffontexpand \expandglyphsinfont

\let\pdfcopyfont \copyfont

The LuaTEX pdf backend144

\let\pdfnormaldeviate \normaldeviate

\let\pdfuniformdeviate \uniformdeviate

\let\pdfsetrandomseed \setrandomseed

\let\pdfrandomseed \randomseed

\let\ifpdfabsnum \ifabsnum

\let\ifpdfabsdim \ifabsdim

\let\ifpdfprimitive \ifprimitive

\let\pdfprimitive \primitive

\let\pdfsavepos \savepos

\let\pdflastxpos \lastxpos

\let\pdflastypos \lastypos

\let\pdftexversion \luatexversion

\let\pdftexrevision \luatexrevision

\let\pdftexbanner \luatexbanner

\let\pdfoutput \outputmode

\let\pdfdraftmode \draftmode

\let\pdfpxdimen \pxdimen

\let\pdfinsertht \insertht

7.6 Backend commands

There are many commands that start with \pdf and, over the history of

development of pdfTEX and LuaTEX, some have been added, some have

been renamed, others removed. Instead of the many, we now have just one:

\pdfextension. A couple of usage examples:

\pdfextension literal {1 0 0 2 0 0 cm}

\pdfextension obj {/foo (bar)}

Here, we pass a keyword that tells for what to scan and what to do with

it. A backward-compatible interface is easy to write. Although it delegates

a bit more management of these \pdf commands to the macro package,

the responsibility for dealing with such low-level, error-prone calls is there

anyway. The full list of \pdfextensions is given here. The scanning after

the keyword is the same as for pdfTEX.

145The LuaTEX pdf backend

\protected\def\pdfliteral {\pdfextension literal }

\protected\def\pdfcolorstack {\pdfextension colorstack }

\protected\def\pdfsetmatrix {\pdfextension setmatrix }

\protected\def\pdfsave {\pdfextension save\relax}

\protected\def\pdfrestore {\pdfextension restore\relax}

\protected\def\pdfobj {\pdfextension obj }

\protected\def\pdfrefobj {\pdfextension refobj }

\protected\def\pdfannot {\pdfextension annot }

\protected\def\pdfstartlink {\pdfextension startlink }

\protected\def\pdfendlink {\pdfextension endlink\relax}

\protected\def\pdfoutline {\pdfextension outline }

\protected\def\pdfdest {\pdfextension dest }

\protected\def\pdfthread {\pdfextension thread }

\protected\def\pdfstartthread {\pdfextension startthread }

\protected\def\pdfendthread {\pdfextension endthread\relax}

\protected\def\pdfinfo {\pdfextension info }

\protected\def\pdfcatalog {\pdfextension catalog }

\protected\def\pdfnames {\pdfextension names }

\protected\def\pdfincludechars {\pdfextension includechars }

\protected\def\pdffontattr {\pdfextension fontattr }

\protected\def\pdfmapfile {\pdfextension mapfile }

\protected\def\pdfmapline {\pdfextension mapline }

\protected\def\pdftrailer {\pdfextension trailer }

\protected\def\pdfglyphtounicode{\pdfextension glyphtounicode }

7.7 Backend variables

As with commands, there are many variables that can influence the pdf

backend. The most important one was, of course, that which set the out-

put mode (\pdfoutput). Well, that one is gone and has been replaced by

\outputmode. A value of 1 means that we produce pdf.

One complication of variables is that (if we want to be compatible), we need

to have them as real TEX registers. However, as most of them are optional,

an easy way out is simply not to define them in the engine. In order to be

able to still deal with them as registers (which is backward compatible), we

define them as follows:

\edef\pdfminorversion {\pdfvariable minorversion}

\edef\pdfcompresslevel {\pdfvariable compresslevel}

\edef\pdfobjcompresslevel {\pdfvariable objcompresslevel}

The LuaTEX pdf backend146

\edef\pdfdecimaldigits {\pdfvariable decimaldigits}

\edef\pdfhorigin {\pdfvariable horigin}

\edef\pdfvorigin {\pdfvariable vorigin}

\edef\pdfgamma {\pdfvariable gamma}

\edef\pdfimageresolution {\pdfvariable imageresolution}

\edef\pdfimageapplygamma {\pdfvariable imageapplygamma}

\edef\pdfimagegamma {\pdfvariable imagegamma}

\edef\pdfimagehicolor {\pdfvariable imagehicolor}

\edef\pdfimageaddfilename {\pdfvariable imageaddfilename}

\edef\pdfignoreunknownimages {\pdfvariable ignoreunknownimages}

\edef\pdfinclusioncopyfonts {\pdfvariable inclusioncopyfonts}

\edef\pdfinclusionerrorlevel {\pdfvariable inclusionerrorlevel}

\edef\pdfpkmode {\pdfvariable pkmode}

\edef\pdfpkresolution {\pdfvariable pkresolution}

\edef\pdfgentounicode {\pdfvariable gentounicode}

\edef\pdflinkmargin {\pdfvariable linkmargin}

\edef\pdfdestmargin {\pdfvariable destmargin}

\edef\pdfthreadmargin {\pdfvariable threadmargin}

\edef\pdfformmargin {\pdfvariable formmargin}

\edef\pdfuniqueresname {\pdfvariable uniqueresname}

\edef\pdfpagebox {\pdfvariable pagebox}

\edef\pdfpagesattr {\pdfvariable pagesattr}

\edef\pdfpageattr {\pdfvariable pageattr}

\edef\pdfpageresources {\pdfvariable pageresources}

\edef\pdfxformattr {\pdfvariable xformattr}

\edef\pdfxformresources {\pdfvariable xformresources}

You can set them as follows (the values shown here are the initial values):

\pdfcompresslevel 9

\pdfobjcompresslevel 1

\pdfdecimaldigits 3

\pdfgamma 1000

\pdfimageresolution 71

\pdfimageapplygamma 0

\pdfimagegamma 2200

\pdfimagehicolor 1

147The LuaTEX pdf backend

\pdfimageaddfilename 1

\pdfpkresolution 72

\pdfinclusioncopyfonts 0

\pdfinclusionerrorlevel 0

\pdfignoreunknownimages 0

\pdfreplacefont 0

\pdfgentounicode 0

\pdfpagebox 0

\pdfminorversion 4

\pdfuniqueresname 0

\pdfhorigin 1in

\pdfvorigin 1in

\pdflinkmargin 0pt

\pdfdestmargin 0pt

\pdfthreadmargin 0pt

Their removal from the frontend has helped again to clean up the code and,

bymaking them registers, their use is still compatible. A call to \pdfvariable

defines an internal register that keeps the value (of course this value can

also be influenced by the backend itself). Although they are real registers,

they live in a protected namespace:

\meaning\pdfcompresslevel

which gives:

\count1130

It’s perhaps unfortunate that we have to remain compatible because a setter

and getter would be much nicer. I am still considering writing the extension

primitive in Lua using the token scanner, but it might not be possible to re-

main compatible then. This is not so much an issue for ConTEXt that always

has had backend drivers, but, rather, for other macro packages that have

users expecting the primitives (or counterparts) to be available.

7.8 Backend feedback

The backend can report on some properties that were also accessible via

\pdf... primitives. Because these are read-only variables, another primi-

tive now handles them: \pdffeedback. This primitive can be used to define

compatible alternatives:

The LuaTEX pdf backend148

\def\pdflastlink {\numexpr\pdffeedback lastlink\relax}

\def\pdfretval {\numexpr\pdffeedback retval\relax}

\def\pdflastobj {\numexpr\pdffeedback lastobj\relax}

\def\pdflastannot {\numexpr\pdffeedback lastannot\relax}

\def\pdfxformname {\numexpr\pdffeedback xformname\relax}

\def\pdfcreationdate {\pdffeedback creationdate}

\def\pdffontname {\numexpr\pdffeedback fontname\relax}

\def\pdffontobjnum {\numexpr\pdffeedback fontobjnum\relax}

\def\pdffontsize {\dimexpr\pdffeedback fontsize\relax}

\def\pdfpageref {\numexpr\pdffeedback pageref\relax}

\def\pdfcolorstackinit {\pdffeedback colorstackinit}

The variables are internal, so they are anonymous. When we ask for the

meaning of some that were previously defined:

\meaning\pdfhorigin

\meaning\pdfcompresslevel

\meaning\pdfpageattr

we will get, similar to the above:

macro:->[internal backend dimension]

macro:->[internal backend integer]

macro:->[internal backend tokenlist]

7.9 Removed primitives

Finally, here is the list of primitives that have been removed, with no TEX-

level equivalent available. Many were experimental, and they can be easily

be provided to TEX using Lua.

\knaccode

\knbccode

\knbscode

\pdfadjustinterwordglue

\pdfappendkern

\pdfeachlinedepth

\pdfeachlineheight

\pdfelapsedtime

\pdfescapehex

\pdfescapename

\pdfescapestring

\pdffiledump

\pdffilemoddate

\pdffilesize

\pdffirstlineheight

\pdfforcepagebox

\pdfignoreddimen

\pdflastlinedepth

\pdflastmatch

\pdflastximagecolordepth

\pdfmatch

\pdfmdfivesum

149

\pdfmovechars

\pdfoptionalwaysusepdfpagebox

\pdfoptionpdfinclusionerrorlevel

\pdfprependkern

\pdfresettimer

\pdfshellescape

\pdfsnaprefpoint

\pdfsnapy

\pdfsnapycomp

\pdfstrcmp

\pdfunescapehex

\pdfximagebbox

\shbscode

\stbscode

7.10 Conclusion

The advantage of a clean backend separation, supported by just the three

primitives \pdfextension, \pdfvariable and \pdffeedback, as well as a

collection of registers, is that we can now further clean the code base, which

remains a curious mix of combined engine code, sometimes and sometimes

not converted to C from Pascal. A clean separation also means that if some-

one wants to tune the backend for a special purpose, the frontend can be

left untouched. We will get there eventually.

All the definitions shown here are available in the file luatex-pdf.tex,

which is part of the ConTEXt distribution.

150

8 LUATEX going stable

8.1 Introduction

We’re closing in on version 1.0 of LuaTEX and at the time of this writing (mid April 2016)

we’re at version 0.95. The last decade we’ve reported on a regular basis about progress in

user group journals, ConTEXt related documents and the LuaTEX manual and it makes no

sense to repeat ourselves.

So where do we stand now? I will not go into details about what is available in LuaTEX, for

that you consult the manual but will stick to the larger picture instead.

8.2 What is it

First of all, as the name suggests, LuaTEX has the Lua scripting engine on board. Currently

we’re still at version 5.2 and the reason for not going 5.3 is mainly because it has a different

implementation of numbers and we cannot foresee side effects. We will test this when we

move on to LuaTEX version 2.0.

The second part of the name indicates that we have some kind of TEX and we think we ma-

naged to remain largely compatible with the traditional engine. We took most of 𝜀-TEX, much
of pdfTEX and some from Aleph (Omega). On top of that we added a few new primitives and

extended others.

If you look at the building blocks of TEX, you can roughly recognize these:

• an input parser (tokenizer) that includes macro expansion; its working is well described,

of course in the TEX book, but more than three decades of availability has made TEX’s

behaviour rather well documented

• a list builder that links basic elements like characters (tagged with font information),

rules, boxes, glue and kerns together in a double linked list of so called nodes (and noads

in intermediate math lists)

• a language subsystem that is responsible for hyphenating words using so called patterns

and exceptions

• a font subsystem that provides information about glyphs properties, and that also makes

it possible to construct math symbols from snippets; it also makes sure that the backend

knows what to embed

• a paragraph builder that breaks a long list into lines and a page builder that splits of

chunks that can be wrapped into pages; this is all done within given constraints using a

model of rewards and penalties

• a first class math renderer that set the standard and has inspired modern math font tech-

nology

151

• mechanisms for dealing with floating data, marking page related info, wrapping stuff in

boxes, adding glue, penalties and special information

• a backend that is responsible for wrapping everything typeset in a format that can be

printed and viewed

So far we’re still talking of a rather generic variant of TEX with Lua as extension language.

Next we zoom in on some details.

8.3 Where it differs

Given experiences with discussing extensions to the engine and given the fact that there

is never really an agreement about what makes sense or not, the decission was made to

not extend the engine any more than really needed but to provide hooks to do that in Lua.

And, time has proven that this is a feasible approach. On the one hand we are as good as

possible faithful to the original, and at the same time we can deal with todays and near future

demands.

Tokenization still happens as before but we can also write input parsers ourselves. You can

intercept the raw input when it gets read from file, but you can also create scanners that

you can sort of plug into the parser. Both are a compromise between convenience and speed

but powerful enough. At the input end we now can group catcode changes (catcodes are

properties of characters that control how they are interpreted) into tables so that switching

between regimes is fast.

You can in great detail influence how data gets read from files because the io subsystem is

opened up. In fact, you have the full power of Lua available when doing so. At the same time

you can print back from Lua into the input stream.

The input that makes in into TEX, either or not intercepted and manipulated beforehand, is to

be in utf8. What comes out to the terminal and log is also utf8, and internally all codepaths

work with wide characters. Somememory constraints have been lifted, and character related

commands accept large numbers. This comes at a price, which means that in practice the

LuaTEX engine can be several times slower than the 8-bit pdfTEX, but of course in practice

performance is mostly determined by the efficiency of macro package, so it might actually

be faster in situations that would stress its ancestors.

Node lists travel through TEX and can be intercepted at many points. That way you can add

additional manipulations. You can for instance rely on TEX for hyphenation, ligature building

and kerning but you can also plug in alternatives. For this purpose these stages are clearly

separated and less integrated (deep down) than in traditional TEX. There are helpers for ac-

cessing lists of nodes, individual nodes and you can box those lists too (this is called packing).

You can adapt, create and destroy node lists at will, as long as you make sure you feed back

into TEX something that makes sense.

In order to control (or communicate with) nodes from the TEX end, an attribute mechanism

was added that makes it possible to bind properties to nodes when they get added to lists. At

152

the TEX end you can set an attribute that then gets assigned to the currently injected nodes,

while at the Lua end you can query the node for these attributes and their values.

The language subsystem is re-implemented and behaves mostly the same as in the original

TEX program. It has a few extensions and permits runtime loading of patterns. In addition to

language support we also have basic script support, that is: directional information is now

part of the stream and contrary to Aleph that wraps this into extension whatsits, in LuaTEX

we have directional nodes as core nodes.

The font subsystem is opened up in such a way that you can pass your own fonts to the core.

You can even construct virtual fonts. This open approach makes it possible to support Ope-

nType fonts and whatever format will show up in the future. Of course the backend needs to

embed the right data in the result file but by then the hard work is already done. This appro-

ach fits into the always present wish of users (and package writers) to be able to implement

whatever crazy thought one comes up with.

The paragraph builder is a somewhat cleaned up variant of the pdfTEX one, combined with di-

rectional and boundary support from Aleph. The protrusion and expansion mechanism have

been redone in such a way that the front- and backend code is better separated and is so-

mewhat more efficient now. As one can intercept the paragraph builder, additional functio-

nality can be injected before, after or at some stages in the process.

Of course we have kept the math engine but, because we now need to support OpenType

math, alternative code paths have been added to deal with the kind of information that such

fonts provide. We also took the opportunity to open up the math machinery a bit so that one

can control rendering of somemore complex elements and set the spacing between elements.

Because TEX users are quite traditional we had to stop somewhere, simply because legacy

code has to be dealt with.

Most mentioned auxiliary mechanisms can be accessed via the node lists, for instance you

can locate inserts and marks in them. The backend related whatsit nodes can be recognized

as well. At any time one can query and set TEX registers and intercept boxed material. Of

course some knowledge of the inner working of TEX helps here.

The backend code is as much as possible separated from the frontend code (but there is still

some work to do there). As in pdfTEX you can of course inject arbitrary pdf code and make

feature rich documents. This flexibility keeps TEX current.

8.4 Extras

Is that all? No, apart from some minor extensions that might help to make programming

somewhat easier TEX, there are a few more fundamental additions.

Images and reusable content (boxes) are now part of the core instead of them being wrapped

into backend specific whatsits, although of course the backend has to provide support for it.

This is more natural in the frontend (and user interface) and also more consistent in the en-

gine itself. All backend functionality is now collected in three primitives that take arguments.

153

This permits a cleaner separation between front- and backend.

Then there is the MetaPost library, a feature already present for many years now. It provi-

des TEX with some graphic capabilities that, given the origin, fits nicely into the whole. The

LuaTEX and mplib project started about the same time and right from the start it was our

plan to combine both.

One of the extras is of course Lua. It not only permits us to interface to the internals of TEX,

but it also provides the user with a way to manipulate data. Even if you never use Lua to

access internals, it might still be found useful for occasionally doing things that are hard to

accomplish using the macro langage.

In addition to stock Lua we include the lpeg library, an image reading library (related to the

backend) including read access to pdf files via the used poppler library, parsing of pdf content

streams, zip compression, access to the file system, the ability to run commands and socket

support. Some of this might become external libraries at some point, as we want to keep

the expected core functionality lean and mean. A nice extra is that we provide LuajitTEX, a

compatible variant that has a faster Lua virtual machine on board.

8.5 Follow up

The interfaces that we have now have to a large extent evolved to what we had in mind.

We started with simple experiments: just Lua plus a bit of access to registers. Then the

Oriental TEX project (with Idris Samawi Hamid) made it possible to speed up development

and conversion to C and opening up took off. After that we gradually moved forward.

That doesn’t mean that we’re done yet. The LuaTEX 1.0 engine will not change much. We

might add a few things, and for sure we will keep working on the code base. The move from

Pascal to C web (an impressive job by itself), as well as merging functionality of engines (kind

of a challenge when you want to remain compatible), opening up via Lua (which possibilities

even surprised us), and experimenting (ConTEXt users paid the price for that) took quite

some time, also because we played with proofs of concept. It helped that we used the engine

exclusively for real typesetting related work ourselves.

We will continue to clean up and document the source and stepwise improve the manual. If

you followed the development of ConTEXt, you will have noticed that MkIV is heavily relying

on the Lua interface so stability is important (although we can relatively easy adapt to future

developments as we did in the past). However, the fact that other packages support LuaTEX

means that we also need to keep the 1.0 engine stable. Our challenge is to provide stability

on the one hand, but not limit ourselves to much on the other. We’ll keep you posted on what

comes next.

Hans, Hartmut, Luigi, Taco

