
MKII

MKIV

C
O

N
T

EX
T

C
O

N
T

EX
T

The history of luaTEX

2006–2009 / v 0.50

1 1

1 1

2 2

2 2

1

Contents

Introduction 3

I From MkII to MkIV 5

II How Lua fits in 7

III Initialization revised 19

IV An example: CalcMath 23

V Going utf 27

VI A fresh look at fonts 31

VII Token speak 47

VIII How about performance 57

IX Nodes and attributes 65

X Dirty tricks 75

XI Going beta 79

XII Zapfing fonts 87

XIII Arabic 99

XIV Colors redone 107

XV Chinese, Japanese and Korean, aka CJK 117

XVI Optimization 125

XVII XML revisioned 131

XVIII Breaking apart 145

XIX Collecting garbage 151

XX Nice to know 163

XXI The luafication of TEX and ConTEXt 165

XXII The MetaPost Library 179

3 3

3 3

2

XXIII The LuaTEX Mix 197

XXIV How to convince Don and Hermann to use LuaTEX 215

XXV OpenType: too open? 223

XXVI It works! 229

XXVII Virtual Reality 233

XXVIII Everything structure 237

XXIX Tracking 245

XXX The order of things 261

XXXI Unicode math 269

XXXII User code 289

XXXIII Just plain 293

XXXIV Halfway 299

XXXV Where do we stand 307

4 4

4 4

Introduction 3

Introduction

In this document I will keep track of the transition of ConTEXt from MkII to MkIV, the latter

being the Lua aware version.

The development of LuaTEX started with a few email exchanges between me and Hartmut

Henkel. I had played a bit with Lua in SciTE and somehow felt that it would fit into TEX

quite well. Hartmut made me a version of pdfTEX which provided a\lua command. After

exploring this road a bit Taco Hoekwater took over and we quickly reached a point where

the pdfTEX development team could agree on following this road to the future.

The development was boosted by a substantial grant from Colorado State University in

the context of the Oriental TEX Project of Idris Samawi Hamid. This project aims at bring-

ing features into TEX that will permit ConTEXt to do high quality Arabic typesetting. Due

to this grant Taco could spent substantial time on development, which in turn meant that

I could start playing with more advanced features.

This document is not so much a users manual as a history of the development. Consider

it a collection of articles, and some chapters indeed have ended up in the journals of user

groups. Things may evolve and the way things are done may change, but it felt right to

keep track of the process this way. Keep in mind that some features may have changed

while LuaTEX matured.

Just for the record: development in the LuaTEX project is done by Taco Hoekwater, Hart-

mut Henkel and Hans Hagen. Eventually, the stable versions will become pdfTEX version 2

and other members of the pdfTEX team will be involved in development and mainte-

nance. In order to prevent problems due to new and maybe even slightly incompatible

features, pdfTEX version 1 will be kept around as well, but no fundamentally new features

will be added to it. For practical reasons we use LuaTEX as the name of the development

version but also for pdfTEX 2. That way we can use both engines side by side.

This document is also one of our test cases. Here we use traditional TEX fonts (for math),

Type1 and OpenType fonts. We use color and include test code. Taco and I always test new

versions of LuaTEX (the program) and MkIV (the macros and Lua code) with this document

before a new version is released. It also means that there can be temporary flaws in the

rendering. Keep tuned,

Hans Hagen, Hasselt NL,

August 2006–2016

http://www.luatex.org

5 5

5 5

4 Introduction

6 6

6 6

From MkII to MkIV 5

I From MkII to MkIV

Sometime in 2005 the development of LuaTEX started, a further development of pdfTEX

and a precursor to pdfTEX version 2. This TEX variant will provide:

• 21–32 bit internals plus a code cleanup

• flexible support for OpenType fonts

• an internal utf data flow

• the bidirectional typesetting of Aleph

• Lua callbacks to the most relevant TEX internals

• some extensions to TEX (for instance math)

• an efficient way to communicate with MetaPost

In the tradition of TEX this successor will be downward compatible in most essential parts

and in the end, there is still pdfTEX version 1 as fall back.

In the mean time we have seen another unicode variant show up, X ETEX which is under

active development, uses external libraries, provides access to the fonts on the operating

system, etc.

From the beginning, ConTEXt always worked with all engines. This was achieved by con-

ditional code blocks: depending on what engine was used, different code was put in

the format and/or used at runtime. Users normally were unaware of this. Examples of

engines are 𝜀-TEX, Aleph, and X ETEX. Because nowadays all engines provide the 𝜀-TEX fea-

tures, in August 2006 we decided to consider those features to be present and drop pro-

viding the standard TEX compatible variants. This is a small effort because all code that is

sensitive for optimization already has 𝜀-TEX code branches for many years.

However, with the arrival of LuaTEX, we need a more drastic approach. Quite some exist-

ing code can go away and will be replaced by different solutions. Where TEX code ends

up in the format file, along with its state, Lua code will be initiated at run time, after a Lua

instance is started. ConTEXt reserves its own instance of Lua.

Most of this will go unnoticed for the users because the user interface will not change. For

developers however, we need to provide a mechanism to deal with these issues. This is

why, for the first time in ConTEXt’s history we will officially use a kind of version tag. When

we changed the low level interface from Dutch to English we jokingly talked of version 2.

So, it makes sense to follow this lead.

• ConTEXt MkI At that moment we still had a low level Dutch interface, invisible for

users but not for developers.

• ConTEXt MkII We now have a low level English interface, which (as we indeed saw

happen) triggers more development by users.

• ConTEXt MkIV This is the next generation of ConTEXt, with parts re--implemented.

It’s an at some points drastic system overhaul.

7 7

7 7

6 From MkII to MkIV

Keep in mind that the functionality does not change, although in some places, for in-

stance fonts, MkIV may provide additional functionality. The reason why most users will

not notice the difference (maybe apart from performance and convenience) is that at the

user interface level nothing changes (most of it deals with typesetting, not with low level

details).

The hole in the numbering permits us to provide a MkIII version as well. Once X ETEX is

stable, we may use that slot for X ETEX specific implementations.

As per August 2006 the banner is adapted to this distinction:

... ver: 2006.09.06 22:46 MK II fmt: 2006.9.6 ...

... ver: 2006.09.06 22:47 MK IV fmt: 2006.9.6 ...

This numbering system is reflected at the file level in such a way that we can keep devel-

oping the way we do, i.e. no files all over the place, in subdirectories, etc.

Most of the system’s core files are not affected, but some may be, like those dealing with

fonts, input- and output encodings, file handling, etc. Those files may come with different

suffixes:

• somefile.tex: the main file, implementing the interface and common code

• somefile.mkii: mostly existing code, suitable for good old TEX (𝜀-TEX, pdfTEX, Aleph).

• somefile.mkiv: code optimized for use with LuaTEX, which could follow completely

different approaches

• somefile.lua: Lua code, loaded at format generation time and/or runtime

As said, some day somefile.mkiii code may show up. Which variant is loaded is de-

termined automatically at format generation time as well as at run time.

8 8

8 8

How Lua fits in 7

II How Lua fits in

introduction

Here I will discuss a few of the experiments that drove the development of LuaTEX. It

describes the state of affairs around the time that we were preparing for tug 2006. This

development was pretty demanding for Taco and me but also much fun. We were in a

kind of permanent Skype chat session, with binaries flowing in one direction and TEX and

Lua code the other way. By gradually replacing (even critical) components of ConTEXt we

had a real test bed and torture tests helped us to explore and debug at the same time.

Because Taco uses linux as platform and I mostly use MS Windows, we could investigate

platform dependent issues conveniently. While reading this text, keep in mind that this

is just the beginning of the game.

I will not provide sample code here. When possible, the MkIV code transparantly re-

places MkII code and users will seldom notices that something happens in different way.

Of course the potential is there and future extensions may be unique to MkIV.

compatibility

The first experiments, already conducted with the experimental versions involved run-

time conversion of one type of input into another. An example of this is the (TI) calcula-

tor math input handler that converts a rather natural math sequence into TEX and feeds

that back into TEX. This mechanism eventually will evolve into a configurable math input

handler. Such applications are unique to MkIV code and will not be backported to MkII.

The question is where downward compatibility will become a problem. We don’t ex-

pect many problems, apart from occasional bugs that result from splitting the code base,

mostly because new features will not affect older functionality. Because we have to re-

organize the code base a bit, we also use this opportunity to start making a variant of

ConTEXt which consists of building blocks: MetaTEX. This is less interesting for the aver-

age user, but may be of interest for those using ConTEXt in workflows where only part of

the functionality is needed.

metapost

Of course, when I experiment with such new things, I cannot let MetaPost leave un-

touched. And so, in the early stage of LuaTEX development I decided to play with two

MetaPost related features: conversion and runtime processing.

Conversion from MetaPost output to pdf is currently done in pure TEX code. Apart from

convenience, this has the advantage that we can let TEX take care of font inclusions. The

9 9

9 9

8 How Lua fits in

tricky part of this conversion is that MetaPost output has some weird aspects, like dvips

specific linewidth snapping. Another nasty element in the conversion is that we need to

transform paths when pens are used. Anyhow, the converter has reached a rather stable

state by now.

One of the ideas with MetaPost version 1+ is that we will have an alternative output mode.

In the perspective of LuaTEX it makes sense to have a Lua output mode. Whatever con-

verter we use, it needs to deal with MetaFun specials. These are responsible for special

features like transparency, graphic inclusion, shading, and more. Currently we misuse

colors to signal such features, but the new pre/post path hooks permit more advanced

implementations. Experimenting with such new features is easier in Lua than in TEX.

The MkIV converter is a multi--pass converter. First we clean up the MetaPost output, next

we convert the PostScript code into Lua calls. We assume that this Lua code eventually

can be output directly from MetaPost. We then evaluate this converted Lua blob, which

results in TEX commands. Think of:

1.2 setlinejoin

turned into:

mp.setlinejoin(1.2)

becoming:

\PDFcode{1.2 j}

which is, when the pdfTEX driver is active, equivalent to:

\pdfliteral{1.2 j}

Of course, when paths are involved, more things happen behind the scenes, but in the

end an mp.path enters the Lua machinery.

When the MkIV converter reached a stable state, tests demonstrated then the code was

upto 20% slower that the pure TEX alternative on average graphics, and but faster when

many complex path transformations (due to penshapes) need to be done. This slow-

down was due to the cleanup (using expressions) and intermediate conversion. Because

Taco develops LuaTEX as well as maintains and extends MetaPost, we conducted experi-

ments that combine features of these programs. As a result of this, shortcuts found their

way into the MetaPost output.

10 10

10 10

How Lua fits in 9

o e p s

Figure II.1 converter test figure

Cleaning up the MetaPost output using Lua expressions takes relatively much time. How-

ever, starting with version 0.970 MetaPost uses a preamble, which permits not only short

commands, but also gets rid of the weird linewidth and filldraw related PostScript con-

structs. The moderately complex graphic that we use for testing (figure II.1) takes over 16

seconds when converted 250 times. When we enable shortcuts we can avoid part of the

cleanup and runtime goes down to under 7.5 seconds. This is significantly faster than the

MkII code. We did experiments with simulated Lua output from MetaPost and then the

MkIV converter really flies. The values on Taco’s system are given between parenthesis.

prologues/mpprocset 1/0 1/1 2/02/1

MkII 8.5 (5.7) 8.0 (5.5) 8.8 8.5

MkIV 16.1 (10.6) 7.2 (4.5) 16.3 7.4

The main reason for the huge difference in the MkIV times is that we do a rigourous

cleanup of the older MetaPost output in order avoid messy the messy (but fast) code

that we use in the MkII converter. Think of:

0 0.5 dtransform truncate idtransform setlinewidth pop
closepath gsave fill grestore stroke

In the MkII converter, we push every number or keyword on a stack and use keywords as

trigger points. In the MkIV code we convert the stack based PostScript calls to Lua func-

tion calls. Lines as shown are converted to single calls first. When prologues is set to 2,

such line no longer show up and are replaced by simple calls accompanied by defini-

tions in the preamble. Not only that, instead of verbose keywords, one or two character

shortcuts are used. This means that the MkII code can be faster when procsets are used

because shorter strings end up in the stack and comparison happens faster. On the other

hand, when no procsets are used, the runtime is longer because of the larger preamble.

11 11

11 11

10 How Lua fits in

Because the converter is used outside ConTEXt as well, we support all combinations in

order not to get error messages, but the converter is supposed to work with the following

settings:

prologues := 1 ;
mpprocset := 1 ;

We don’t need to set prologues to 2 (font encodings in file) or 3 (also font resources in

file). So, in the end, the comparison in speed comes down to 8.0 seconds for MkII code

and 7.2 seconds for the MkIV code when using the latest greatest MetaPost. When we

simulate Lua output from MetaPost, we end up with 4.2 seconds runtime and when Me-

taPost could produce the converter’s TEX commands, we need only 0.3 seconds for em-

bedding the 250 instances. This includes TEX taking care of handling the specials, some

of which demand building moderately complex pdf data structures.

But, conversion is not the only factor in convenient MetaPost usage. First of all, runtime

MetaPost processing takes time. The actual time spent on handling embedded MetaPost

graphics is also dependent on the speed of starting up MetaPost, which in turn depends

on the size of the TEX trees used: the bigger these are, the more time kpse spends on load-

ing the ls-R databases. Eventually this bottleneck may go away when we have MetaPost

as a library. (In ConTEXt one can also run MetaPost between runs. Which method is faster,

depends on the amount and complexity of the graphics.)

Another factor in dealing with MetaPost, is the usage of text in a graphic (btex, textext,

etc.). Taco Hoekwater, Fabrice Popineau and I did some experiments with a persistent

MetaPost session in the background in order to simulate a library. The results look very

promising: the overhead of embedded MetaPost graphics goes to nearly zero, especially

when we also let the parent TEX job handle the typesetting of texts. A side effect of these

experiments was a new mechanism in ConTEXt (and MetaFun) where TEX did all typeset-

ting of labels, and MetaPost only worked with an abstract representation of the result.

This way we can completely avoid nested TEX runs (the ones triggered by MetaPost). This

also works ok in MkII mode.

Using a persistent MetaPost run and piping data into it is not the final solution if only

because the terminal log becomes messed up too much, and also because intercepting

errors is real messy. In the end we need a proper library approach, but the experiments

demonstrated that we needed to go this way: handling hundreds of complex graphics

that hold typeset paragraphs (being slanted and rotated and more by MetaPost), tooks

mere seconds compared to minutes when using independent MetaPost runs for each

job.

characters

Because LuaTEX is utf based, we need a different way to deal with input encoding. For

this purpose there are callbacks that intercept the input and convert it as needed. For

12 12

12 12

How Lua fits in 11

context this means that the regime related modules get a Lua based counterparts. As a

prelude to advanced character manipulations, we already load extensive unicode and

conversion tables, with the benefit of being able to handle case handling with Lua.

The character tables are derived from unicode tables and MkII ConTEXt data files and

generated using mtxtools. The main character table is pretty large, and this made us

experiment a bit with efficiency. It was in this stage that we realized that it made sense to

use precompiled Lua code (using luac). During format generation we let ConTEXt keep

track of used Lua files and compiled them on the fly. For a production run, the compiled

files were loaded instead.

Because at that stage LuaTEX was already a merge between pdfTEX and Aleph, we had

to deal with pretty large format files. About that moment the ConTEXt format with the

english user interface amounted to:

date luatex pdftex xetex aleph

2006-09-18 9 552 042 7 068 643 8 374 996 7 942 044

One reason for the large size of the format file is that the memory footprint of a 32 bit TEX

is larger than that of good old TEX, even with some of the clever memory allocation tech-

niques as used in LuaTEX. After some experiments where size and speed were measured

Taco decided to compress the format using a level 3 zip compression. This brilliant move

lead to the following size:

date luatex pdftex xetex aleph

2006-10-23 3 135 568 7 095 775 8 405 764 7 973 940

The first zipped versions were smaller (around 2.3 meg), but in the meantime we moved

the Lua code into the format and the character related tables take some space.

How stable are the mentioned numbers? Ten months after writing the previous text we get the

following numbers:

date luatex pdftex xetex aleph

2007-08-16 5 603 676 7 505 925 8 838 538 8 369 206

They are all some 400K larger, which is probably the result of changes in hyphenation pat-

terns (we now load them all, some several times depending on the font encodings used).

Also, some extra math support has been brought in the kernel and we predefine a few

more things. However, LuaTEX’s format has become much larger! Partly this is the result of

more Lua code, especially OpenType font handling and attributes related code. The extra

TEX code is probably compensated by the removal of obsolete (at least for MkIV) code.

However, the significantly larger number is mostly there because a different compression

algorithm is used: speed is now favoured over efficiency.

13 13

13 13

12 How Lua fits in

debugging

In the process of experimenting with callbacks I played a bit with handling TEX error in-

formation. An option is to generate an html page instead of spitting out the usual blob of

into on the terminal. In figure II.2 and figure II.3 you can see an example of this.

Figure II.2 An example error screen.

Playing with such features gives us an impression of what kind of access we need to TEX’s

internals. It also formed a starting point for conversion routines and a mechanism for

embedding Lua code in html pages generated by ConTEXt.

file io

Replacing TEX’s in- and output handling is non--trival. Not only is the code quite inter-

woven in the web2c source, but there is also the kpse library to deal with. This means

that quite some callbacks are needed to handle the different types of files. Also, there is

output to the log and terminal to take care of.

Getting this done took us quite some time and testing and debugging was good for some

headaches. The mechanisms changed a few times, and TEX and Lua code was thrown

14 14

14 14

How Lua fits in 13

Figure II.3 An example debug screen.

away as soon as better solutions came around. Because we were testing on real docu-

ments, using a fully loaded ConTEXt we could converge to a stable version after a while.

Getting this io stuff done is tightly related to generating the format and starting up LuaTEX.

If you want to overload the file searching and io handling, you need overload as soon

as possible. Because LuaTEX is also supposed to work with the existing kpse library, we

still have that as fallback, but in principle one could think of a kpse free version, in which

case the default file searching is limited to the local path and memory initialization also

reverts to the hard coded defaults. A complication is that the soure code has kpse calls

and references to kpse variables all over the place, so occasionally we run into interesting

bugs.

Anyhow, while Taco hacked his way around the code, I converted my existing Ruby based

kpse variant into Lua and started working from that point. The advantage of having our

own io handler is that we can go beyond kpse. For instance, since LuaTEX has, among a

few others, the zip libraries linked in, we can read from zip files, and keep all TEX related

files in tds compliant zip files as well. This means that one can say:

\input zip:///somezipfile.zip?name=/somepath/somefile.tex

15 15

15 15

14 How Lua fits in

and use similar references to access files. Of course we had to make sure that kpse like

searching in the tds (standardized TEX trees) works smoothly. There are plans to link the

curl library into LuaTEX, so that we can go beyong this and access repositories.

Of course, in order to be more or less kpse and web2c compliant, we also need to support

this paranoid file handling, so we provide mechanisms for that as well. In addition, we

provide ways to create sandboxes for system calls.

Getting to intercept all log output (well, most log output) was a problem in itself. For this

I used a (preliminary) xml based log format, which will make log parsing easier. Because

we have full control over file searching, opening and closing, we can also provide more

information about what files are loaded. For instance we can now easily trace what tfm

files TEX reads.

Implementing additional methods for locating and opening files is not that complex be-

cause the library that ships with ConTEXt is already prepared for this. For instance, imple-

menting support for:

\input http://www.someplace.org/somepath/somefile.tex

involved a few lines of code, most of which deals with caching the files. Because we

overload the whole io handling, this means that the following works ok:

\placefigure
[][]
{http handling}
{\externalfigure

[http://www.pragma-ade.com/show-gra.pdf]
[page=1,width=\textwidth]}

Other protocols, like ftp are also supported, so one can say:

\typefile {ftp://anonymous:@ctan.org/tex-archive/systems\
/knuth/lib/plain.tex}

On the agenda is playing with database, but by the time that we enter that stage linking

the curl libraries into LuaTEX should have taken place.

verbatim

The advance of LuaTEX also permitted us to play with a long standing wish of catcode

tables, a mechanism to quickly switch between different ways of treating input characters.

An example of a place where such changes take place is verbatim (and in ConTEXt also

when dealing with xml input).

16 16

16 16

How Lua fits in 15

MetaPost
Graphics

Once upon a time we started using MetaPost, the

graphic companion to TEX. Since then it has been

our main tool for making graphics. Welcome to

our little showcase. You can click on the graphic

to show the real thing.

Figure II.4 http handling

We already had encountered the phenomena that when piping back results from Lua to

TEX, we needed to take care of catcodes so that TEX would see the input as we wished.

Earlier experiments with applying \scantokens to a result and thereby interpreting the

result conforming the current catcode regime was not sufficient or at least not handy

enough, especially in the perspective of fully expandable Lua results. To be honest, the

\scantokenscommand was rather useless for this purposes due to its pseudo file nature

and its end--of--file handling but in LuaTEX we now have a convenient \scantextokens
which has no side effects.

Once catcode tables were in place, and the relevant ConTEXt code adapted, I could start

playing with one of the trickier parts of TEX programming: typesetting TEX using TEX, or

verbatim. Because in ConTEXt verbatim is also related to buffering and pretty printing,

all these mechanism were handled at once. It proved to be a pretty good testcase for

writing Lua results back to TEX, because anything you can imagine can and will interfere

(line endings, catcode changes, looking ahead for arguments, etc). This is one of the

areas where MkIV code will make things look more clean and understandable, especially

because we could move all kind of postprocessing (needed for pretty printing, i.e. syntax

highlighting) to Lua. Interesting is that the resulting code is not beforehand faster.

17 17

17 17

16 How Lua fits in

Pretty printing 1000 small (one line) buffers and 5000 simple \type commands perform

as follows:

TEX normal TEX pretty Lua normal Lua pretty

buffer 2.5 (2.35) 4.5 (3.05) 2.2 (1.8) 2.5 (2.0)

inline 7.7 (4.90) 11.5 (7.25) 9.1 (6.3) 10.9 (7.5)

Between braces the runtime on Taco’s more modern machine is shown. It’s not that easy

to draw conclusions from this because TEX uses files for buffers and with Lua we store

buffers in memory. For inline verbatim, Lua call’s bring some overhead, but with more

complex content, this becomes less noticable. Also, the Lua code is probably less opti-

mized than the TEX code, and we don’t know yet what benefits a Just In Time Lua compiler

will bring.

xml

Interesting is that the first experiments with xml processing don’t show the expected gain

in speed. This is due to the fact that the ConTEXt xml parser is highly optimized. However,

if we want to load a whole xml file, for instance the formal ConTEXt interface specification

cont-en.xml, then we can bring down loading time (as well as TEX memory usage) down

from multiple seconds to a blink of the eyes. Experiments with internal mappings and

manipulations demonstrated that we may not so much need an alternative for the current

parser, but can add additional, special purpose ones.

We may consider linking xsltproc into LuaTEX, but this is yet undecided. After all, the

problem of typesetting does not really change, so we may as well keep the process of

manipulating and typesetting separated.

multipass data

Those who know ConTEXt a bit will know that it may need multiple passes to typeset a

document. ConTEXt not only keeps track of index entries, list entries, cross references,

but also optimizes some of the output based on information gathered in previous passes.

Especially so called two--pass data and positional information puts some demands on

memory and runtime. Two--pass data is collapsed in lists because otherwise we would

run out of memory (at least this was true years ago when these mechanisms were intro-

duced). Positional information is stored in hashes and has always put a bit of a burden

on the size of a so called utility file (ConTEXt stores all information in one auxiliary file).

These two datatypes were the first we moved to a Lua auxiliary file and eventually all

information will move there. The advantage is that we can use efficient hashes (without

limitations) and only need to run over the file once. And Lua is incredibly fast in loading

the tables where we keep track of these things. For instance, a test file storing and reading

18 18

18 18

How Lua fits in 17

10.000 complex positions takes 3.2 seconds runtime with LuaTEX but 8.7 seconds with

traditional pdfTEX. Imagine what this will save when dealing with huge files (400 page

300 Meg files) that need three or more passes to be typeset. And, now we can without

problems bump position tracking to milions of positions.

resources

Finding files is somewhat tricky and has a history in the TEX community and its distribu-

tions. For reasons of packaging and searching files are organized in a tree and there are

rules for locating files of given types in this tree. When we say

\input blabla.tex

TEX will look for this file by consulting the path specification associated with the filetype.

When we say

\input blabla

TEX will add the .tex suffix itself. Most other filetypes are not seen by users but are dealt

with in a similar way internally.

As mentioned before, we support reading from other resources than the standard file sys-

tem, for instance we can input files from websites or read from zip archives. Although this

works quite well, we need to keep in mind that there are some conflicting interests: struc-

tured search based on type related specifications versus more or less explicit requests.

\input zip:///archive.zip?name=blabla.tex
\input zip:///archive.zip?name=/somepath/blabla.tex

Here we need to be rather precise in defining the file location. We can of course build

rather complex mechanisms for locating files here, but at some point that may backfire

and result in unwanted matches.

If you want to treat a zip archive as a TEX tree, then you need to register the file:

\usezipfile[archive.zip]
\usezipfile[tex.zip][texmf-local]
\usezipfile[tex.zip?tree=texmf-local]

The first variant registers all files in the archive, but the next two are equivalent and only

register a subtree. The registered tree is prepended to theTEXMF specification and thereby

may overload existing trees.

If an acrhive is not a real TEX tree, you can access files anywhere in the tree by using wild-

cards

19 19

19 19

18 How Lua fits in

\input */blabla.tex
\input */somepath/blabla.tex

These mechanisms evolve over time and it may take a while before they stabelize. For

instance, the syntax for the zip inclusion has been adapted more than a year after this

chapter was written (which is why this section is added).

20 20

20 20

Initialization revised 19

III Initialization revised

Initializing LuaTEX in such a way that it does what you want it to do your way can be tricky.

This has to do with the fact that if we want to overload certain features (using callbacks)

we need to do that before the orginals start doing their work. For instance, if we want

to install our own file handling, we must make sure that the built--in file searching does

not get initialized. This is particularly important when the built in search engine is based

on the kpse library. In that case the first serious file access will result in loading the ls-R
filename databases, which will take an amount of time more or less linear with the size

of the TEX trees. Among the reasons why we want to replace kpse are the facts that we

want to access zip files, do more specific file searches, use http, ftp and whatever comes

around, integrate ConTEXt specific methods, etc.

Although modern operating systems will cache files in memory, creating the internal data

structures (hashes) from the rather dumb files take some time. On the machine where I

was developing the first experimental LuaTEX code, we’re talking about 0.3 seconds for

pdfTEX. One would expect a Lua based alternative to be slower, but it is not. This may

be due to the different implementation, but for sure the more efficient file cache plays

a role as well. So, by completely disabling kpse, we can have more advanced io related

features (like reading from zip files) at about the same speed (or even faster). In due time

we will also support progname (and format) specific caches, which speeds up loading. In

case one wonders why we bother about a mere few hundreds of milliseconds: imagine

frequent runs from an editor or sub--runs during a job. In such situation every speed up

matters.

So, back to initialization: how do we initialize LuaTEX. The method described here is de-

veloped for ConTEXt but is not limited to this macro package; when one tells TEXexec to

generate formats using the --luatex directive, it will generate the ConTEXt formats as

well as mptopdf using this engine.

For practical reasons, the Lua based io handler is kpse compliant. This means that the

normal texmf.cnf and ls-R files can be used. However, their content is converted in

a more Lua friendly way. Although this can be done at runtime, it makes more sense to

to this in advance using luatools. The files involved are:

input raw input runtime input runtime fallback

ls-R files.luc files.lua
texmf.lua temxf.cnf configuration.luc configuration.lua

In due time luatools will generate the directory listing itself (for this some extra libraries

need to be linked in). The configuration file(s) eventually will move to a Lua table format,

and when a texmf.lua file is present, that one will be used.

21 21

21 21

20 Initialization revised

luatools --generate

This command will generate the relevant databases. Optionally you can provide--minimize
which will generate a leaner database, which in turn will bring down loading time to (on

my machine) about 0.1 sec instead of 0.2 seconds. The --sort option will give nicer

intermediate (.lua) files that are more handy for debugging.

When done, you can use luatools roughly in the same manner as kpsewhich, for instance

to locate files:

luatools texnansi-lmr10.tfm
luatools --all tufte.tex

You can also inspect its internal state, for instance with:

luatools --variables --pattern=TEXMF
luatools --expansions --pattern=context

This will show you the (expanded) variables from the configuration files. Normally you

don’t need to go that deep into the belly.

The luatools script can also generate a format and run LuaTEX. For ConTEXt this is normally

done with the TEXexec wrapper, for instance:

texexec --make --all --luatex

When dealing with this process we need to keep several things in mind:

• LuaTEX needs a Lua startup file in both ini and runtime mode

• these files may be the same but may also be different

• here we use the same files but a compiled one in runtime mode

• we cannot yet use a file location mechanism

A .luc file is a precompiled Lua chunk. In order to guard consistency between Lua code

and tex code, ConTEXt will preload all Lua code and store them in the bytecode table

provided by LuaTEX. How this is done, is another story. Contrary to these tables, the ini-

tialization code can not be put into the format, if only because at that stage we still need

to set up memory and other parameters.

In our case, especially because we want to overload the io handler, we want to store

the startup file in the same path as the format file. This means that scripts that deal with

format generation also need to take care of (relocating) the startup file. Normally we will

use TEXexec but we can also use luatools.

Say that we want to make a plain format. We can call luatools as follows:

22 22

22 22

Initialization revised 21

luatools --ini plain

This will give us (in the current path):

120,808 plain.fmt
2,650 plain.log

80,767 plain.lua
64,807 plain.luc

From now on, only the plain.fmt and plain.luc file are important. Processing a file

test \end

can be done with:

luatools --fmt=./plain.fmt test

This returns:

This is luaTeX, Version 3.141592-0.1-alpha-20061018 (Web2C 7.5.5)
(./test.tex [1])
Output written on test.dvi (1 page, 260 bytes).
Transcript written on test.log.

which looks rather familiar. Keep in mind that at this stage we still run good old Plain TEX.

In due time we will provide a few files that will making work with Lua more convenient

in Plain TEX, but at this moment you can already use for instance \directlua.

In case you wonder how this is related to ConTEXt, well only to the extend that it uses a

couple of rather generic ConTEXt related Lua files.

ConTEXt users can best use TEXexec which will relocate the format related files to the reg-

ular engine path. In luatools terms we have two choices:

luatools --ini cont-en
luatools --ini --compile cont-en

The difference is that in the first casecontext.lua is used as startup file. This Lua file cre-

ates thecont-en.luc runtime file. In the second call luatools will create acont-en.lua
file and compile that one. An even more specific call would be:

luatools --ini --compile --luafile=blabla.lua cont-en
luatools --ini --compile --lualibs=bla-1.lua,bla-2.lua cont-en

This call does not make much sense for ConTEXt. Keep in mind that luatools does not

set up user specific configurations, for instance the --all switch in TEXexec will set up all

patterns.

23 23

23 23

22 Initialization revised

I know that it sounds a bit messy, but till we have a more clear picture of where LuaTEX is

heading this is the way to proceed. The average ConTEXt user won’t notice those details,

because TEXexec will take care of things.

Currently we follow the tds and web2c conventions, but in the future we may follow dif-

ferent or additional approaches. This may as well be driven by more complex io models.

For the moment extensions still fit in. For instance, in order to support access to remote

resources and related caching, we have added to the configuration file the variable:

TEXMFCACHE = $TMP;$TEMP;$TMPDIR;$HOME;$TEXMFVAR;$VARTEXMF;.

24 24

24 24

An example: CalcMath 23

IV An example: CalcMath

introduction

For a long time TEX’s way of coding math has dominated the typesetting world. How-

ever, this kind of coding is not that well suited for non academics, like schoolkids. Often

kids do know how to key in math because they use advanced calculators. So, when a

couple of years ago we were implementing a workflow where kids could fill in their math

workbooks (with exercises) on--line, it made sense to support so called Texas Instruments

math input. Because we had to parse the form data anyway, we could use a [[and]] as

math delimiters instead of $. The conversion too place right after the form was received

by the web server.

sin(x) + x^2 + x^(1+x) + 1/x^2 sin(𝑥) + 𝑥2 + 𝑥1+𝑥 + 1
𝑥2

mean(x+mean(y)) 𝑥 + 𝑦

int(a,b,c) ∫ 𝑎
𝑏

𝑐

(1+x)/(1+x) + (1+x)/(1+(1+x)/(1+x)) 1+𝑥
1+𝑥 + 1+𝑥

1+ 1+𝑥
1+𝑥

10E-2 10 × 10−2

(1+x)/x 1+𝑥
𝑥

(1+x)/12 1+𝑥
12

(1+x)/-12 1+𝑥
−12

1/-12 1
−12

12x/(1+x) 12𝑥
1+𝑥

exp(x+exp(x+1)) 𝑒𝑥+𝑒𝑥+1

abs(x+abs(x+1)) + pi + inf |𝑥 + |𝑥 + 1|| + 𝜋 + inf

Dx Dy d𝑥
d𝑥

d𝑦
d𝑥

D(x+D(y)) d
d𝑥

(𝑥 + d
d𝑥

(𝑦))

Df(x) f ′(𝑥)

g(x) g(𝑥)

sqrt(sin^2(x)+cos^2(x)) √sin2(𝑥) + cos2(𝑥)

By combining Lua with TEX, we can do the conversion from calculator math to TEX imme-

diately, without auxiliary programs or complex parsing using TEX macros.

25 25

25 25

24 An example: CalcMath

tex

In a ConTEXt source one can use the \calcmath command, as in:

The strange formula \calcmath {sqrt(sin^2(x)+cos^2(x))} boils
down to ...

One needs to load the module first, using:

\usemodule[calcmath]

Because the amount of code involved is rather small, eventually we may decide to add

this support to the MkIV kernel.

xml

Coding math in TEX is rather efficient. In xml one needs way more code. Presentation

MathML provides a few basic constructs and boils down to combining those building

blocks. Content MathML is better, especially from the perspective of applications that

need to do interpret the formulas. It permits for instance the ConTEXt content MathML

handler to adapt the rendering to cultural driven needs. The OpenMath way of coding is

like content MathML, but more verbose with less tags. Calculator math is more restrictive

than TEX math and less verbose than any of the xml variants. It looks like:

<icm>sqrt(sin^2(x)+cos^2(x))</icm> test

And in display mode:

<dcm>sqrt(sin^2(x)+cos^2(x))</dcm> test

speed

This script (which you can find in the ConTEXt distribution as soon as the MkIV code vari-

ants are added) is the first real TEX related Lua code that I wrote; so far I had only written

some wrapping and spell checking code for the SciTE editor. It also made a nice demo

for a couple of talks that I held at usergroup meetings. The script has a lot of expressions.

These convert one string into another. They are less powerful than regular expressions,

but pretty fast and adequate. The feature I miss most is alternation like (l|st)uck but

it’s a small price to pay. As the Lua manual explains: adding a posix compliant regexp

parser would take more lines of code than Lua currently does.

On my machine, running this first version took 3.5 seconds for 2500 times typesetting

the previously shown square root of sine and cosine. Of this, 2.1 seconds were spent on

typesetting and 1.4 seconds on converting. After optimizing the code, 0.8 seconds were

26 26

26 26

An example: CalcMath 25

used for conversion. A stand alone Lua takes .65 seconds, which includes loading the

interpreter. On a test of 25.000 sample conversions, we could gain some 20% conversion

time using the LuaJIT just in time compiler.

27 27

27 27

26 An example: CalcMath

28 28

28 28

Going utf 27

V Going utf

LuaTEX only understands input codes in the Universal Character Set Transformation For-

mat, aka ucs Transformation Format, better known as: utf. There is a good reason for this

universal view on characters: whatever support gets hard coded into the programs, it’s

never enough, as 25 years of TEX history have clearly demonstrated. Macro packages often

support more or less standard input encodings, as well as local standards, user adapted

ones, etc.

There is enough information on the Internet and in books about what exactly is utf. If you

don’t know the details yet: utf is a multi--byte encoding. The characters with a bytecode

up to 127 map onto their normal ascii representation. A larger number indicates that the

following bytes are part of the character code. Up to 4 bytes make an utf-8 code, while

utf-16 always uses two pairs of bytes.

byte 1 byte 2 byte 3 byte 4 unicode

192–223 128–191 0x80–0x7ff

224–239 128–191 128–191 0x800–0xffff

240–247 128–191 128–191 128–191 0x10000–0x1ffff

In utf-8 the characters in the range 128–191 are illegal as first characters. The characters

254 and 255 are completely illegal and should not appear at all since they are related to

utf-16.

Instead of providing a never-complete truckload of other input formats, LuaTEX sticks to

one input encoding but at the same time provides hooks that permits users to write filters

that preprocess their input into utf.

While writing the LuaTEX code as well as the ConTEXt input handling, we experimented a

lot. Right from the beginning we had a pretty clear picture of what we wanted to achieve

and how it could be done, but in the end arrived at solutions that permitted fast and

efficient Lua scripting as well as a simple interface.

What is involved in handling any input encoding and especially utf?. First of all, we

wanted to support utf-8 as well as utf-16. LuaTEX implements utf-8 rather straightfor-

ward: it just assumes that the input is usable utf. This means that it does not combine

characters. There is a good reason for this: any automation needs to be configurable

(on/off) and the more is done in the core, the slower it gets.

In Unicode, when a character is followed by an ‘accent’, the standard may prescribe that

these two characters are replaced by one. Of course, when characters turn into glyphs,

and when no matching glyph is present, we may need to decompose any character into

components and paste them together from glyphs in fonts. Therefore, as a first step, a

29 29

29 29

28 Going utf

collapser was written. In the (pre)loaded Lua tables we have stored information about

what combination of characters need to be combined into another character.

So, an a followed by an ` becomes à and an e followed by " becomes ë. This process is

repeated till no more sequences combine. After a few alternatives we arrived at a solution

that is acceptably fast: mere milliseconds per average page. Experiments demonstrated

that we can not gain much by implementing this in pure C, but we did gain some speed

by using a dedicated loop--over--utf--string function.

A second utf related issue is utf-16. This coding scheme comes in two endian variants.

We wanted to do the conversion in Lua, but decided to play a bit with a multi--byte file

read function. After some experiments we quickly learned that hard coding such meth-

ods in TEX was doomed to be complex, and the whole idea behind LuaTEX is to make

things less complex. The complexity has to do with the fact that we need some control

over the different linebreak triggers, that is, (combinations of) character 10 and/or 13. In

the end, the multi--byte readers were removed from the code and we ended up with a

pure Lua solution, which could be sped up by using a multi--byte loop--over--string func-

tion.

Instead of hard coding solutions in LuaTEX a couple of fast loop--over--string functions

were added to the Lua string function repertoire and the solutions were coded in Lua. We

did extensive timing with huge utf-16 encoded files, and are confident that fast solutions

can be found. Keep in mind that reading files is never the bottleneck anyway. The only

drawback of an efficient utf-16 reader is that the file is loaded into memory, but this is

hardly a problem.

Concerning arbitrary input encodings, we can be brief. It’s rather easy to loop over a

string and replace characters in the 0–255 range by their utf counterparts. All one needs

is to maintain conversion tables and TEX macro packages have always done that.

Yet another (more obscure) kind of remapping concerns those special TEX characters. If

we use a traditional TEX auxiliary file, then we must make sure that for instance percent

signs, hashes, dollars and other characters are handled right. If we set the catcode of the

percent sign to ‘letter’, then we get into trouble when such a percent sign ends up in the

table of contents and is read in under a different catcode regime (and becomes for in-

stance a comment symbol). One way to deal with such situations is to temporarily move

the problematic characters into a private Unicode area and deal with them accordingly.

In that case they no longer can interfere.

Where do we handle such conversions? There are two places where we can hook con-

verters into the input.

1. each time when we read a line from a file, i.e. we can hook conversion code into the

read callbacks

30 30

30 30

Going utf 29

2. using the special process_input_buffer callback which is called whenever TEX

needs a new line of input

Because we can overload the standard file open and read functions, we can easily hook

the utf collapse function into the readers. The same is true for the utf-16 handler. In

ConTEXt, for performance reasons we load such files into memory, which means that we

also need to provide a special reader to TEX. When handling utf-16, we don’t need to

combine characters so that stage is skipped then.

So, to summarize this, here is what we do in ConTEXt. Keep in mind that we overload the

standard input methods and therefore have complete control over how LuaTEX locates

and opens files.

1. When we have a utf file, we will read from that file line by line, and combine charac-

ters when collapsing is enabled.

2. When LuaTEX wants to open a file, we look into the first bytes to see if it is a utf-16

file, in either big or little endian format. When this is the case, we load the file into

memory, convert the data to utf-8, identify lines, and provide a reader that will give

back the file linewise.

3. When we have been told to recode the input (i.e. when we have enabled an input

regime) we use the normal line--by--line reader and convert those lines on the fly into

valid utf. No collapsing is needed.

Because we conduct our experiments in ConTEXt MkIV the code that we provide may

look a bit messy and more complex than the previous description may suggest. But keep

in mind that a mature macro package needs to adapt to what users are accustomed to.

The fact that LuaTEX moved on to utf input does not mean that all the tools that users use

and the files that they have produced over decades automagically convert as well.

Because we are now living in a utf world, we need to keep that in mind when we do

tricky things with sequences of characters, for instance in processing verbatim. When

we implement verbatim in pure TEX we can do as before, but when we let Lua kick in,

we need to use string methods that are utf-aware. In addition to the linked-in Unicode

library, there are dedicated iterator functions added to the string namespace; think of:

for c in string.utfcharacters(str) do
something_with(c)

end

Occasionally we need to output raw 8-bit code, for instance to dvi or pdf backends (spe-

cials and literals). Of course we could have cooked up a truckload of conversion func-

tions for this, but during one of our travels to a TEX conference, we came up with the

following trick.

31 31

31 31

30 Going utf

We reserve the top 256 values of the Unicode range, starting at hexadecimal value 0x110000,

for byte output. When writing to an output stream, that offset will be subtracted. So,

0x1100A9 is written out as hexadecimal byte value A9, which is the decimal value 169,

which in the Latin 1 encoding is the slot for the copyright sign.

32 32

32 32

A fresh look at fonts 31

VI A fresh look at fonts

readers

Now that we have the file system, Lua script integration, input encoding and basic logging

in place, we have arrived at fonts. Although today OpenType fonts are the fashion, we still

need to deal with TEX’s native font machinery. Although Latin Modern and the TEX Gyre

collection will bring us many free OpenType fonts, we can be sure that for a long time Type1

variants will be used as well, and when one has lots of bought fonts, replacing them with

OpenType updates is not always an option. And so, reimplementing the readers for TEX

Font Metrics (tfm files) and Virtual Fonts (vf files), was the first step.

Because Aleph font handling was integrated already, Taco decided to combine the tfm

and ofm readers into a new one. The combined loader is written in C and produces tables

that are accessible from within Lua. A problem is that once a font is used, one cannot

simply change its metrics. So, we have to make sure that we apply changes before a font

is actually used:

\font\test=texnansi-lmr at 31.415 pt
\test Yet another nice Kate Bush song: Pi

In this example, any change to the fontmetrics has to be done before test is invoked.

For this purpose the define_font callback is provided. Below you see an experimental

overload:

callback.register("define_font", function (name,area,size)
return fonts.patches.process(font.read_tfm(name,size))

end)

Thefonts.patched.process function (currently in ConTEXt MkIV) implements a mech-

anism for tweaking the font parameters in between. In order to get an idea of further

features we played a bit with ligature replacement, character spacing, kern tweaking etc.

Think of such a function (or a chain of functions) doing things similar to:

callback.register("define_font", function (name,area,size)
local tfmblob = font.read_tfm(name,size) -- build in loader
tfmblob.characters[string.byte("f")].ligatures = nil
return tfmblob -- datastructure that TeX will use internally

end)

Of course the above definition is not complete, if only because we need to handle chained

ligatures as well (fl followed by i).

33 33

33 33

32 A fresh look at fonts

In practice we prefer a more abstract interface (at the macro level) but the idea stays the

same. Interesting is that having access to the internals this way already makes our TEX Live

more interesting. (We cannot demonstrate this trickery here because when this docu-

ment is processed you cannot be sure if the experimental interface is still in place.)

When playing with this we ran into problems with file searching. When performing the

backend role, LuaTEX will look in the TEX tree if there is a corresponding virtual file. It took

a while and a bit of tracing (which is not that hard in the Lua based reader) to figure out that

the omega related path definitions in texmf.cnf files were not correct, something that

went unnoticed because omega never had a backend integrated and the dvi processors

did multiple searches to get around this.

Currently, if you want to enable extensive tracing of file searching and loading, you can

set an environment variable:

MTX.INPUT.TRACE=3

This will produce a lot of information about what file is asked for, what types (tex, font, etc)

determines the search, along what paths is being searched, what readers and locators are

used (file, zip, protocol), etc.

AFM

While Taco implemented the virtual font reader —eventually its data will be merged with

the tfm table— I started playing with constructing tfm tables directly. Because ConTEXt

has a rather systematic naming scheme, we can rather easily see which encoding we are

dealing with. This means that in principle we can throw all encoded tfm files out of our

tree and construct the tables using the afm file and an encoding vector.

It took us a good day to figure out the details, but in the end we were able to trick LuaTEX

into using afm files. With a bit of internal caching it was even reasonable fast. When the

basic conversion mechanism was written we tried to compare the results with existing

tfm metrics as generated by afm2tfm and afm2pl. Doing so was less trivial than we first

thought. To mention a few aspects:

• heights and depths have a limited number of values in TEX

• we need to convert to TEX’s scaled points

• rounding errors of one scaled point occur

• afm2tfm can only add kerns when virtual fonts are used

• afm2tfm adds some extra ligatures and also does some kern magic

• afm2pl adds even more kerns

• the tools remove kern pars between digits

34 34

34 34

A fresh look at fonts 33

In this perspective we need not be too picky on what exactly a ligature is. An example

of a ligature is fi and such a character can be in the font. In the tfm file, the definition

of f contains information about what to do when it’s followed by an i: it has to insert a

reference (character number) pointing to the fi glyph.

However, because TEX was written in ascii time space, there was a problem of how to

get access to for instance the Spanish quotation and exclamation marks. Here the liga-

ture mechanism available in the tfm format was misused in the sense that a combination

of exclam and quoteleft becomes exclamdown. In a similar fashion will two single

quotes become a double quote. And every TEXie knows that multiple hyphens combine

into – (endash) and — (emdash), where the later one is achieved by defining a ligature

between an endash and a hyphen.

Of course we have to deal with conversions from afm units (1000 per em) to TEX’s scaled

points. Such conversions may be sensitive for rounding errors. Because we noticed dif-

ferences of one scaled point, I tried several strategies to get the results consistent but

so far I didn’t manage to find out where these differences come from. Rounding errors

seem to be rather random and I have no clue what strategy the regular converters fol-

low. Another fuzzy area are the font parameters (visible as font dimensions for users): I

wonder how many users really know what values are used and why.

You may wonder to what extend this rounding problem will influence consistent type-

setting. We have no reason to assume that the rounding error is operating system depen-

dent. This leaves the different methods used and personally I have no problems with the

direct reader being not 100% compatible with the regular tools. First of all it’s an illusion

to think that TEX distributions are stable over the years. Fonts and conversion tools are

being updated every now and then, and metrics change over time (apart from Computer

Modern which is stable by definition). Also, pattern file are updated, so paragraphs may

be broken into lines different anyway. If you really want stability, then you need to store

the fonts and patterns with your document.

As we already mentioned, the regular converter programs add kerns as well. Treating

common glyph shapes similar is not uncommon in ConTEXt so I decided to provide meth-

ods for adding ‘missing’ kerns. For example, with regards to kerning, we can treateacute
the same way as ane. Some ligatures, likeaeorfi, need to be seen from two sides: when

looked at from the left side they resemble an a and f, but when kerned at their right, they

are to be treated as e and i.

So, when all this is taken care of, we will have a reasonable robust and compatible way

to deal with afm files and when this variant is enabled, we can prune our TEX trees pretty

well. Also, now that we have font related tables, we can start moving tables built out of

TEX macros (think of protruding and hz) to Lua, which will not only save us much hash

entries but also permits us faster implementations.

35 35

35 35

34 A fresh look at fonts

The question may arise why there is no hard coded afm reader. Although some speed up

can be achieved by reading the table with afm data directly, there would still be the issue

of making that table accessible for manipulations as described (costs time too). The afm

format is human readable contrary to the tfm format and therefore they can conveniently

be processed by Lua. Also, the possible manipulations may differ per macro package,

user, and even documents. The changes of users and developers reaching an agreement

about such issues is near zero. By writing the reader in Lua, a macro package writer can

also implement caching mechanisms that suits the package. Also, keep in mind that we

often only need to load about four afm files or a few more when we mix fonts.

In my main tree (regular distributions) there are some 350 files in texnansi encoding

that take over 2 MByte. My personal font tree has over a thousand such entries which

means that we can prune the tree considerably when we use the afm loader. Why bother

about tfm when afm can do the job.

In order to reduce the overhead in reading the afm file, we now use external caching,

which (in ConTEXt MkIV) boils down to serializing the internal afm tables and compiling

them to bytecode. As a result, the runtime becomes comparable to a run using regular

tfm files. On this document usign the afm reader (cached) takes some .3 seconds more

on 8 seconds total (28 pages in Optima Nova with a couple of graphics).

While we were playing with this, Hermann Zapf surprised me by sending me a cd with

his marvelous new Palatino Sans. So, instead of generating tfm metrics, I decided to use

ttf2afm to generate me an afm file from the TrueType files and use these metrics. It

worked right out of the box which means that one can copy a set of font files directly

from the source to the tree. In a demo document the Palatino Sans came out quite well

and so we will use this font to explore the upcoming Open Type features.

Because we now have less font resources (only two files per font) we decided to get away

from the spread--all--over--the--tree paradigm. For this we introduced

../fonts/data/vendor/collection

like:

../fonts/data/tex/latin-modern

../fonts/data/tex-gyre/bonum

../fonts/data/linotype/optima-nova

../fonts/data/linotype/palatino-nova

../fonts/data/linotype/palatino-sans

Of course one needs to adapt the related font paths in the configuration files but getting

that done in tex distributions is another story.

36 36

36 36

A fresh look at fonts 35

map files

Reading an afm file is only part of the game. Because we bypass the regular tfm reader

we may internally end up with different names of fonts (and/or files). This also means

that the map files that map an internal name onto an font (outline) file may be of no use.

The map file also specifies the encoding file which maps character numbers onto names

used in font files.

The map file maps a font name to a (preferable outline) font resource file. This can be a

file with suffix pfb, ttf, otf or alike. When we convert am afm file into a more suitable

format, we also store the associated (outline) filename, that we use later when we assem-

ble the map line data (we use \pdfmapline to tell LuaTEX how to prepare and embed a

file.

Eventually LuaTEX will take care of all these issues itself thereby rendering map files and

encoding files kind of useless. When loading an afm file we already have to read en-

coding files, so we have all the information available that normally goes into the map

file. While conducting experiments with reading afm files, we therefore could use the

\pdfmapline primitive to push the right entries into font inclusion machinery. Because

ConTEXt already handles map data itself we could easily hook this into the normal han-

dlers for that. (There are some nasty synchronization issues involved in handling map

entries in general but we will not bother you with that now).

Although eventually we may get rid of map files, we also used the general map file han-

dling in ConTEXt as a playground for the xml handler that we wrote in Lua. Playing with

many map files (a few KBytes) coded in xml format, or with one big map file (easily 800

MBytes) makes a good test case for loading and dumping

But why bother too much about map files in LuaTEX . . . they will go away anyway.

OTF & TTF

One of the reasons for starting the LuaTEX development was that we wanted to be able

to use OpenType (and TrueType) fonts in pdfTEX. As a prelude (and kind of transition) we

first dealt with Type1 using either tfm or afm. For TEX it does not really matter what font

is used, it only deals with dimensions and generic characteristics. Of course, when fonts

offer more advanced possibilities, we may need more features in the TEX kernel, but think

of hz or protruding as provided by pdfTEX: it’s not part of the font (specification) but of the

engine. The same is actually true for kerning and ligature building, although here the font

(data) may provide the information needed to deal with it properly.

OpenType fonts come with features. Examples of features are using oldstyle figures or tab-

ular digits instead of the default ones. Dealing with such issues boils down to replacing

37 37

37 37

36 A fresh look at fonts

one character representation by another or treating combinations of character in the in-

put differently depending on the circumstances. There can be relationships between

languages and scripts, but, as TEXies know, other relationships exist as well, for instance

between content and visualization.

Therefore, it will be no surprise that LuaTEX does not simply implement the OpenType

specification as such. On the one hand it implements a way to load information stored

in the font, on the other hand it implements mechanisms to fullfil the demands of such

fonts and more. The glue between both is done with Lua. In the simple case of ligatures

and kerns this goes as follows. A user (or macropackage) specified a font, and this call can

be intercepted using a callback. This callback can use a built in function that loads an otf

or ttf font. From this table, a font table is constructed that is passed on to TEX. The con-

struction may involve building ligature and kerning tables using the information present

in the font file, but it may as well mean more. So, given a bare LuaTEX system, OpenType

font support is not giving you automatically handling of features, or more precisely, there

is no hard coded support for features.

This may sound as a disadvantage but as soon as you start looking at how TEX users use

their system (in most cases by using a macro package) you may understand that flexibility

is larger this way. Instead of adding more and more control and exceptions, and thereby

making the kernel more instable and complex, we delegate control to the macro pack-

age. The advantage is that there are no (everlasting) discussions on how to deal with

things and in the end the user will use a high level interface anyway. Of course the macro

package needs proper access to the font’s internals, but this is provided: the code used

for reading in the data comes from FontForge (an advanced font editor) and is presented

via Lua tables in a well organized way.

Given that users expect OpenType features to be supported, how do we provide an inter-

face. In ConTEXt the user interface has always be an important aspect and consistency is

a priority. On the other hand, there has been the tradition of specifying the size explicity

and a new custom introduced by X ETEX to enhance fontname with directives. Traditional

TEX provides:

\font \name filename [optional size]

X ETEX accepts

\font \name "fontname[:optional features]" [optional size]
\font \name fontname[:optional features] [optional size]

Instead of a fontname one can pass a filename between square brackets. LuaTEX handles:

\font \name anything [optional size]
\font \name {anything} [optional size]

38 38

38 38

A fresh look at fonts 37

where anything as well as the size are passed on to the callback.

This permits us to implement a traditional specification, support X ETEX like definitions, and

easily pass information from a macro package down to the callback as well. Interpreting

anything is done in Lua.

While implementing the Lua side of the loader we took a similar approach as the afm

reader and cached intermediate tables as well as keep track of font names (in addition

to filenames). In order to be able to quickly determine the (internal) font name of an

OpenType font, special loader functions are provided.

The size is kind of special, because we can have specifications like

at 10pt
at 3ex
at \dimexpr\bodyfontsize+1pt\relax

This means that we need to handle that on the TEX side and pass the calculated value to

the callback.

Virtual fonts have a rather special nature. They permit you to define variations of fonts

using other fonts and special (dvi related) operators. However, from the perspective of

TEX itself they don’t exist at all. When you create a virtual font you also end up with a

tfm file and TEX only needs this file, which defined characters in terms of a width, height,

depth and italic correction as well as associates characters with kerning pairs and liga-

tures. TEX leaves it to the backend to deal the actual glyphs and therefore the backend

will be confronted by the internals of a virtual font. Because pdfTEX and therefore LuaTEX

has the backend built in, it is capable of handling virtual fonts information.

In LuaTEX you can build your own virtual font and this will suit us well. It permits us for

instance to complete fonts that lack certain characters (glyphs) and thereby let us get rid

of ugly macro based fallback trickery. Although in ConTEXt we will provide a high level

interface, we will give you a taste of Lua here.

callback.register("define_font", function(name,size)
if name == "demo" then

local f = font.read_tfm('texnansi-lmr10',size)
if f then

local capscale, digscale = 0.85, 0.75
f.name, f.type = name, 'virtual'
f.fonts = {

{ name="texnansi-lmr10" , size=size },
{ name="texnansi-lmss10", size=size*capscale },
{ name="texnansi-lmtt10", size=size*digscale }

}

39 39

39 39

38 A fresh look at fonts

for k,v in pairs(f.characters) do
local chr = utf.char(k)
if chr:find("[A-Z]") then

v.width = capscale*v.width
v.commands = {

{"special","pdf: 1 0 0 rg"},
{"font",2}, {"char",k},
{"special","pdf: 0 g"}

}
elseif chr:find("[0-9]") then

v.width = digscale*v.width
v.commands = {

{"special","pdf: 0 0 1 rg"},
{"font",3}, {"char",k},
{"special","pdf: 0 g"}

}
else

v.commands = {
{"font",1}, {"char",k}

}
end

end
return f

end
end
return font.read_tfm(name,size)

end)

Here we define a virtual font that uses three real fonts and which font is used depends on

the kind of character we’re dealing with (inreal world situations we can best use the MkIV

function that tells what class a character belongs to). The commands table determines

what glyphs comes out in what way. We use a bit of literal pdf code to color the special

characters but generally color is not handled at the font level.

This example can be used like:

\font\test=demo \test
Hi there, this is the first (number 1) example of playing with
Virtual Fonts, some neat feature of \TeX, once you have access
to it. For instance, we can misuse it to fill in gaps in fonts.

During development of this mechanism, we decided to save some redundant loading by

permitting id’s in the fonts array:

40 40

40 40

A fresh look at fonts 39

callback.register("define_font", function(name,size)
if name == "demo" then

local f = font.read_tfm('texnansi-lmr10',size)
if f then

local id = font.define(f)
local capscale, digscale = 0.85, 0.75
f.name, f.type = name, 'virtual'
f.fonts = {

{ id=id },
{ name="texnansi-lmss10", size=size*capscale },
{ name="texnansi-lmtt10", size=size*digscale }

}
for k,v in pairs(f.characters) do

local chr = utf.char(k)
if chr:find("[A-Z]") then

v.width = capscale*v.width
v.commands = {

{"special","pdf: 1 0 0 rg"},
{"slot",2,k},
{"special","pdf: 0 g"}

}
elseif chr:find("[0-9]") then

v.width = digscale*v.width
v.commands = {

{"special","pdf: 0 0 1 rg"},
{"slot",3,k},
{"special","pdf: 0 g"}

}
else

v.commands = {
{"slot",1,k}

}
end

end
return f

end
end
return font.read_tfm(name,size)

end)

Hardwiring fontnames in callbacks this way does not deserve a price and when possible

we will provide better extension interfaces. Anyhow, in the experimental ConTEXt code

we used calls like this, where demo is an installed feature.

41 41

41 41

40 A fresh look at fonts

\font\myfont = special@demo-1 at 12pt \myfont
Hi there, this is the first (number 1) example of playing with Virtual
Fonts,
some neat feature of \TeX, once you have access to it. For instance,
we can
misuse it to fill in gaps in fonts.

Hi there, this is the first (number 1) example of playing with Virtual Fonts, some neat
feature of TEX, once you have access to it. For instance, we can misuse it to fill in gaps
in fonts.

Keep in mind that this is just an example. In practice we will not do such things at the font

level but by manipulating TEX’s internals.

While developing this functionality and especially when Taco was programming the back-

end functionality, we used more sane MkIV code. Think of (still Lua) definitions like:

\ctxlua {
fonts.definers.methods.install("weird", {

{ "copy-range", "lmroman10-regular" }
,

{ "copy-char", "lmroman10-regular", 65, 66
} ,

{ "copy-range", "lmsans10-regular", 0x0100, 0x01FF
} ,

{ "copy-range", "lmtypewriter10-regular", 0x0200, 0xFF00
} ,

{ "fallback-range", "lmtypewriter10-regular", 0x0000, 0x0200
}

})
}

Again, this is not the final user interface, but it shows the direction we’re heading. The

result looks like:

\font\test={myfont@weird} at 12pt \test
\eacute \rcaron \adoublegrave \char65

This shows up as:

éřȁB

Here the @ tells the (new) ConTEXt font handler what constructor should be used.

Because some testers already have X ETEX font support files, we also support a X ETEX like

definition syntax.

42 42

42 42

A fresh look at fonts 41

\font\test={lmroman10-regular:dlig;liga}\test
f i fi ffi \crlf
f i f\kern0pti f\kern0ptf\kern0pti \crlf
\char64259 \space\char64256 \char105 \space \char102\char102\char105

This gives:

f i fi ffi
f i fi ffi
ffi ffi ffi

We are quite tolerant with regards to this specification and will provide less dense meth-

ods as well. Of course we need to implement a whole bunch of features but we will do

this in such a way that we give users full control.

encodings

By now we’ve reached a stage where we can get rid of font encodings. We now have

the full unicode range available and no longer depend on the font encoding when we

hyphenate. In a previous chapter we discussed the difference in size between formats.

date luatex pdftex

2006-10-23 3 135 568 7 095 775

2007-02-18 3 373 206 7 426 451

2007-02-19 3 060 103 7 426 451

The size of the formats has grown a bit due to a few more patterns and a extra preloaded

encoding. But the LuaTEX format shrinks some 10% now that we can get rid of encod-

ing support. Some support for encodings is still present, so that one can keep using the

metric files that are installed (for instance in project related trees that have special fonts)

although afm/Type1 files or OpenType fonts will be used when available.

A couple of years from now, we may throw away some Lua code related to encodings.

files

TEX distributions tend to be rather large, both in terms of files and bytes. Fonts take most

of the space. The merged TEXLive 2007 trees contain some 60.000 files that take 1.123

MBytes. Of this, 25.000 files concern fonts totaling to 431 MBytes. A recent ConTEXt

distribution spans 1200 files and 20 MBytes and a bit more when third party modules are

taken into account. The fonts in TEXLive are distributed as follows:

format files bytes

43 43

43 43

42 A fresh look at fonts

AFM 1.769 123.068.970 443 22.290.132

TFM 10.613 44.915.448 2.346 8.028.920

VF 3.798 6.322.343 861 1.391.684

TYPE1 2.904 180.567.337 456 18.375.045

TRUETYPE 22 1.494.943

OPENTYPE 144 17.571.732

ENC 268 782.680

MAP 406 6.098.982 110 129.135

OFM 39 10.309.792

OVF 39 413.352

OVP 22 2.698.027

SOURCE 4.736 25.932.413

We omitted the more obscure file types. The last two columns show the numbers for one

of my local font trees.

In due time we will see a shift from Type1 to OpenType and TrueType files and because these

fonts are more complete, they may take some more space. More important is that the TEX

specific font metric files will phase out and the less Type1 fonts we have, the less afm com-

panions we need (afm files are not compressed and therefore relatively large). Mapping

and encoding files can also go away.

In LuaTEX we can do with less files, but the number of bytes may grow a bit depending

on how much is catched (especially fonts). Anyhow, we can safely assume that a LuaTEX

based distributions will carry less files and less bytes around.

fallbacks

Do we need virtual fonts? Currently in ConTEXt, when a font encoding is chosen, a fall-

back mechanism steps in as soon as a character is not in the encoding. So far, so good. But

occasionally we run into a font that does not (completely) fits an encoding and we end

up with defining a non standard one. In traditional TEX a side effects of font encodings is

that they relate to hyphenation. ConTEXt can deal with that comfortably and multiple in-

stances of the same set of hyphenation patterns can be loaded, but for custom encodings

this is kind of cumbersome.

In LuaTEX we have just one font encoding: Unicode. When OpenType fonts are used, we

don’t expect many problems related to missing glyphs, but you can bet on it that they will

occur. This is where in ConTEXt MkIV fallbacks will be used and this will be implemented

using vitual fonts. The advantage of using virtual fonts is that we still deal with proper

characters and hyphenation will take place as expected. And since virtual fonts can be

defined on the fly, we can be flexible in our implementation. We can think of generic

44 44

44 44

A fresh look at fonts 43

fallbacks, not much different than macro based representations, or font specific ones,

where we even may rely on MetaPost for generating the glyph data.

How do we define a fall back character. When building this mechanism I used the ‘¢’ as

an example. A cent symbol is roughly defined as follows:

local t = table.fastcopy(g.characters[0x0063]) -- mkiv function
local s = fonts.constructors.scaled(g.fonts[1].size) -- mkiv function
t.commands = {

{"push"},
{"slot", 1, c},
{"pop"},
{"right", .5*t.width},
{"down", .2*t.height},
{"rule", 1.4*t.height, .02*s}

}
t.height = 1.2*t.height
t.depth = 0.2*t.height

Here, g is a loaded font (table) which has type virtual. The first font in the fonts array

is the main font. What happens here is the following: we assign the characteristics of ‘c’

to the cent symbol (this includes kerning and dimensions) and then define a command

sequence that draws the ‘c’ and a vertical rule through it.

The real code is slightly more complicated because we need to take care of italic prop-

erties when applicable and because we have added some tracing too. While playing

with this kind of things, it becomes clear what features are handy, and the reason that we

now have a virtual command comment is that it permits us to implement tracing (using

for instance color specials).

c c c c ̌s é ̈a ü Ǒ ̌I ḅ
c c c c ̌s é ̈a ̈u Ǒ ̌I ̣b
The previous lines are typeset using a similar specification as mentioned before:

\font\test=lmroman10-regular@demo-2

Without the fallbacks we get:

c ¢ c ¢ š é ä ü Ǒ Ǐ
c ¢ c ¢ š é ä ü Ǒ Ǐ

45 45

45 45

44 A fresh look at fonts

And with normal (non forced fallbacks) it looks as follows. As it happens, this font has a

cent symbol so no fallback is needed.

c ¢ c ¢ š é ä ü Ǒ Ǐ ḅ
c ¢ c ¢ š é ä ü Ǒ Ǐ ̣b
The font definition callback intercepts the demo-2 and a couple of chained lua functions

make sure that characters missing in the font are replaced by fallbacks. In the case of miss-

ing composed characters, they are constructed from their components. In this particular

example we have told the handler to assume that all composed characters are missing.

memory

Traditional TEX has been designed for speed and a small memory footprint. Todays im-

plementations are considerably more generous with the amount of memory that you can

use (hash, fonts, main memory, patterns, backend, etc). Depending on how complicated

a document layout it, memory may run into tens of megabytes.

Because LuaTEX is not only suitable for wide fonts, but also does away with some of the

optimizations in the TEX code that complicate extensions, it has a larger footprint that

pdfTEX. When implementing the OpenType font basics, we did quite some tests with re-

spect to memory usage. Getting the numbers right is non trivial because the Lua garbage

collector is interfering. For instance, on my machine a test file with the regular ConTEXt

setup of of Latin Modern fonts made Lua allocate 130 MB, while the same run on Taco’s

machine took 100 MB.

When a font data table is constructed, it is handled over to TEX, and turned into the in-

ternal font data structures. During the construction of that TABLE at the Lua end, ConTEXt

MkIV disables the garbage collector. By doing this, the time needed to construct and

scale a font can be halved. Curious to the amount of memory involved in passing such a

table, I added the following piece of code:

if type(fontdata) == "table" then
local s = statistics.luastate_bytes
local t = table.copy(fontdata)
local d = statistics.luastate_bytes-s
texio.write_nl(string.format("table memory footprint: %s",d))

end

It turned out that a Regular Latin Modern font (OpenType) takes around 800 KB. However,

more interesting was that by adding this snippet of testcode which duplicted the table

in order to measure its size, the total memory footprint dropped to 100 MB (about the

46 46

46 46

A fresh look at fonts 45

amount used on Taco’s machine). This demonstrates that one should be very careful with

drawing conclusions.

Because fonts are rather important in TEX and because there can be lots of them used, it

makes sense to keep an eye on memory as well as performance. Because many manipu-

lations now take place in Lua, it no longer makes sense to let TEX buffer fonts. In plain TEX

one finds these magic

\font\preloaded=cmr10
\font\preloaded=cmr12

lines. The second definitions obscures the first, but the cmr10 stays loaded.

\font\one=cmr10 at 10pt
\font\two=cmr10 at 10pt

These two definitions make TEX load the font only once. However, since we can now

delegate loading to Lua, TEX no longer helps us there. For instance, TEX has no knowledge

to what extend this cmr10 font has been manipulated and therefore both instances may

actually differ.

When you use a callback to define the font, TEX passes a font id number. You can use

this number as a reference to a loaded font (that is, passed to TEX). If instead of a table,

you return a number, TEX will reuse the already loaded font. This feature can save you

a lot of time, especially when a macro package (like ConTEXt) defines fonts dynamically

which means that when grouping is used, fonts get (re)defined a lot. Of course additional

caching can take place at the Lua end, but there one needs to take into account more

than just the scaled instance. Think of OpenType features or virtual font properties. The

following are quite certainly different setups, in spite of the common size.

\font\one=lmr10@demo-1 at 10pt
\font\two=lmr10@demo-2 at 10pt

When scaling a font, one not only needs to handle the regular glyph dimensions, but

also the kerning tables. We found out that dealing with such issues takes some 25% of

the time spent on loading Latin Modern fonts that have rather extensive kerning tables.

When creating a virtual font, copying glyph tables may happen a lot. Deep copying ta-

bles takes a bit of time. This is one of the reasons why we discussed (and consider) some

dedicated support functions so that copying and recalculating tables happens faster (less

costly hash lookups and such). On the other hand, the time wasted on calculations (in-

cluding rounding to scaled points) can be neglected.

The following table shows what happens when we enforce a different garbage collecting

scheme. This test was triggered by another experiment where at regular time, for instance

after a pag eis shipped out, say

47 47

47 47

46 A fresh look at fonts

collectgarbage("collect")

However, such a complete sweep has drastic consequences for the runtime. But, since

the memory footprint becomes 10–15% less by doing so, we played a bit with

collectgarbage("setstepmul", somenumber)

When processing a not so large file but one that loads a bunch of open type fonts, we get

the following values. The left set is on linux (Taco’s machine) and the right set in mine.

stepmul run (s) mem (MB) run (s) mem (MB)

200 1.58 69.14 5.6 84.17

1000 1.63 69.14 6.5 72.32

2000 1.64 60.66 6.8 73.53

10000 1.71 59.94 7.0 72.30

Since I use an old laptop running Windows with a probably different TEX configuration

(fonts), and under some load, both columns don’t compare well, but the general idea is

the same. For practical usage a value of 1000 is probably best, especially because mem-

ory intensive font and script loading only happens at the first couple of pages.

48 48

48 48

Token speak 47

VII Token speak

tokenization

Most TEX users only deal with (keyed in) characters and (produced) output. Some will play

with boxes, skips and kerns or maybe even leaders (repeated sequences of the former).

Others will be grateful that macro package writers take care of such things.

Macro writers on the other hand deal properties of characters, like catcodes and a truck-

load of other codes, with lists made out of boxes, skips, kerns and penalties but even they

cannot look much deeper into TEX’s internals. Their deeper understanding comes from

reading the TEXbook or even looking at the source code.

When someone enters the magic world of TEX and starts asking around on a bit, he or she

will at some point get confronted with the concept of ‘tokens’. A token is what ends up

in TEX after characters have entered its machinery. Sometimes it even seems that one is

only considered a qualified macro writer if one can talk the right token--speak. So what

are those magic tokens and how can LuaTEX shed light on this.

In a moment we will show examples of how LuaTEX turns characters into tokens, but when

looking at those sequences, you need to keep a few things in mind:

• A sequence of characters that starts with an escape symbol (normally this is the back-

slash) is looked up in the hash table (which relates those names to meanings) and re-

placed by its reference. Such a reference is much faster than looking up the sequence

each time.

• Characters can have special meanings, for instance a dollar is often used to enter and

exit math mode, and a percent symbol starts a comment and hides everything follow-

ing it on the same line. These meanings are determined by the character’s catcode.

• All the characters that will end up actually typeset have catcode ‘letter’ or ‘other’ as-

signed. A sequence of items with catcode ‘letter’ is considered a word and can po-

tentially become hyphenated.

examples

We will now provide a few examples of how TEX sees your input.

Hi there!

cmd meaning properties

letter H
letter i

49 49

49 49

48 Token speak

spacer
letter t
letter h
letter e
letter r
letter e
other !

Here we see three kind ot tokens. At this stage a space is still recognizable as such but

later this will become a skip. In our current setup, the exclamation mark is not a letter.

Hans \& Taco use Lua\TeX \char 33\relax

cmd meaning properties

letter H
letter a
letter n
letter s
spacer
char_given &
spacer
letter T
letter a
letter c
letter o
spacer
letter u
letter s
letter e
spacer
letter L
letter u
letter a
call TeX expandable protected
char_num char
other 3
other 3
relax relax

Here we see a few new tokens, a ‘char_given’ and a ‘call’. The first represents a \chardef
i.e. a reference to a character slot in a font, and the second one a macro that will expand to

the TEX logo. Watch how the space after a control sequence is eaten up. The exclamation

mark is a direct reference to character slot 33.

50 50

50 50

Token speak 49

\noindent {\bf Hans} \par \hbox{Taco} \endgraf

cmd meaning properties

start_par noindent
left_brace
call bf expandable protected
letter H
letter a
letter n
letter s
right_brace
spacer
par_end par
make_box hbox
left_brace
letter T
letter a
letter c
letter o
right_brace
spacer
par_end endgraf

As you can see, some primitives and macro’s that are bound to them (like \endgraf)

have an internal representation on top of their name.

before \dimen2=10pt after \the\dimen2

cmd meaning properties

letter b
letter e
letter f
letter o
letter r
letter e
spacer
register dimen
other 2
other =
other 1
other 0
letter p
letter t

51 51

51 51

50 Token speak

spacer
letter a
letter f
letter t
letter e
letter r
spacer
the the expandable
register dimen
other 2

As you can see, registers are not explicitly named, one needs the associated register code

to determine it’s character (a dimension in our case).

before \inframed[width=3cm]{whatever} after

cmd meaning properties

letter b
letter e
letter f
letter o
letter r
letter e
spacer
call inframed expandable protected
other [
letter w
letter i
letter d
letter t
letter h
other =
other 3
letter c
letter m
other]
left_brace
letter w
letter h
letter a
letter t
letter e
letter v

52 52

52 52

Token speak 51

letter e
letter r
right_brace
spacer
letter a
letter f
letter t
letter e
letter r

As you can see, even when control sequences are collapsed into a reference, we still end

up with many tokens, and because each token has three properties (cmd, chr and id) in

practice we end up with more memory used after tokenization.

compound|-|word

cmd meaning properties

letter c
letter o
letter m
letter p
letter o
letter u
letter n
letter d
call | active expandable protected
other -
call | active expandable protected
letter w
letter o
letter r
letter d

This example uses an active character to handle compound words (a ConTEXt feature).

hm, \directlua 0 { tex.sprint("Hello World") }

cmd meaning properties

letter h
letter m
other ,
spacer
convert directlua expandable

53 53

53 53

52 Token speak

other 0
spacer
left_brace
spacer
letter t
letter e
letter x
other .
letter s
letter p
letter r
letter i
letter n
letter t
other (
other "
letter H
letter e
letter l
letter l
letter o
spacer
letter W
letter o
letter r
letter l
letter d
other !
other "
other)
spacer
right_brace

The previous example shows what happens when we include a bit of Lua code . . . it is

just seen as regular input, but when the string is passed to Lua, only the chr property is

passed, so we no longer can distinguish between letters and other characters.

A macro definition converts to tokens as follows.

cmd meaning properties

def def
undefined_cs expandable
mac_param

54 54

54 54

Token speak 53

other 1
mac_param
other 2
left_brace
other [
mac_param
other 2
other]
other [
mac_param
other 1
other]
right_brace
spacer
undefined_cs expandable
left_brace
letter A
right_brace
left_brace
letter B
right_brace

As we already mentioned, a token has three properties. More details can be found in the

reference manual so we will not go into much detail here.

The original interceptor for tokens but that one has been replaced by a more powerful

scanning mechanism. The following text is no longer applicable but kept as historic

reference. The new token scanner is discussed in later articles.

A most simple callback is:

\starttyping
callback.register('token_filter', token.get_next)
\stoptyping

In principle you can call \type {token.get_next} anytime you want
to intercept a token. In that case you can feed back tokens into
\TEX\ by using a trick like:

\starttyping
function tex.printlist(data)

callback.register('token_filter', function ()
callback.register('token_filter', nil)

55 55

55 55

54 Token speak

return data
end)

end
\stoptyping

Another example of usage is:

\starttyping
callback.register('token_filter', function ()

local t = token.get_next
local cmd, chr, id = t[1], t[2], t[3]
-- do something with cmd, chr, id
return { cmd, chr, id }

end)
\stoptyping

There is a whole repertoire of related functions, one is \type
{token.create}, which can be used as:

\starttyping
tex.printlist{

token.create("hbox"),
token.create(utf.byte("{"), 1),
token.create(utf.byte("?"), 12),
token.create(utf.byte("}"), 2),

}
\stoptyping

This results in: \ctxlua {
tex.printlist{

token.create("hbox"),
token.create(utf.byte("{"), 1),
token.create(utf.byte("?"), 12),
token.create(utf.byte("}"), 2),

}
}

While playing with this we made a few auxiliary functions that
permit things like:

\starttyping
tex.printlist (table.unnest ({

tokens.hbox,

56 56

56 56

Token speak 55

tokens.bgroup,
tokens.letters("12345"),
tokens.egroup,

}))
\stoptyping

Unnesting is needed because the result of the \type {letters} call
is a table, and the \type {printlist} function wants a flattened
table.

The result looks like: \ctxlua {
local t = table.unnest {

tokens.hbox,
tokens.bgroup,
tokens.letters("12345"),
tokens.egroup,

}
tex.printlist (t)
tokens.collectors.show(t)

}

In practice, manipulating tokens or constructing lists of tokens
this way is rather cumbersome, but at least we now have some
kind of access, if only for illustrative purposes.

\starttyping
\hbox{12345\hbox{54321}}
\stoptyping

can also be done by saying:

\starttyping
tex.sprint("\\hbox{12345\\hbox{54321}}")
\stoptyping

or under \CONTEXT's basic catcode regime:

\starttyping
tex.sprint(tex.ctxcatcodes, "\\hbox{12345\\hbox{54321}}")
\stoptyping

If you like it the hard way:

57 57

57 57

56 Token speak

\starttyping
tex.printlist (table.unnest ({

tokens.hbox,
tokens.bgroup,

tokens.letters("12345"),
tokens.hbox,

tokens.bgroup,
tokens.letters(string.reverse("12345")),

tokens.egroup,
tokens.egroup

}))
\stoptyping

This method may attract those who dislike the traditional \TEX\
syntax for doing the same thing. Okay, a careful reader will
notice that reversing the string in \TEX\ takes a bit more
trickery, so \unknown

The tokens etc. examples shows here make no sense anyway as we have a more ex-

tensive interface to the macro language: context.

58 58

58 58

How about performance 57

VIII How about performance

remark

The previous chapters already spent some words on performance and memory usage. By

the time that Taco and I were implementing, discussing and testing the callbacks related

to node lists, we were already convinced that in all areas covered so far (file management,

handling input characters, dealing with fonts, conversion to tokens, string and table ma-

nipulation, enz.) the TEX--Lua pair was up to the task And so we were quite confident that

processing nodes was not only an important aspect of LuaTEX but also quite feasable in

terms of performance (after all we needed it in order to deal with advanced typesetting

of Arab). When Taco was dealing with the TEX side of the story, I was experimenting with

possible mechanisms at the Lua end.

At the same time I got the opportunity to speed up the MetaPost to pdf converter and

both activities involved some timing. Here I report some of the observations that we

made in this process.

parsing

Expressions in Lua are powerful and definitely faster than regular expressions found in

other languages, but they have some limits. Most noticeably is the lack of alternation. In

Ruby one can say:

str = "there is no gamma in here, just an beta"

if str =~ /(alph|bet|delt)a/ then
print($1)

end

but in Lua you need a few more lines:

str = "there is no gamma in here, just an beta"

for _, v in pairs({'alpha','beta','delta'}) do
local s = str:match(v)
if s then

print(s)
break

end
end

59 59

59 59

58 How about performance

Interesting is that upto now I didn’t really miss alternation but it may as well be that the

lack of it drove me to come up with different solutions. For ConTEXt MkIV the MetaPost

to pdf converter has been rewritten in Lua. This is a prelude to direct Lua output from

MetaPost but I needed the exercise. It was among the first Lua code in MkIV.

Progressive (sequential) parsing of the data is an option, and is done in MkII using pure

TEX. We collect words and compare them to PostScript directives and act accordingly.

The messy parts are scanning the preamble, which has specials to be dealt with as well as

lots of unpredictable code to skip, and thefshow command which adds text to a graphic.

But real dirty are the code fragments that deal with setting the line width and penshapes

so the cleanup of this takes some time.

In Lua a different approach is taken. There is an mp table which collects a lot of functions

that more or less reflect the output of MetaPost. The functions take care of generating the

right pdf code and also handle the transformations needed because of the differences

between PostScript and pdf.

The sequential PostScript that comes from MetaPost is collected in one string and con-

verted using gsub into a sequence of Lua function calls. Before this can be done, some

cleanup takes place. The resulting string is then executed as Lua code.

As an example:

1 0 0 2 0 0 curveto

becomes

mp.curveto(1,0,0,2,0,0)

which results in:

\pdfliteral{1 0 0 2 0 0 c}

In between, the path is stored and transformed which is needed in the case of penshapes,

where some PostScript feature is used that is not available in pdf.

During the development of LuaTEX a new feature was added to Lua: lpeg. Withlpeg you

can define text scanners. In fact, you can build parsers for languages quite conveniently

so without doubt we will see it show up all over MkIV.

Since I needed an exercise to get accustomed with lpeg, I rewrote the mentioned con-

verter. I’m sure that a better implementation is possible than I did (after all, PostScript is

a language) but I went for a speedy solution. The following table shows some timings.

gsub lpeg

60 60

60 60

How about performance 59

2.5 0.5 100 times test graphic

9.2 1.9 100 times big graphic

The test graphic has about everything that MetaPost can output, including special tricks

that deal with transparency and shading. The big one is just four copies of the test graphic.

So, the lpeg based variant is about 5 times faster than the original variant. I’m not saying

that the original implementation is that brilliant, but a 5 time improvement is rather nice

especially when you consider that lpeg is still experimental and each version performs

better. The tests were done with lpeg version 0.5 which performs slightly faster than its

predecessor.

It’s worth mentioning that the original gsub based variant was already a bit improved

compared to its first implementation. There we collected the TEX (pdf) code in a table

and passed it in its concatenated form to TEX. Because the Lua to TEX interface is by now

quite efficient we can just pass the intermediate results directly to TEX.

file io

The repertore of functions that deal with individual characters in Lua is small. This does

not bother us too much because the individual character is not what TEX is mostly dealing

with. A character or sequence of characters becomes a token (internally represented by

a table) and tokens result in nodes (again tables, but larger). There are many more tokens

involved than nodes: in ConTEXt a ratio of 200 tokens on 1 node are not uncommon. A

letter like x become a token, but the control sequence \command also ends up as one

token. Later on, thisxmay become a character node, possibly surrounded by some kern-

ing. The input characters width result in 5 tokens, but may not end up as nodes at all, for

instance when they are part of a key/value pair in the argument to a command.

Just as there is no guaranteed one--to--one relationship between input characters and

tokens, there is no straight relation between tokens and nodes. When dealing with input

it is good to keep in mind that because of these interpretation stages one can never say

that 1 megabyte of input characters ends up as 1 million something in memory. Just think

of how many megabytes of macros get stored in a format file much smaller than the sum

of bytes.

We only deal with characters or sequences of bytes when reading from an input medium.

There are many ways to deal with the input. For instance one can process the input lines

as TEX sees them, in which case TEX takes care of the utf input. When we’re dealing with

other input encodings we can hook code into the file openers and readers and convert

the raw data ourselves. We can for instance read in a file as a whole, convert it using the

normal expression handlers or the byte(pair) iterators that LuaTEX provides, or we can go

real low level using native Lua code, as in:

61 61

61 61

60 How about performance

do
local function nextbyte(f)

return f:read(1)
end

function io.bytes(f)
return nextbyte, f

end
end

f = io.open("somefile.dat")
for b in io.bytes(f) do

do_something(b)
end
f:close()

Of course in practice one will need to integrate this into one of the reader callback, but

the principle stays the same. In case you wonder if calling functions for each byte is fast

enough . . . it’s more than fast enough for normal purposes, especially if we keep in mind

that other tasks like reading of, preparing of and dealing with fonts of processing token

lists take way more time. You can be sore that when half a second runtime is spent on

reading a file, processing may take minutes. If one wants to sqeeze more performance

out of this part, it’s always an option to write special libraries for that, but this is beyond

standard LuaTEX. We found out that the speed of loading data from files in Lua is mostly

related to the small size of Lua’s file buffer. Reading data stored in tables is extremely fast,

and even faster when precompiled into bytecode.

tables

When Taco and I were experimenting with the callbacks that intercept tokens and nodes,

we wondered what the impact would be on performance. Although in MkIV we allocate

quite some memory due to font handling, we were pretty sure that handling TEX’s internal

lists also could have their impact. Data related to fonts is not always subjected to garbage

collection, simply because it’s to be available permanently. List processing on the other

hand involves a lot of temporary allocated tables. During a run a real huge amount of to-

kens passes the machinery. When digested, they become nodes. For testing we normally

use this document (with the name mk.tex) and at the time of writing this, it has some 48

pages.

This document is of moderately complexity, but not as complex as the documents that

I normally process; they have with lots of graphics, layers, structural elements, maybe a

bit of xml parsing, etc. Nevertheless, we’re talking of some 24 million tokens entering the

62 62

62 62

How about performance 61

engine for 50 pages of text. Contrary to this the number of nodes is small: only 120 thou-

sand but the tables making up the nodes are more complex than token tables (with three

numbers per token). When all tokens are intercepted and returned unchanged, on my

machine the run is progressively slow and memory usage grows from 75M to 112M. There

is room for improvement there, especially in the garbage collector.

Side note: quite some of these tokens result from macro expansion. Also, when in the

input a \command is used, the callback passes it as one token. A command stores in

a format is already tokenized, but a command read from the input is tokenized when

read, so behind each token reported there can be a few more input characters, but their

number can be neglected compared to tokens originating from the macro package.

The token callback is rather slow when used for a whole document. However, this is

typically a callback that will only be used in very special situations and for a controlled

number of tokens. The node callback on the other hand can be set permanently. Fortu-

nately the number of nodes is relatively small. The overhead of a simple token handler

that just counts nodes is around 5% but most common manipulations with token lists

don’t take much more time. For instance, experiments with adding kerns around punc-

tuation (a French speciality) hardly takes time, resolving ligatures is not really noticeable

and applying inter--character spacing to a whole document is not that slow either. Ac-

tually, the last example is kind of special because it more than doubles the size of the

node lists. Inserting or removing table elements in relatively slow when tables are large

but there are some ways around this.

One of the reasons of whole--document token handling being slow is that each token is a

three--element table and so the garbage collector has to work rather hard. The efficiency

of this process is also platform dependent (or maybe compiler specific). Manipulating

the garbage collector parameters does not improve performance, unless this forces the

collector to be inefficient at the cost of a lot of memory.

However, when we started dealing with nodes, I gave tuning the collector another try

and on the mentioned test document the following observations were made when ma-

nipulating the step multiplier:

step runtime memory

200 24.0 80.5M

175 21.0 78.2M

150 22.0 74.6M

160 22.0 74.6M

165 21.0 77.6M

125 21.5 89.2M

100 21.5 88.4M

As a result, I decided to set the stepmul variable to 165.

63 63

63 63

62 How about performance

\ctxlua{collectgarbage("setstepmul", 165)}

However, when we were testing thenew lpeg based MetaPost converter, we ran into

problems. For table intensive operations, temporary disabling the garbage collector gave

a significant boost in speed. While testing performance we used the following loop:

\dorecurse {2000} {
\setbox \scratchbox \hbox \bgroup

\convertMPtoPDF{test-mps-procset.mps}{1}{1}
\egroup

}

In such a loop, turning the garbage collector on and off is disasterous. Because no other

Lua calls happen between these calls, the garbage collector is never invoked at all. As

a result, memory growed from the baseline of 45M to 120MB and processing became

incrementally slow. I found out that restarting the collector before each conversion kept

memory usage low and the speed also remained okay.

\ctxlua{collectgarbage("restart")}

Further experiments learned that it makes sense to restart the collector at each shipout

and before table intense operations. On mk.tex this results in a memory usage of 74M

(at the end of the run) and a runtime of 21 seconds.

Concerning nodes and speed/allocation issues, we need to be aware of the fact that this

was still somewhat experimental and in the final version of LuaTEX callbacks may occur

at different places and lists may be subjected to parsing multiple times at different mo-

ments and locations (for instance when we start dealing with attributes, an upcoming new

feature).

Back to tokens. The reason why applying the callback to every token takes a while has

to do with the fact that each token goes through the associated function. If you want to

have an idea of what this means for 24 million tokens, just run the following Lua code:

for i=1,24 do
print(i)
for j=1,1000*1000 do

local t = { 1, 2, 3 }
end

end
print(os.clock())

This takes some 60 seconds on my machine. The following code runs about three times

faster because the table has not to be allocated each time.

64 64

64 64

How about performance 63

t = { 1, 2, 3 }
for i=1,24 do

print(i)
for j=1,1000*1000 do

t[1]=4 t[2]=5 t[3]=6
end

end
print(os.clock())

Imagine this code to be interwoven with other code and TEX doing things with the tokens

it gets back. The memory pool will be scattered and garbage collecting will become more

difficult.

However, in practice one will only apply token handling to a marked piece of the input

data. It is for this reason that the callback is not:

callback.register('token_filter', function(t)
return t

end)

but instead

callback.register('token_filter', function()
return token.get_next()

end)

This gives the opportunity to fetch more than one token and keep fetching till a criterium

is met (for instance a sentinel).

Because token.get_next is not bound to the callback you can fetch tokens anytime

you want and only use the callback to feed back tokens into TEX. In ConTEXt MkIV there

is some collect and flush tokens present. Here is a trivial example:

\def\SwapChars{\directlua 0 {
do

local t = { token.get_next(), token.get_next() }
callback.register('token_filter', function()

callback.register('token_filter', nil)
return { t[2], t[1] }

end)
end

}}

\SwapChars HH \SwapChars TH

65 65

65 65

64 How about performance

Collecting tokens can take place inside the callback but also outside. This also gives you

the opportunity to collect them in efficient ways and keep an eye on the memory de-

mands.

Of course using TEX directly takes less code:

\def\SwapChars#1#2{#2#1}

The example shown here involves so little tokens that running it takes no noticeable time.

Here we show this definition in tokenized form:

cmd meaning properties

def def
undefined_cs expandable
mac_param
other 1
mac_param
other 2
left_brace
mac_param
other 2
mac_param
other 1
right_brace

66 66

66 66

Nodes and attributes 65

IX Nodes and attributes

introduction

Here we will tell a bit about the development of node access in LuaTEX. We will also in-

troduce attributes, a feature closely related to nodes. We assume that you are somewhat

familiar with TEX’s nodes: glyphs, kerns, glue, penalties, whatsits and friends.

tables

Access to node lists has been implemented rather early in the development because we

needed it to fulfil the objectives of the Oriental TEX project. The first implementation

used nested tables, indexed by number. In that approach, the first entry in each node

indicated the type in string format. At that time a horizontal list looked as follows:

list = {
[1] = "hlist",
[2] = 0,
...
[8] = {

[1] = {
[1] = "glyph",
...

},
[2] = {

...
}

}

Processing such lists is rather convenient since we can use the normal table iterators.

Because in practice only a few entries of a node are accessed, working with numbers

is no real problem: in slot 1 we have the type, en in the case of a horizontal or vertical list,

we know that slot 8 is either empty or a table. Looping over the list is done with:

for i, node in ipairs(list) do
if node[1] == "glyph" then

list[i][5] = string.byte(string.upper(string.char(node[5])))
end

end

Node processing code hooks into the box packagers and paragraph builder and a few

more places. This means that when using the table approach a lot of callbacks take place

67 67

67 67

66 Nodes and attributes

where TEX has to convert to and from Lua. Apart from processing time, we also have to

deal with garbage collection then and on an older machine with insufficient memory

interesting bottlenecks show up. Therefore some following optimizations were imple-

mented at the TEX end of the game.

Side note concerning speed: when memory of processing speed is low, runtime can in-

crease five to tenfold compared to pdfTEX when one does intensive node manipulations.

This is due to garbage collection at the Lua end and memory (de)allocation at the TEX end.

There is not much we can do about that. Interfacing has a price and hardware is more

powerful than when TEX was written. Processing the TEX book using no callbacks is not

that much slower than using a traditional TEX engine. However, nowadays fonts are more

extensive, demands for special features more pressing and that comes at a price.

When the list is not changed, the callback function can return the valuetrue. This signals

TEX that it can keep the original list. When the list is empty, the callback function can

return the value false. This signals TEX that the list can be discarded.

In order to minimize conversions and redundant processing, nested lists were not passed

as table but as a reference. One could expand such a list when needed. For instance,

when one hooks the same function in thehpack_filterandpre_linebreak_filter
callbacks, this way one can be pretty sure that each node is only processed once. Boxed

material that is part of the paragraph stream first enters the box packers and then already

is processed before it enters the paragraph callback. Of course one can decide the ex-

pand the referred sublist and process it again. Keep in mind that we’re still talking of a

table approach, but we’re slowly moving away from big conversions.

In principle one can insert and delete nodes in such a list but given that the average length

of a list representing a page is around 4000, you can imagine that moving around a large

amount of data is not that efficient. In order to cope with this, we experimented a lot and

came to solutions which will be discussed later on.

At the Lua end some tricks were used to avoid the mentioned insertion and deletion

penalty. When a node was deleted, we simply set its value to false. Deleting all glyphs

then became:

for i, node in ipairs(list) do
if node[1] == "glyph" then

list[i] = false
end

end

When TEX converted a Lua table back into its internal representation, it ignored such false

nodes.

68 68

68 68

Nodes and attributes 67

For insertion a dummy node was introduced at the Lua end. The next code duplicates

the glyphs.

for i, node in ipairs(list) do
if node[1] == "glyph" then

list[i] = { 'inline', 0, nil, { node, node } }
end

end

Just before we passed the resulting list back to TEX we collapsed these inline pseudo

nodes. This was a rather fast operation.

So far so good. But then we introduced attributes and keeping track of them as well as

processing them takes quite some processing power. Nodes with attributes then looked

like:

someglyph = {
[1] = "glyph", -- type
[2] = 0, -- subtype
[3] = { [1] = 5, [4] = 10 }, -- attributes
[4] = 88, -- slot
[5] = 32 -- font

}

Constructing attribute tables for each node is costly in terms of memory usage and pro-

cessing time and we found out that the garbage collector was becoming a bottleneck,

especially when resources are thin. We will go into more detail about attributes else-

where.

lists

At the same time that we discussed these issues, new Dutch word lists (adapted spelling)

were published and we started wondering if we could use such lists directly for hyphen-

ation purposes instead of relying on traditional patterns. Here the first observation was

that handling these really huge lists is no problem at all. Okay, it costs some memory but

we only need to load one of maybe a few of these lists. Hyphenating a paragraph us-

ing tables with hyphenated words and processing the paragraph related node list is not

only fast, it also gives us the opportunity to cross font boundaries. Of course there are

kerns and ligatures to deal with but this is no big deal. At least it can be an alternative or

addendum to the current hyphenator. Some languages have very small pattern files or a

very systematic approach to hyphenation so there is no reason to abandon the traditional

ways in all cases. Take your choice.

69 69

69 69

68 Nodes and attributes

When experimenting with the new implementation we tested the performance by letting

Lua take care of hyphenation, spell checking (marking words) and adding inter--character

kerns. When playing with big lists of words we found out that the caching mechanism

could not be used due to some limitations in the Lua byte code interpreter, so eventually

we ended up with a dedicated loader.

However, again we ran into performance problems when lists became more complex.

And so, instead of converting TEX datastructures into Lua tables userdata types came into

view. Taco already had reimplemented the node memory management, so a logical next

step was to reimplement the callbacks and box related code to deal with nodes as linked

lists. Since this is now the fashion in LuaTEX, you may forget the previous examples, al-

though it is not that hard to introduce table representations again once we need them.

Of course this resulted in an adaption to the regular TEX code but a nice side effect was

that we could now use fields instead of indexes into the node data structure. There is

a small price to pay in terms of performance, but this can be compensated by clever

programming.

someglyph = {
type = 41,
subtype = 0,
attributes = <attributes>,
char = 88,
font = 32

}

Attributes themselves are userdata. The same is true for components that are present

when we’re for instance dealing with ligatures.

As you can see, in the field variant, a type is a number. In practice, because Lua hashes

strings, working with strings is as fast when comparing, but since we now have the more

abstract type indicator, we stick with the numbers, which saves a few conversions. When

dealing with tables we get code like:

function loop_over_nodes(list)
for i, n in ipairs(list)

local kind = n[1]
if kind == "hlist" or kind == "vlist" then

...
end

end
end

But now that we have linked lists, we get the following. Node related methods are avail-

able in the node namespace.

70 70

70 70

Nodes and attributes 69

function loop_over_nodes(head)
local hlist, vlist = node.id('hlist'), node.id('vlist')
while head do

local kind = head.type
if kind == hlist or kind == vlist then

...
end
head = head.next

end
end

Using an abstraction (i.e. a constant representing hlist looks nice here, which is why

numbers instead of strings are used. The indexed variant is still supported and there we

have strings.

Going from a node list (head node) to a table is not that complex. Sometimes this can be

handy because manipulating tables is more convenient that messing around with user-

data when it comes down to debugging or tracing.

function nodes.totable(n)
function totable(n)

local f, tt = node.fields(n.id,n.subtype), { }
for _,v in ipairs(f) do

local nv = n[v]
if nv then

local tnv = type(nv)
if tnv == "string" or tnv == "number" then

tt[v] = nv
else -- userdata

tt[v] = nodes.totable(nv)
end

end
end
return tt

end
local t = { }
while n do

t[#t+1] = totable(n)
n = n.next

end
return t

end

71 71

71 71

70 Nodes and attributes

It will be clear that here we collect data in Lua while treating nodes as userdata keeps

most of it at the TEX side and this is where the gain in speed comes from.

side effects

While experimenting with node lists Taco and I ran into a peculiar side effect. One of the

tests involved adding kerns between glyphs (inter character spacing as sometimes uses

in titles in a large print). When applied to a whole document we noticed that at some

places (words) the added kerning was gone. We used the subtype zero kern (which is

most efficient) and in the process of hyphenating TEX removes these kerns and inserts

them later (but then based on the information stored in the font.

The reason why TEX removes the font related kerns, is the following. Consider the code:

\setbox0=\hbox{some text} the text \unhcopy0 has width \the\wd0

While constructing the \hbox, TEX will apply kerning as dictated by the font. Otherwise

the width of the box would not be correct. This means that the node list entering the

linebreak machinery contains such kerns. Because hyphenating works on words TEX will

remove these kerns in the process of identifying the words. It creates a string, removes

the original sequence of nodes, determines hyphenation points, and add the result to

the node list. For efficiency reasons TEX will only look at places where hyphenation makes

sense.

Now, imagine that we add those kerns in the callback. This time, all characters are sur-

rounded by kerns (which we gave subtype zero). When TEX is determining feasable break-

points (hyphenation), it will remove those kerns, but only at certain places. Because our

kerns are way larger than the normal interglyph kerns, we suddenly end up with an in-

tercharacter spaced paragraph that has some words without such spacing but the font

dictated kerns.

m o s t w o r d s a r e s p a c e d b u t some words a r e n o t

Of course a solution is to use a different kern, but at least this shows that the moment of

processing nodes as well as the kind of manipulations need to be chosen with care.

Kerning is a nasty business anyway. Imagine the following word:

effe

When typeset this turns into three characters, one of them being a ligature.

[char e] [liga ff (components f f)] [char e]

However, in Dutch, such a word hyphenates as:

72 72

72 72

Nodes and attributes 71

ef-fe

This means that in the node list we eventually find something:

[char e] [disc (f-) (f) (skip 1)] [liga ff (components f f)] [char
e]

So, eventually we need to kern between the character sequences [e,f-], [e,ff], [ff,e] and

[f,e].

attributes

We now arrive at attributes, a new property of nodes. Before we explain a bit more what

can be done with them, we show how to define a new attribute and toggle it. In the

following example the \visualizenextnodes macro is part of ConTEXt MkIV.

\newattribute\aa
\newattribute\ab
\visualizenextnodes \hbox {\aa1 T{\ab3\aa2 E}X}

For the sake of this example, we start the allocation at 2000 because we don’t want to

interfere with attributes already defined in ConTEXt. The node list resulting from the box

is shown at the next page. As you can see here, internally attributes become a linked list

assigned to the attr field. This means that one has to do some work in order to inspect

attributes.

function has_attribute(n,a)
if n and n.attr then

n = n.attr.next
while n do

if n.number == a then
return n.value

end
n = n.next

end
else

return false
end

end

The previous function can be used in tests like:

local total = 0
while n do

73 73

73 73

72 Nodes and attributes

t={
["attr"]={
["next"]={
["id"]="attribute",
["next"]={
["id"]="attribute",
["number"]=158,
["value"]=44,
},
["number"]=0,
["value"]=0,
},

},
["depth"]=918,
["dir"]="TLT",
["glue_order"]=0,
["glue_set"]=0,
["glue_sign"]=0,
["head"]={
["attr"]={
["next"]={
["id"]="attribute",
["next"]={
["id"]="attribute",
["number"]=158,
["value"]=44,

},
["number"]=0,
["value"]=0,
},
},
["char"]="U+00054",
["depth"]=918,
["expansion_factor"]=0,
["font"]=31,
["height"]=312869,
["id"]="glyph",
["lang"]=2,
["left"]=2,
["next"]={
["attr"]={
["next"]={
["id"]="attribute",
["next"]={
["id"]="attribute",
["number"]=158,
["value"]=44,
},
["number"]=0,
["value"]=0,

},
},
["char"]="U+00045",
["depth"]=918,

["expansion_factor"]=0,
["font"]=31,
["height"]=312869,
["id"]="glyph",
["lang"]=2,
["left"]=2,
["next"]={
["attr"]={
["next"]={
["id"]="attribute",
["next"]={
["id"]="attribute",
["number"]=158,
["value"]=44,

},
["number"]=0,
["value"]=0,
},

},
["char"]="U+00058",
["depth"]=918,
["expansion_factor"]=0,
["font"]=31,
["height"]=312869,
["id"]="glyph",
["lang"]=2,
["left"]=2,
["prev"]="<node>",
["right"]=3,
["uchyph"]=1,
["width"]=271122,
["xoffset"]=0,
["yoffset"]=0,
},
["prev"]="<node>",
["right"]=3,
["uchyph"]=1,
["width"]=221577,
["xoffset"]=0,
["yoffset"]=0,
},
["right"]=3,
["uchyph"]=1,
["width"]=242221,
["xoffset"]=0,
["yoffset"]=0,
},
["height"]=312869,
["id"]="hlist",
["shift"]=0,
["subtype"]="box",
["width"]=734920,
}

Figure IX.1 \hbox{\aa 1 T{\ab 3\aa 2 E}X \ab 4}

74 74

74 74

Nodes and attributes 73

if has_attribute(n,2000) then
total = total + 1

end
n = n.next

end
texio.write_nl(string.format(

"attribute 2000 has been seen % times", total
))

When implementing nodes and attributes we did rather extensive tests and one of the

test documents implemented some preliminary color mechanism based on attributes.

When handling the colors the previous function was called some 300.000 times and the

total node processing time (which also involved font handling) was some 2.9 seconds.

Implementing this function as a helper brought down node processing time to 2.4 sec-

onds. Of course the gain depends on the complexity of the list (nesting) and the number

of attributes that are set (upto 5 per node in this test). A few more helper functions are

available, some are for convenience, some gain us some speed.

The nice thing about attributes is that they obey grouping. This means that in the follow-

ing sequence:

x {\aa1 x \ab2 x} x

the attributes are assigned like:

x x(201=1) x(201=1,202=2) x

Internally LuaTEX does some optimizations with respect to assigning a sequence of similar

attributes, but you should keep in mind that in practice the memory usage will be larger

when using many attributes.

We played with color and other properties, hyphenation based on word lists (and track-

ing languages with attributes) and or special algorithms (url hyphenation), spell checking

(marking words as being spelled wrongly), and a few more things. This involved handling

attributes in several callbacks resulting in the insertion or deletion of nodes.

When using attributes for color support, we have to insert pdfliteral whatsit nodes

at some point depending on the current color. This also means that the time spent with

color support at the TEX end will be compensated by time spent at the Lua side. It also

means that because housekeeping to do with colors spanning pages and columns is gone

because from now on color information travels with the nodes. This saves quite some

ugly code.

Because most of the things that we want to do with attributes (and we have quite an

agenda) are already nicely isolated in ConTEXt, attributes will find their way rather soon

75 75

75 75

74 Nodes and attributes

in ConTEXt MkIV.

Let’s end with an observation. Attributes themselves are not something revolutionary.

However, if you had to deal with them in TEX, i.e. associate them with for instance actions

in during shipout, quite some time would have been spent on getting things right. Even

worse: it would have lead to never ending discussions in the TEX community and as such

it’s no surprise that something like this never showed up. The fact that we can use Lua

and manipulate node lists in many ways frees us from much discussion.

We are even considering in future versions of LuaTEX to turn font, language and direction

related information into attributes (in some private range) so this story is far from finished.

As a teaser, consider the following line of thinking.

Currently when a character enters the machinery, it becomes a glyph node. Among other

characteristics, this node contains information about the font and the slot in that font

which is used to represent that character. In a similar fashion, a space becomes glue with

a measure probably related to the current font.

However, with access to nodes and attributes, you can imagine the following scenario.

Instead of a font (internally represented by a font id), you use an attribute referring to a

font. At that time, the font field us just pointing to TEX’s null font. In a pass over the node

list, you resolve the character and their attributes to a fonts and (maybe) other characters.

Spacing can be postponed as well and instead of real glue values we can use multipliers

and again attributes point the way to resolve them.

Of course the question is if this is worth the trouble. After all typesetting is about fonts

and there is no real reason not to give them a special place.

76 76

76 76

Dirty tricks 75

X Dirty tricks

If you ever laid your hands on the TEXbook, the words ‘dirty tricks’ will forever be associ-

ated with an appendix of that book. There is no doubt that you need to know a bit of the

internals of TEX in order to master this kind of trickyness.

In this chaper I will show a few dirty LuaTEX tricks. It also gives an impression of what kind

of discussions Taco and I had when discussing what kind of support should be build in

the interface.

afterlua

When we look at Lua from the TEX end, we can do things like:

\def\test#1{%
\setbox0=\hbox{\directlua0{tex.sprint(math.pi*#1)}}%
pi: \the\wd0\space\the\ht0\space\the\dp0\par

}

But what if we are at the Lua end and want to let TEX handle things? Imagine the following

call:

\setbox0\hbox{} \dimen0=0pt \ctxlua {
tex.sprint("\string\\setbox0=\string\\hbox{123}")
tex.sprint("\string\\the\string\\wd0")

}

This gives: 16.31999pt. This may give you the impression that TEX kicks in immediately,

but the following example demonstrates otherwise:

\setbox0\hbox{} \dimen0=0pt \ctxlua {
tex.sprint("\string\\setbox0=\string\\hbox{123}")
tex.dimen[0] = tex.box[0].width
tex.sprint("\string\\the\string\\dimen0")

}

This gives: 0.0pt. When still in Lua, we never get to see the width of the box.

A way out of this is the following rather straightforward approach:

function test(n)
function follow_up()

tex.sprint(tex.box[0].width)
end

77 77

77 77

76 Dirty tricks

tex.sprint("\\setbox0=\\hbox{123}\\directlua 0 {follow_up()}")
end

We can provide a more convenient solution for this:

after_lua = { } -- could also be done with closures

function the_afterlua(...)
for _, fun in ipairs(after_lua) do

fun(...)
end
after_lua = { }

end

function afterlua(f)
after_lua[#after_lua+1] = f

end

function theafterlua(...)
tex.sprint("\\directlua 0 {the_afterlua("

.. table.concat({...},',') .. ")}")
end

If you look closely, you will see that we can (optionally) pass arguments to the function

theafterlua. Usage now becomes:

function test(n)
afterlua(function(...)

tex.sprint(string.format("pi: %s %s %s\\par",...))
end)
afterlua(function(wd,ht,dp)

tex.sprint(string.format("ip: %s %s %s\\par",dp,ht,wd))
end)
tex.sprint(string.format("\\setbox0=\\hbox{%s}",math.pi*n))
local box_0 = tex.box[0]
theafterlua(box_0.width,box_0.height,box_0.depth)

end

The last call may confuse you but since it does a print to TEX, it is in fact a delayed action.

A cleaner implementation is the following:

local delayed = { }

local function flushdelayed(...)

78 78

78 78

Dirty tricks 77

delayed = { }
for i=1, #t do

t[i](...)
end

end

function lua.delay(f)
delayed[#delayed+1] = f

end

function lua.flush(...)
tex.sprint("\\directlua{flushdelayed(" ..

table.concat({...},',') .. ")}")
end

Usage is similar:

function test(n)
lua.delay(function(...)

tex.sprint(string.format("pi: %s %s %s\\par",...))
end)
tex.sprint(string.format("\\setbox0=\\hbox{%s}",math.pi*n))
local box_0 = tex.box[0]
lua.flush(box_0.width,box_0.height,box_0.depth)

end

79 79

79 79

78 Dirty tricks

80 80

80 80

Going beta 79

XI Going beta

introduction

We’re closing in on the day that we will go beta with LuaTEX (end of July 2007). By now we

have a rather good picture of its potential and to what extend LuaTEX will solve some of

our persistent problems. Let’s first summarize our reasons for and objectives with LuaTEX.

• The world has moved from 8 bits to 32 bits and more, and this is quite noticeable in

the arena of fonts. Although Type1 fonts could host more than 256 glyphs, the associ-

ated technology was limited to 256. The advent of OpenType fonts will make it easier

to support multiple languages at the same time without the need to switch fonts at

awkward times.

• At the same time Unicode is replacing 8 bit based encoding vectors and code pages

(input regimes). The most popular and rather efficient utf8 encoding has become a

de factor standard in document encoding and interchange.

• Although we can do real neat tricks with TEX, given some nasty programming, we are

touching the limits of its possibilities. In order for it to survive we need to extend the

engine but not at the cost of base compatibility.

• Coding solutions in a macro language is fine, but sometimes you long to a more pro-

cedural approach. Manipulating text, handling io, interfacing . . . the technology

moves on and we need to move along too.

Hence LuaTEX: a merge of the mainstream traditional TEX engines, stripped from broken

or incomplete features and opened up to an embedded Lua scripting engine.

We will describe the impact of this new engine by starting from its core components re-

flected in the specific Lua interface libraries. Missing here is embedded support for Me-

taPost, because it’s not yet there (apart from the fact that we use Lua to convert MetaPost

graphics into TEX). Also missing is the interfacing to the pdf backend, which is also on the

agenda for later. Special extensions, for instance those dealing with runtime statistics are

also not discussed. Since we use ConTEXt as testbed, we will refer to the LuaTEX aware

version of this macro package, MkIV, but most conclusions are rather generic.

tex internals

In order to manipulate TEX’s data structures, we need access to all those registers. Already

early in the development, dimension and counters were accessible and when token and

node interfaces were implemented, those registers also were interfaced.

81 81

81 81

80 Going beta

Those who read the previous chapters will have noticed that we hardly discussed this

option. The reason is that we didn’t yet needed that access much in order to implement

font support and list processing. After all, most of the data that we need to access and

manipulate is not in the registers at all. Information meant for Lua can be stored in Lua

data structures. In fact, the basic call

\directlua 0 {some lua code}

has shown to be a pretty good starting point and the fact that one can print back to the

TEX engine overcomes the need to store results in shared variables.

\def\valueofpi{\directlua0{tex.sprint(math.pi()}}

The number of such direct calls is not that large anyway. More often a call to Lua will be

initiated by a callback, i.e. a hook into the TEX machinery.

What will be the impact of access on ConTEXt MkIV? This is yet hard to tell. In a later stage

of the development, when parts of the TEX machinery will be rewritten in order to get rid

of the current global nature of many variables, we will gain more control and access to

TEX’s internals. Core functionality will be isolated, can be extended and/or overloaded

and at that moment access to internals is much more needed. But certainly that will be

beyond the current registers and variables.

callbacks

These are the spine of LuaTEX: here both worlds communicate with each other. A callback

is a place in the TEX kernel where some information is passed to Lua and some result is

returned that is then used along the road. The reference manual mentions them all and

we will not repeat them here. Interesting is that in MkIV most of them are used and for

tasks that are rather natural to their place and function.

callback.register("tex_wants_to_do_this",
function but_use_lua_to_do_it_instead(a,b,c)

-- do whatever you like with a, b and c
return a, b, c

end
)

The impact of callbacks on MkIV is big. It provides us a way to solve persistent problems

or reimplement existing solutions in more convenient ways. Because we tested realistic

functionality on real (moderately complex) documents using a pretty large macro pack-

age, we can safely conclude that callbacks are quite efficient. Stepwise Lua kicks in in

order to:

82 82

82 82

Going beta 81

• influence the input medium so that it provides a sequence of utf characters

• manipulate the stream of characters that will be turned into a list of tokens

• convert the list of tokens into another list of tokens

• enhance the list of nodes that will be turned into a typeset paragraph

• tweak the mechanisms that come into play when lines are constructed

• finalize the result that will end up in the output medium

Interesting is that manipulating tokens is less useful than it may look at first sight. This has

to do with the fact that it’s (mostly) an expanded stream and at that time we’ve lost some

information or need to do quite some coding in order to analyze the information and act

upon it.

Will ConTEXt users see any of this? Chances are small that they will, although we will

provide hooks so that they can add special code themselves. Users activating a callback

has some danger, since it may overload already existing functionality. Chaining function-

ality in a callback also has drawbacks, if only that one may be confronted with already

processed results and/or may destroy this result in unpredictable ways. So, as with most

low level TEX features, ConTEXt users will work with more abstract interfaces.

in- and output

In MkIV we will no longer use the kpse library directly. Instead we use a reimplementation

in Lua that not only is more efficient, but also more powerful: it can read from zip files,

use protocols, be more clever in searching, reencodes the input streams when needed,

etc. The impact on MkIV is large. Most TEX code that deals with input reencoding has

gone away and is replaced by Lua code.

Although it is not directly related with reading from the input medium, in that stage we

also replaced verbatim handling code. Such (often messy) catcode related situations are

now handled more flexible, thanks to fast catcode table switching (a new LuaTEX feature)

and features like syntax highlighting can be made more neat.

Buffers, a quite old but frequently used feature of ConTEXt, are now kept in memory in-

stead of files. This speeds up runs. Auxiliary data, aka multi--pass information, will no

longer be stored in TEX files but in Lua files. In ConTEXt we have one such auxiliary file

and in MkII this file is selectively filtered, but in MkIV we will be less careful with memory

and load all that data once. Such speed improvements compensate the fact that LuaTEX

is somewhat slower than it’s ancestor pdfTEX. (Actually, the fact that LuaTEX is a bit slower

that pdfTEX is mostly due to the fact that it has Aleph code on board.)

Users often wonder why there are so many temporary files, but these mostly relate to

MetaPost support. These will go away once we have MetaPost as a library.

83 83

83 83

82 Going beta

In a similar way support for xml will be enriched. We already have experimental loaders,

filters and other code, and integration is on the agenda. Since ConTEXt uses xml for some

sub systems, this may have some impact.

Other io related improvements involve debugging, error handling and logging. We can

pop up helpers and debug screens (MkIV can produce xhtml output and then launch a

browser). Users can choose more verbose logging of io and ask for log data to be for-

matted in xml. These parts need some additional work, because in the end we will also

reimplement and extend TEX’s error handling.

Another consequence of this will be that we will be able to package TEX more conve-

niently. We can put all the files that are needed into a zip file so that we only need to ship

that zip file and a binary.

font readers

Handling OpenType involves more that just loading yet another font format. Of course

loading an OpenType file is a necessity but we need to do more. Such fonts come with

features. Features can involve replacing one representation of a character by another

one of combining sequences into other sequences and finaly resolving them to one or

more glyphs.

Given the numerous options we will have to spend quite some time on extending Con-

TEXt with new features. Instead of defining more and more font instances (the traditional

TEX way of doing things) we will will provides feature switching. In the end this will make

the often confusing font mechanisms less complex for the user to understand. Instead of

for instance loading an extra font (set) that provides old style numerals, we will decouple

this completely from fonts and provide it as yet another property of a piece of text. The

good news is that much of the most important machinery is alresady in place (ligature

building and such). Here we also have to decide what we let TEX do and what we do by

processing node lists. For instance kerning and ligature building can either be done by

TEX or by Lua. Given the fact that TEX does some juggling with character kerning while

determining hyphenation points, we can as well disable TEX’s kerning and let Lua handle

it. Thereby TEX only has to deal with paragraph building. (After all, we need to leave TEX

some core functionality to deal with.)

Another everlasting burden on macro writers and users is dealing with character repre-

sentations missing from a font. Of course, since we use named glyphs in ConTEXt MkII

already much of this can be hidden, but in MkIV we can create virtual fonts on the fly and

keep thinking in terms of characters and glyphs instead of dealing with boxes and other

structures that don’t go well with for instance hyphenating words.

This brings us to hyphenation, historically bound to fonts in traditional TEX. This depen-

dency will go away. In MkII we already ship utf8 based patterns fore some time and

84 84

84 84

Going beta 83

these can be conveniently used in MkIV too. We experimented with using hyphenated

word lists and this looks promising. You may expect more advanced ways of dealing with

words, hyphenation and paragraph building in the near future. When we presented the

first version of LuaTEX a few years ago, we only had the basic \directlua call available

and could do a bit of string manipulation on the input. A fancy demo was to color wrongly

spelled words. Now we can do that more robustly on the node lists.

Loading and preparing fonts for usage in LuaTEX or actually MkIV because this depends on

the macro package takes some runtime. For this reason we introduces caching into MkIV:

data that is used frequently is written to a cache and converted to Lua bytecode. Loading

the converted files is incredibly fast. Of course there is aprice to pay: disk space, but that

comes cheap these days. Also, it may as well be compensated by the fact that we can

kick out many redundant files from the core TEX distributions (metric files for instance).

tokens handlers

Do we need to handle tokens? So far in experimental MkIV code we only used these

hooks to demonstrate what TEX does with your characters. For a while we also con-

structed token lists when we wanted to inject \pdfliteral code in node lists, but that

became obsolete when automatic string to token conversion was introduced in the node

conversion code. Now we inject literal whatsit nodes. It may be worth noticing that play-

ing with token lists gave us some good insight in bottlenecks because quite some small

table allocation and garbage collections goes on.

nodes and attributes

These are the most promissing new features. In itself, nodes are not new, nor are attrib-

utes. In some sense when we use primitives like \hbox, \vskip, \lastpenalty the

result is a node, but we can only control and inspect their properties within hard coded

bounds. We cannot really look into boxes, and the last penalty may be obscured by a

whatsit (a mark, a special, a write, etc.). Attributes could be fakes with marks and macro

bases stacks of states. Native attributes are more powerful and each node can cary a

truckload of them.

With LuaTEX, out of a sudden we can look into TEX’s internals and manipulate them. Although

I don’t claim to be a real expert on these internals, even after over a decade of TEX pro-

gramming, I’m sometimes surprised what I found there. When we are playing with these

interfaces, we often run into situations where we need to add much print statements to

the Lua code in order to find out what TEX is returning. It all has to do with the way TEX

collects information and when it decides to act. In regular TEX much goes unnoticed, but

when one has for instance a callback that deals with page building there are many places

where this gets called and some of these places need special treatment.

85 85

85 85

84 Going beta

Undoubtely this will have a huge impact on ConTEXt MkIV. Instead of parsing an input

stream, we can now manipulate node lists in order to achieve (slight) inter--character

spacing which is often needed in sectioning titles. The nice thing about this new ap-

proach is that we no longer have interference from characters that need multiple tokens

(input characters) in order to be constructed, which complicates parsing (needed to split

glyphs in MkII).

Signaling where to letterspace is done with the mentioned attributes. There can be many

of them and they behave like fonts: they obey grouping, travel with the nodes and are

therefore insensitive for box and page splitting. They can be set at the TEX end but needs

to be handled at the Lua side. One may wonder what kind of macro packages would be

around when TEX has attributes right from its start.

In MkII letterspacing is handled by parsing the input and injecting skips. Another ap-

proach would be to use a font where each character has more kerns or space around it (a

virtual font can do that). But that would not only demand knowledge of what fonts need

that that treatment, but also many more fonts and generating them is no fun for users. In

pdfTEX there is a letterspace feature, where virtual fonts are generated on the fly, and with

such an approach one has to compensate for the first and last character in a line, in order

to get rid of the left- and rightmost added space (being part of the glyph). The solution

where nodes are manipulated does put that burden upon the user.

Another example of node processing is adding specific kerns around some punctuation

symbols, as is custom in French. You don’t want to know what it takes to do that in tradi-

tional TEX, but if I mention the fact that colons become active characters you can imagine

the nightmare. Hours of hacking and maybe even days of dealing with mechanisms that

make these active colons workable in places where colons are used for non text are now

even more wasted time if you consider that it takes a few lines of code in MkIV. Currently

we let ConTEXt support both good old TEX (represented by pdfTEX), X ETEX (a Unicode and

OpenType aware variant) and LuaTEX by shared and dedicated MkII and MkIV code.

Vertical spacing can be a pain. Okay, currently MkII has a rather sophisticated way to

deal with vertical spacing in ways that give documents a consistent look and feel, but

every now and then we run into border cases that cannot be dealt with simply because

we cannot look back in time. This is needed because TEX adds content to the main vertical

list and then it’s gone from our view. Take for instance section titles. We don’t want them

dangling at the bottom of a page. But at the same time we want itemized lists to look

well, i.e. keep items together in some situations. Graphics that follow a section title pose

similar problems. Adding penalties helps but these may come too late, or even worse,

they may obscure previous skips which then cannot be dealt with by successive skips. To

simplify the problem: take a skip of 12pt, followed by a penalty, followed by another skip

of 24pt. In ConTEXt this has to become a penalty followed by one skip of 24pt.

86 86

86 86

Going beta 85

Dealing with this in the page builder is rather easy. Ok, due to the way TEX adds content

to the page stream, we need to collect, treat and flush, but currently this works all right.

In ConTEXt MkIV we will have skips with three additional properties: priority over other

skips, penalties, and a category (think of: ignore, force, replace, add).

When we experimented with this kind of things we quickly decided that additional ex-

periments with grid snapping also made sense. These mechanisms are among the more

complex ones on ConTEXt. A simple snap feature took a few lines of Lua code and hook-

ing it into MkIV was not that complex either. Eventually we will reimplement all vertical

spacing and grid snapping code of MkII in Lua. Because one of ConTEXt column mech-

anism is grid aware, we may as well adath that and/or implement an additional mecha-

nism.

A side effect of being able to do this in LuaTEX is that the code taken from pdfTEX is cleaned

up: all (recently added) static kerning code is removed (inter--character spacing, pre- and

post character kerning, experimental code that can fix the heights and depths of lines,

etc.). The core engine will only deal with dynamic features, like hz and protruding.

So, the impact on MkIV of nodes and attributes is pretty big! Horizontal spacing isues,

vertical spacing, grid snapping are just a few of the things we will reimplement. Other

things are line numbering, multiple content streams with synchronization, both are al-

ready present in MkII but we can do a better job in MkIV.

generic code

In the previous text MkIV was mentioned often, but some of the features are rather generic

in nature. So, how generic can interfaces be implemented? When the MkIV code has ma-

tured, much of the Lua and glue--to--TEX code will be generic in nature. Eventually Con-

TEXt will become a top layer on what we internally call MetaTEX, a collection of kernel

modules that one can use to build specialized macro packages. To some extent MetaTEX

can be for LuaTEX what plain is for TEX. But if and how fast this will be reality depends on

the amount of time that we (and other members of the ConTEXt development team) can

allocate to this.

87 87

87 87

86 Going beta

88 88

88 88

Zapfing fonts 87

XII Zapfing fonts

remark

The actual form of the tables shown here might have changed in the meantime. However,

since this document describes the stepwise development of LuaTEX and ConTEXt MkIV we don’t

update the following information. The rendering might differ from earlier rendering simply

because the code used to process this chapter evolves.

features

In previous chapters we’ve seen support for OpenType features creep into LuaTEX and

ConTEXt MkIV. However, it may not have been clear that so far we were just feeding the

traditional TEX machinery with the right data: ligatures and kerns. Here we will show

what so called features can do for you. Not much Lua code will be shown, if only be-

cause relatively complex code is needed to handle this kind of trickery with acceptable

performance.

In order to support features in their full glory more is needed than TEX’s ligature and kern

mechanisms: we need to manipulate the node list. As a result, we have now a second

mechanism built into MkIV and users can choose what method they like most. The first

method, calledbase, is less powerful and less complete than the one namednode. Even-

tually ConTEXt will use the node method by default.

There are two variants of features: substitutions and positioning. Here we concentrate on

substitutions of which there are several. Positioning is for instance used for specialized

kerning as needed in for instance typesetting Arab.

One character representation can be replaced by one or more fixed alternatives or alter-

natives chosen from a list of alternatives (substitutions or alternates). Multiple characters

can be replaces by one character (substitutions, alternates or a ligature). The replace-

ments can depend on preceding and/or following glyphs in which case we say that the

replacement is driven by rules. Rules can deal with single glyphs, combinations of glyphs,

classes (defined in the font) of glyphs and/or ranges of glyphs.

Because the available documentation of OpenType is rather minimalistic and because

most fonts are relatively simple, you can imagine that figuring out how to implement sup-

port for fonts with advanced features is not entirely trivial and involves some trial and er-

ror. What also complicate things is that features can interfere. Yet another complicating

factor is that in the order of applying a rule may obscure a later rule. Such fonts don’t ship

with manuals and examples of correct output are not part of the buy.

89 89

89 89

88 Zapfing fonts

We like testing LuaTEX’s open type support with Palatino Regular and Palatino Sans and

good old Type1 support with Optima Nova. So it makes sense to test advanced features

with Zapfino Pro. This font has many features, which happen to be implemented by

Adam Twardoch, a well known font expert and familiar with the TEX community. We had

the feeling that when LuaTEX can support Zapfino Pro, designed by Hermann Zapf and

enhanced by Adam, we have reached a crucial point in the development.

The first thing that you will observe when using this font is that the files are larger than

normal, especially the cached versions in MkIV. This made me extend some of the seri-

alization code that we use for caching font data so that it could handle huge tables better

but at the cost of some speed. Once we could handle the data conveniently and as a

side effect look into the font data with an editor, it became clear that implementing for

the calt and clig features would take a bit of coding.

example

Before some details will be discussed, we will show two of the test texts that ConTEXt

users normally use when testing layouts or new features, a quote from E.R. Tufte and one

from Hermann Zapf. The TEX code shows how features are set in ConTEXt.

\definefontfeature
[zapfino]
[language=nld,script=latn,mode=node,
calt=yes,clig=yes,liga=yes,rlig=yes,tlig=yes]

\definefont
[Zapfino]
[ZapfinoExtraLTPro*zapfino at 24pt]
[line=40pt]

\Zapfino
\input tufte \par

We thrive in information--thick worlds because of our marvelous and everyday ca-

pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-

nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,

catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,

90 90

90 90

Zapfing fonts 89

distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, fil-

ter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, out-

line, summarize, itemize, review, dip into, flip through, browse, glance into, leaf

through, skim, refine, enumerate, glean, synopsize, winnow the wheat from the chaff

and separate the sheep from the goats.

You don’t even have to look too closely in order to notice that characters are represented

by different glyphs, depending on the context in which they appear.

\definefontsynonym
[Zapfino]
[ZapfinoExtraLTPro]
[features=zapfino]

\definedfont
[Zapfino at 24pt]

\setupinterlinespace
[line=40pt]

\input zapf \par

Coming back to the use of typefaces in electronic publishing: many of the new

typographers receive their knowledge and information about the rules of typography

from books, from computer magazines or the instruction manuals which they get with

the purchase of a PC or software. There is not so much basic instruction, as

of now, as there was in the old days, showing the differences between good and

bad typographic design. Many people are just fascinated by their PC's tricks,

91 91

91 91

90 Zapfing fonts

and think that a widely--praised program, called up on the screen, will make every-

thing automatic from now on.

obeying rules

When we were testing node based feature support, the only way to check this was to

identify the rules that lead to certain glyphs. The more unique glyphs are good candidates

for this. For instance

• there is s special glyph representing c/o
• in the input stream this is the character sequence c/o
• so there most be a rule that tells us that this sequence becomes that ligature

As said, in this case, the replacement glyph is supposed to be a ligature and indeed there

is such a ligature: c_slash_o. Of course, this replacement will only take place when the

sequence is surrounded by spaces.

However, when testing this, we were not looking at this rule but at the (randomly chosen)

rule that was meant to intercept the alternative h.2 followed by z.4. Interesting was that

this resolved to a ligature indeed, but the shape associated with this ligature was an h,

which is not right. Actually, a few more of such rules turned out to be wrong. It took a bit

of an effort to reach this conclusion because of the mentioned interferences of features

and rules. At that time, the rule entry (in raw LuaTEX table format) looks as follows:

[44] = {
["format"] = "coverage",
["rules"] = {

[1] = {
["coverage"] = {

["ncovers"] = {
[1] = "h.2",
[2] = "z.4",

}
},
["lookups"] = {

[1] = {
["lookup_tag"] = "L084",
["seq"] = 0,

}
}

92 92

92 92

Zapfing fonts 91

}
}
["script_lang_index"] = 1,
["tag"] = "calt",
["type"] = "chainsub"

}

Instead of reinventing the wheel, we used the FontForge libraries for reading the OpenType

font files. Therefore the LuaTEX table is resembling the internal FontForge data structures.

Currently we show the version 1 format.

Here ncovers means that when the current character has shape h (h.2) and the next

one is z (z.4) (a sequence) then we need to apply the lookup internally tagged L084.

Such a rule can be more extensive, for instance instead of h.2 one can have a list of char-

acters, and there can be bcovers and fcovers as well, which means that preceding or

following character need to be taken into account.

When this rule matches, it resolves to a specification like:

[6] = {
["flags"] = 0,
["lig"] = {

["char"] = "h",
["components"] = "h.2 z.4",

},
["script_lang_index"] = 65535,
["tag"] = "L084",
["type"] = "ligature",

}

Here tag and script_lang_index are kind of special and are part of an private feature

system, i.e. they make up the cross reference between rules and glyphs. Watch how the

components don’t match the character, which is even more peculiar when we realize

that these are the initials of the author of the font. It took a couple of Skype sessions and

mails before we came to the conclusion that this was probably a glitch in the font. So,

what to do when a font has bugs like this? Should one disable the feature? That would be

a pitty because a font like Zapfino depends on it. On the other hand, given the number

of rules and given the fact that there are different rule sets for some languages, you can

imagine that making up the rules and checking them is not trivial.

We should realize that Zapfino is an extraordinary case, because it used the OpenType

features extensively. We can also be sure that the problems will be fixed once they are

known, if only because Adam Twardoch (who did the job) has exceptionally high stan-

dards but it may take a while before the fix reached the user (who then has to update

93 93

93 93

92 Zapfing fonts

his or her font). As said, it also takes some effort to run into the situation described here

so the likelihood of running into this rule is small. This also brings to our attention the

fact that fonts can now contain bugs and updating them makes sense but can break exist-

ing documents. Since such fonts are copyrighted and not available on line, font vendors

need to find ways to communicate these fixes to their customers.

Can we add some additional checks for problems like this? For a while I thought that it

was possible by assuming that ligatures have names like h.2_z.4 but alas, sequences of

glyphs are mapped onto ligatures using mappings like the following:

three fraction four.2 threequarters ¾
three fraction four threequarters ¾
d r d_r dr
e period e_period e.
f i fi fi
f l fl fl
f f i f_f_i ffi
f t f_t ft
Some ligature have no_ in their names and there are also some inconsistencies, compare

thefl andf_f_i. Here font history is painfully reflected in inconsistency and no solution

can be found here.

So, in order to get rid of this problem, MkIV implements a method to ignore certain rules

but then, this only makes sense if one knows how the rules are tagged internally. So, in

practice this is no solution. However, you can imagine that at some point ConTEXt ships

with a database of fixes that are applied to known fonts with certain version numbers.

We also found out that the font table that we used was not good enough for our purpose

because the exact order in what rules have to be applies was not available. Then we

noticed that in the meantime FontForge had moved on to version 2 and after consulting

the author we quickly came to the conclusion that it made sense to use the updated

representation.

In version 2 the snippet with the previously mentioned rule looks as follows:

["ks_latn_l_66_c_19"]={
["format"]="coverage",
["rules"]={
[1]={
["coverage"]={
["current"]={
[1]="h.2",
[2]="z.4",

94 94

94 94

Zapfing fonts 93

}
},
["lookups"]={
[1]={
["lookup"]="ls_l_84",
["seq"]=0,

}
}
}

},
["type"]="chainsub",

},

The main rule table is now indexed by name which is possible because the order of rules

is specified somewhere else. The key ncovers has been replaced by current. As long

as LuaTEX is in beta stage, we have the freedom to change such labels as some of them

are rather FontForge specific.

This rule is mentioned in a feature specification table. Here specific features are associ-

ated with languages and scripts. This is just one of the entries concerning calt. You can

imagine that it took a while to figure out how best to deal with this, but eventually the

MkIV code could do the trick. The cryptic names are replacements for pointers in the

FontForge datastructure. In order to be able to use FontForge for font development and

analysis, the decision was made to stick closely to its idiom.

["gsub"]={
...
[67]={
["features"]={
[1]={
["scripts"]={
[1]={
["langs"]={
[1]="AFK ",
[2]="DEU ",
[3]="NLD ",
[4]="ROM ",
[5]="TRK ",
[6]="dflt",
},
["script"]="latn",

}
},

95 95

95 95

94 Zapfing fonts

["tag"]="calt",
}
},
["name"]="ks_latn_l_66",
["subtables"]={
[1]={
["name"]="ks_latn_l_66_c_0",

},
...
[20]={
["name"]="ks_latn_l_66_c_19",

},
...
},
["type"]="gsub_context_chain",

},

practice

The few snapshots of the font table probably don’t make much sense if you haven’t seen

the whole table. Well, it certainly helps to see the whole picture, but we’re talking of a

14 MB file (1.5 MB bytecode). When resolving ligatures, we can follow a straightforward

approach:

• walk over the nodelist and at each character (glyph node) call a function

• this function inspects the character and takes a look at the following ones

• when a ligature is identified, the sequence of nodes is replaced

Substitutions are not much different but there we look at just one character. However,

contextual substitutions (and ligatures) are more complex. Here we need to loop over a

list of rules (dependent on script and language) and this involves a sequence as well as

preceding and following characters. When we have a hit, the sequence will be replaced

by another one, determined by a lookup in the character table. Since this is a rather

time consuming operation, especially because many surrounding characters need to be

taken into account, you can imagine that we need a bit of trickery to get an acceptable

performance. Fortunately Lua is pretty fast when it comes down to manipulating strings

and tables, so we can prepare some handy datastructures in advance.

When testing the implementation of features one need to be aware of the fact that some

appearance are also implemented using the regular ligature mechanisms. Take the fol-

lowing definitions:

\definefontfeature

96 96

96 96

Zapfing fonts 95

[none]
[language=dflt,script=latn,mode=node,liga=no]

\definefontfeature
[calt]
[language=dflt,script=latn,mode=node,liga=no,calt=yes]

\definefontfeature
[clig]
[language=dflt,script=latn,mode=node,liga=no,clig=yes]

\definefontfeature
[dlig]
[language=dflt,script=latn,mode=node,liga=no,dlig=yes]

\definefontfeature
[liga]
[language=dflt,script=latn,mode=node]

This gives:

none on the synthesis winnow the wheat
calt on the synthesis winnow the wheat
clig on the synthesis winnow the wheat
dlig on the synthesis winnow the wheat
liga on the synthesis winnow the wheat

Here are Adam’s recommendations with regards to the dlig feature: “The dlig feature

is supposed to by use only upon user’s discretion, usually on single runs, words or even

pairs. It makes little sense to enabledlig for an entire sentence or paragraph. That’s how

the OpenType specification envisions it.”

When testing features it helps to use words that look similar so next we will show some

examples that used. When we look at these examples, we need to understand that when

a specific character representation is analyzed, the rules can take preceding and follow-

ing characters into account. The rules take characters as well as their shapes, or more

precisely: one of their shapes since Zapfino has many variants, into account. Since dif-

ferent rules are used for languages (okay, this is limited to only a subset of languages that

use the latin script) not only shapes but also the way words are constructed are taken into

account. Designing te rules is definitely non trivial.

When testing the implementation we ran into cases where the initialt showed up wrong,

for instance in the the Dutch word troef. Because space can be part of the rules, we

need to handle the cases where words end and start and boxes are then kind of special.

97 97

97 97

96 Zapfing fonts

troef troef troef troeftroef troef \par
\ruledhbox{troef troef troef troeftroef troef} \par
\ruledhbox{troef 123} \par
\ruledhbox{troef} \ruledhbox{troef } \ruledhbox{ troef} \ruledhbox
{ troef } \par

troef troef troef troeftroef troef

troef troef troef troeftroef troef
troef 123
troef
troef
troef
troef

Unfortunately, this does not work well with punctuation, which is less prominent in the

rules than space. In our favourite test quote of Tufte, we have lots of commas and there

it shows up:

review review review, review \par
itemize, review \par
itemize, review, \par

review review review, review
itemize, review
itemize, review,
Of course we can decide to extend the rule base at runtime and this may well happen

when we experiment more with this font.

The next one was one of our first test lines, Watch the initial and the Zapfino ligature.

Welcome to Zapfino

Welcome to Zapfino

For a while there was a bug in the rule handler that resulted in the variant of the y that

has a very large descender. Incidentally the word synthesize is also a good test case

for the the pattern which gets special treatment because there is a ligature available.

98 98

98 98

Zapfing fonts 97

synopsize versus synthesize versus
synthase versus sympathy versus synonym

synopsize versus synthesize versus synthase versus sympathy versus synonym

Here are some examples that use the g, d and f in several places.

eggen groet ogen hagen \par
dieren druiven onder aard donder modder \par
fiets effe flater triest troef \par

eggen groet ogen hagen

dieren druiven onder aard donder modder

fiets effe flater triest troef

Let’s see how well Hermann has taken care of the h’s representations. There are quite

some variants of the lowercase one:

h h
h.2 h
h.3 h
h.4 h
h.5 h
h.init h
h.sups h
h.sc h
orn.73 h
How about the uppercase variant, as used in his name:

M Mr Mr. H He Her Herm Herma Herman Hermann Z Za Zap Zapf \par
Mr. Hermann Zapf

M Mr Mr. H He Her Herm Herma Herman Hermann Z Za Zap Zapf

Mr. Hermann Zapf

Of course we have to test another famous name:

99 99

99 99

98 Zapfing fonts

D Do Don Dona Donal Donald K Kn Knu Knut Knuth \par
Don Knuth Donald Knuth Donald E. Knuth DEK \par
Prof. Dr. Donald E. Knuth \par

D Do Don Dona Donal Donald K Kn Knu Knut Knuth

Don Knuth Donald Knuth Donald E. Knuth DEK

Prof. Dr. Donald E. Knuth
Unfortunately the Lua and TEX logos don’t come out that well:

L Lu Lua l lu lua t te tex TeX luatex luaTeX LuaTeX

L Lu Lua l lu lua t te tex TeX luatex luaTeX LuaTeX
This font has quite some ornaments and there is an ornm feature that can be applied.

We’re still not sure about its usage, but when one keys in text in lowercase, hermann
comes out as follows:

hermann
As said in the beginning, dirty implementation details will be kept away from the reader.

Also, you should not be surprised if the current code had some bugs or does some things

wrong. Also, if spacing looks a bit weird to you, keep in mind that we’re still in the middle

of sorting things out.

Taco Hoekwater & Hans Hagen

100 100

100 100

Arabic 99

XIII Arabic

Let’s start with admitting that I don’t speak or read Arabic, and the sample texts used here

are part of what we use in the Oriental TEX project for exploring advanced Arabic typeset-

ting. This chapter will not discuss arab typesetting in much detail, but should be seen as

complementing the ‘Onthology on Arabic Typesetting’ written by Idris. Here I will only

show what the consequences are of applying features. Because we see glyphs but often

still deal with characters when analyzing what to do, we will use these terms mixed.

The font that we use here is the ‘arabtype’ font by MicroSoft. This font covers Latin scripts

and Arabic and has a rich set of features. It’s also a rather big font, so it is a nice torture

test for LuaTEX.

First we show what MkIV does with a sequence of characters when no features are en-

abled by the user. We have turn on color tracing. This gives us some feedback about

the how the analyze worked out. Analyzing for Arabic boils down to marking the initial,

mid, final and isolated forms. We don’t need to explicitly enable analyzing, it’s on by

default. The mode flag is set to node because we cannot use TEX’s default mechanism.

When LuaTEX and MkIV are beyond beta stage, we will use that mode by default.

analyze=yes, devanagari=yes, dummies=yes,
extensions=yes, extrafeatures=yes, features=yes,
language=dflt, mathkerns=yes, mode=node,
script=arab, spacekern=yes

ِهّٰلِل

ِءۤاَنَّثلاِناَسِلِبٖ،هِدْجَمِراَحِبْنِمٌفِرَتْغُمٖ،هِدْمَحِبٍفِرَتْعُمَدْمَحِهّٰلِلُدْمَحْلَا

َ،ّرَّشلاَوَرْيَخْلاَوَ،ةوٰيَحْلاَوَتْوَمْلاَقَلَخْيِذَّلَا؛اًرِشاَنٖهِئۤالٰاِنْسُحِلَو،اًرِكاَش

َ.ناَيْسِّنلاَوَرْكِّذلاَوَ،ماَسْجَأْلاَوَحاَوْرَأْلاَوَ،ةَكَرَحْلاَوَنْوُكُّسلاَوَ،ّرَّضلاَوَعْفَّنلاَو

ِءۤاَنَّثلاِناسَلِِبٖ،هدِْجمَِراَحِبْنِمفٌرَِتغُْم،هٖدِمَْحِبفٍِرَتعُْمَدْمحَِهّٰلِلدُْمَحْلاَ

،َّرَّشلاَوَريَْخْلاوَ،ةَوٰيَحْلاَوَتْومَْلاَقَلَخيْذِلََّا؛اًرشِاَنهٖئِاۤلٰاِنْسُحِلَو،اًرِكاشَ

.َنايَسِّْنلاَوَركِّْذلاَو،َماسَْجأَْلاَوَحاَوْرأَْلاَو،ةََكَرحَلْاَوَنوُْكُّسلاَو،َّرَّضلاَوَعفَّْنلاوَ

Once these forms are identified, theinit, medi, fina andisol features can be applied

since they need this information. As you can see, different shapes show up. The vowels

(marks in OpenType speak) are not affected. It may not be entirely clear here, but these

vowels don’t have width.

101 101

101 101

100 Arabic

analyze=yes, ccmp=yes, devanagari=yes,
dummies=yes, extensions=yes, extrafeatures=yes,
features=yes, language=dflt, mathkerns=yes,
mode=node, script=arab, spacekern=yes

ِهّٰلِل

ِءۤاَنَّثلاِناَسِلِبٖ،هِدْجَمِراَحِبْنِمٌفِرَتْغُمٖ،هِدْمَحِبٍفِرَتْعُمَدْمَحِهّٰلِلُدْمَحْلَا

،َّرَّشلاَوَرْيَخْلاَوَ،ةوٰيَحْلاَوَتْوَمْلاَقَلَخْيِذَّلَا؛اًرِشاَنٖهِئۤالٰاِنْسُحِلَو،اًرِكاَش

َ.ناَيْسِّنلاَوَرْكِّذلاَوَ،ماَسْجَأْلاَوَحاَوْرَأْلاَوَ،ةَكَرَحْلاَوَنْوُكُّسلاَو،َّرَّضلاَوَعْفَّنلاَو

ِءۤاَنَّثلاِناسَلِِبٖ،هدِْجمَِراَحِبْنِمفٌرَِتغُْم،هٖدِمَْحِبفٍِرَتعُْمَدْمحَِهّٰلِلدُْمَحْلاَ

،َّرَّشلاَوَريَْخْلاوَ،ةَوٰيَحْلاَوَتْومَْلاَقَلَخيْذَِّلَا؛اًرشِاَنهٖئِاۤلٰاِنْسُحِلَو،اًرِكاشَ

.َنايَسِّْنلاَوَركِّْذلاَو،َماسَْجأَْلاَوَحاَوْرأَْلاَو،ةََكَرحَلْاَوَنوُْكُّسلاَو،َّرَّضلاَوَعفَّْنلاوَ

We start with some preparations with regards to combinations of marks. This is really

needed in order to get the right output.

analyze=yes, ccmp=yes, devanagari=yes,
dummies=yes, extensions=yes, extrafeatures=yes,
features=yes, fina=yes, init=yes, isol=yes,
language=dflt, mathkerns=yes, medi=yes, mode=node,
script=arab, spacekern=yes

ِهّٰلِل

ٖهِئۤالٰاِنْسُحِلَو،اًرِكاَشِءۤاَنَّثلاِناَسِلِبٖ،هِدْجَمِراَحِبْنِمٌفِرَتْغُمٖ،هِدْمَحِبٍفِرَتْعُمَدْمَحِهّٰلِلُدْمَحْلَا

َ،ةَكَرَحْلاَوَنْوُكُّسلاَو،َّرَّضلاَوَعْفَّنلاَو،َّرَّشلاَوَرْیَخْلاَوَ،ةوٰیَحْلاَوَتْوَمْلاَقَلَخْيِذَّلَا؛اًرِشاَن

َ.ناَیْسِّنلاَوَرْكِّذلاَوَ،ماَسْجَأْلاَوَحاَوْرَأْلاَو

ٖهئِۤالٰاِنسُْحِلَو،اًركِاشَِءۤاَنَّثلاِناسَِلِبٖ،هدِجَْمرِاَحبِْنِمٌفرِتَغُْمٖ،هدِْمَحِبفٍرَِتعُْمَدْمَحِهّٰلِلدُْمحَْلاَ

َ،ةكََرحَْلاَوَنْوُكُّسلاَو،َّرَّضلاَوَعْفَّنلاَو،َّرَّشلاَورَیْخَْلاَو،ةَویٰحَْلاَوَتْوَمْلاَقَلخَْيِذَّلَا؛ارًِشانَ

.َنایَسِّْنلاَورَْكِّذلاَو،مَاسَْجأَْلاوََحاَوْرأَْلاوَ

The order in which features are applied is dictated by the font and users don’t need to

bother about it. In the next example we enable the mark and mkmk features. As with

other positioning related features, these are normally applied late in the feature chain.

102 102

102 102

Arabic 101

analyze=yes, ccmp=yes, devanagari=yes,
dummies=yes, extensions=yes, extrafeatures=yes,
features=yes, fina=yes, init=yes, isol=yes,
language=dflt, mark=yes, mathkerns=yes, medi=yes,
mode=node, script=arab, spacekern=yes

هِّٰللِ

هِٖئاۤلاٰنِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِّٰللِدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،َّرَّضلاوَعَفَّْنلاوَ،َّرَّشلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِاَن

.نَایَسِّْنلاوَرَكِّْذلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ

هِٖئاۤلاٰنِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِّٰللِدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،َّرَّضلاوَعَفَّْنلاوَ،َّرَّشلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِاَن

.نَایَسِّْنلاوَرَكِّْذلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ

The mark feature positions marks (vowels) relative to characters, also known as mark to

base. The mkmk feature positions marks to basemarks.

analyze=yes, ccmp=yes, devanagari=yes,
dummies=yes, extensions=yes, extrafeatures=yes,
features=yes, fina=yes, init=yes, isol=yes,
language=dflt, mark=yes, mathkerns=yes, medi=yes,
mkmk=yes, mode=node, script=arab, spacekern=yes

هِّٰللِ

هِٖئاۤلاٰنِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِّٰللِدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،َّرَّضلاوَعَفَّْنلاوَ،َّرَّشلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِاَن

.نَایَسِّْنلاوَرَكِّْذلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ

هِٖئاۤلاٰنِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِّٰللِدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،َّرَّضلاوَعَفَّْنلاوَ،َّرَّشلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِاَن

.نَایَسِّْنلاوَرَكِّْذلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ

Kerning depends on the font. Some fonts don’t need kerning, others may need extensive

relative positioning of characters (by now glyphs).

103 103

103 103

102 Arabic

analyze=yes, ccmp=yes, devanagari=yes,
dummies=yes, extensions=yes, extrafeatures=yes,
features=yes, fina=yes, init=yes, isol=yes,
kern=yes, language=dflt, mark=yes, mathkerns=yes,
medi=yes, mkmk=yes, mode=node, script=arab,
spacekern=yes

هِّٰللِ

نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِّٰللِدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،َّرَّضلاوَعَفَّْنلاوَ،َّرَّشلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِاَنهِٖئاۤلاٰ

.نَایَسِّْنلاوَرَكِّْذلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ

نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِّٰللِدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،َّرَّضلاوَعَفَّْنلاوَ،َّرَّشلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِاَنهِٖئاۤلاٰ

.نَایَسِّْنلاوَرَكِّْذلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ

So far we only had rather straightforward replacements. More sophisticated replace-

ments are those driven by the context. In principle all replacements can be context dri-

ven, but the calt and clig features are normally dedicated to the real complex ones

that take preceding and following characters into account.

analyze=yes, calt=yes, ccmp=yes, devanagari=yes,
dummies=yes, extensions=yes, extrafeatures=yes,
features=yes, fina=yes, init=yes, isol=yes,
kern=yes, language=dflt, mark=yes, mathkerns=yes,
medi=yes, mkmk=yes, mode=node, script=arab,
spacekern=yes

هِّٰللِ

نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِّٰللِدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،َّرَّضلاوَعَفَّْنلاوَ،َّرَّشلاوَرَْیخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِنَاهِٖئاۤلاٰ

.نَایَْـسِّنلاوَرَكِّْذلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ

نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِّٰللِدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،َّرَّضلاوَعَفَّْنلاوَ،َّرَّشلاوَرَْیخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِنَاهِٖئاۤلاٰ

104 104

104 104

Arabic 103

.نَایَـْسِّنلاوَرَكِّْذلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ

Ligatures are often used to beautify Arabic typeset documents. Here we enable the whole

lot.

analyze=yes, ccmp=yes, clig=yes, devanagari=yes,
dlig=yes, dummies=yes, extensions=yes,
extrafeatures=yes, features=yes, fina=yes,
init=yes, isol=yes, kern=yes, language=dflt,
liga=yes, mark=yes, mathkerns=yes, medi=yes,
mkmk=yes, mode=node, rlig=yes, script=arab,
spacekern=yes

ِّٰلِله

نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِابحَِنْمِفٌرَِتغْمُ،هٖدِمْبحَِفٍرَِتعْمُدَحمَِّْٰلِلهدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،ََّّضرلاوَعَفَّْنلاوَ،ََّّشرلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيَِّْلَذا؛اشرًِاَنهِٖئلاۤاٰ

.نَایَسِّْنلاوَرَكِّْلذاوَ،مَاسَجْلأَْاوَحَاوَرْلأَْاوَ

نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِابحَِنْمِفٌرَِتغْمُ،هٖدِمْبحَِفٍرَِتعْمُدَحمَِّْٰلِلهدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،ََّّضرلاوَعَفَّْنلاوَ،ََّّشرلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيَِّْلَذا؛اشرًِاَنهِٖئلاۤاٰ

.نَایَسِّْنلاوَرَكِّْلذاوَ،مَاسَجْلأَْاوَحَاوَرْلأَْاوَ

Kerning deals with horizontal displacements, but curs (cursive) goes one step further.

As with marks, positioning is based on anchor points and resolving them involves a bit

of trickery because one needs to take into account that characters may have vowels at-

tached to them.

analyze=yes, ccmp=yes, clig=yes, curs=yes,
devanagari=yes, dlig=yes, dummies=yes,
extensions=yes, extrafeatures=yes, features=yes,
fina=yes, init=yes, isol=yes, kern=yes,
language=dflt, liga=yes, mark=yes, mathkerns=yes,
medi=yes, mkmk=yes, mode=node, rlig=yes,
script=arab, spacekern=yes

ِّٰلِله

نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِابحَِنْمِفٌرَِتغْمُ،هٖدِمْبحَِفٍرَِتعْمُدَحمَِّْٰلِلهدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،ََّّضرلاوَعَفَّْنلاوَ،ََّّشرلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيَِّْلَذا؛اشرًِاَنهِٖئلاۤاٰ

105 105

105 105

104 Arabic

.نَایَسِّْنلاوَرَكِّْلذاوَ،مَاسَجْلأَْاوَحَاوَرْلأَْاوَ

نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِابحَِنْمِفٌرَِتغْمُ،هٖدِمْبحَِفٍرَِتعْمُدَحمَِّْٰلِلهدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،ََّّضرلاوَعَفَّْنلاوَ،ََّّشرلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيَِّْلَذا؛اشرًِاَنهِٖئلاۤاٰ

.نَایَسِّْنلاوَرَكِّْلذاوَ،مَاسَجْلأَْاوَحَاوَرْلأَْاوَ

One script can serve multiple languages so let’s see what happens when we switch to

Urdu.

analyze=yes, ccmp=yes, clig=yes, curs=yes,
devanagari=yes, dlig=yes, dummies=yes,
extensions=yes, extrafeatures=yes, features=yes,
fina=yes, init=yes, isol=yes, kern=yes,
language=urd, liga=yes, mark=yes, mathkerns=yes,
medi=yes, mkmk=yes, mode=node, rlig=yes,
script=arab, spacekern=yes

ِّٰلِله

نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِابحَِنْمِفٌرَِتغْمُ،هٖدِمْبحَِفٍرَِتعْمُدَحمَِّْٰلِلهدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،ََّّضرلاوَعَفَّْنلاوَ،ََّّشرلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيَِّْلَذا؛اشرًِاَنهِٖئلاۤاٰ

.نَایَسِّْنلاوَرَكِّْلذاوَ،مَاسَجْلأَْاوَحَاوَرْلأَْاوَ

نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِابحَِنْمِفٌرَِتغْمُ،هٖدِمْبحَِفٍرَِتعْمُدَحمَِّْٰلِلهدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،ََّّضرلاوَعَفَّْنلاوَ،ََّّشرلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيَِّْلَذا؛اشرًِاَنهِٖئلاۤاٰ

.نَایَسِّْنلاوَرَكِّْلذاوَ،مَاسَجْلأَْاوَحَاوَرْلأَْاوَ

In practice one will enable most of the features. In MkIV one can define feature sets as

follows:

\definefontfeature
[arab-default]
[mode=node,language=dflt,script=arab,
init=yes,medi=yes,fina=yes,isol=yes,
liga=yes,dlig=yes,rlig=yes,clig=yes,
mark=yes,mkmk=yes,kern=yes,curs=yes]

Applying these features to fonts can be done in several ways, with as most basic one:

106 106

106 106

Arabic 105

\font\ArabFont=arabtype*arab-default at 18pt

Normally one will do something like

\definefont[ArabFont][arabtype*arab-default at 18pt]

or use typescripts to set up ap proper font collection, in which case we end up with def-

initions that look like:

\definefontsynonym[ArabType][name:arabtype][features=arab-default]
\definefontsynonym[Serif][ArabType]

More information about typescripts can be found in manuals and on the ConTEXt wiki.

We end this chapter with showing two arabic fonts so that you can get a taste if the differ-

ences: arabtype by MicroSoft and Palatino which is designed by Herman Zapf for Lino-

type.

analyze=yes, ccmp=yes, clig=yes, curs=yes,
devanagari=yes, dlig=yes, dummies=yes,
extensions=yes, extrafeatures=yes, features=yes,
fina=yes, init=yes, isol=yes, kern=yes,
language=dflt, liga=yes, mark=yes, mathkerns=yes,
medi=yes, mkmk=yes, mode=node, rlig=yes,
script=arab, spacekern=yes

ِّٰلِله

نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِابحَِنْمِفٌرَِتغْمُ،هٖدِمْبحَِفٍرَِتعْمُدَحمَِّْٰلِلهدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،ََّّضرلاوَعَفَّْنلاوَ،ََّّشرلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيَِّْلَذا؛اشرًِاَنهِٖئلاۤاٰ

.نَایَسِّْنلاوَرَكِّْلذاوَ،مَاسَجْلأَْاوَحَاوَرْلأَْاوَ

نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِابحَِنْمِفٌرَِتغْمُ،هٖدِمْبحَِفٍرَِتعْمُدَحمَِّْٰلِلهدُمْحَْلَا

،ةَكَرَحَْلاوَنَوْكُُّسلاوَ،ََّّضرلاوَعَفَّْنلاوَ،ََّّشرلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيَِّْلَذا؛اشرًِاَنهِٖئلاۤاٰ

.نَایَسِّْنلاوَرَكِّْلذاوَ،مَاسَجْلأَْاوَحَاوَرْلأَْاوَ

107 107

107 107

106 Arabic

analyze=yes, ccmp=yes, clig=yes, curs=yes,
devanagari=yes, dlig=yes, dummies=yes,
extensions=yes, extrafeatures=yes, features=yes,
fina=yes, init=yes, isol=yes, kern=yes,
language=dflt, liga=yes, mark=yes, mathkerns=yes,
medi=yes, mkmk=yes, mode=node, rlig=yes,
script=arab, spacekern=yes

ِّٰلِله

نِسَالِبِ،هٖدِمجَْرِابحَِنْمِفٌترَِغْمُ،هٖدِمْبحَِفٍترَِعْمُدَحمَِّْٰلِلهدُمْلحَْاَ

تَوْمَلْاقَلَخَيْذَِّلاَ؛اشرًِنَاهٖئِلااٰنِسْلحُِوَ،اكًِرشَاءِنَاَّثلا

،ةَكَرَلحَْاوَنَوْكُُّسلاوَ،ََّّضرلاوَعَفَّْنلاوَ،ََّّشرلاوَيرَْلخَْاوَ،ةَويٰلحَْاوَ

.نَيَاسِّْنلاوَكَْرِّذلاوَ،مَسَاجَْلأْاوَحَاوَرَْلأْاوَ

نِسَالِبِ،هٖدِمجَْرِابحَِنْمِفٌترَِغْمُ،هٖدِمْبحَِفٍترَِعْمُدَحمَِّْٰلِلهدُمْلحَْاَ

تَوْمَلْاقَلَخَيْذَِّلاَ؛اشرًِنَاهٖئِلااٰنِسْلحُِوَ،اكًِرشَاءِنَاَّثلا

،ةَكَرَلحَْاوَنَوْكُُّسلاوَ،ََّّضرلاوَعَفَّْنلاوَ،ََّّشرلاوَيرَْلخَْاوَ،ةَويٰلحَْاوَ

.نَيَاسِّْنلاوَكَْرِّذلاوَ،مَسَاجَْلأْاوَحَاوَرْلأَْاوَ

These fonts are quite different in designsize:

arabtype palatino

10pt test test

12pt test test

18pt test test
24pt test test

108 108

108 108

Colors redone 107

XIV Colors redone

introduction

Color support has been present in ConTEXt right from the start and support has been grad-

ualy extended, for instance with transparency and spot colors. About 10 years later we

have the first major rewrite of this mechanism using attributes as implemented in LuaTEX.

Because I needed a test file to check if all things still work as expected, I decided to recap

the most important commands in this chapter.

color support

The core command is \definecolor, so let’s define a few colors:

\definecolor [red] [r=1]
\definecolor [green] [g=1]
\definecolor [blue] [b=1]
\definecolor [yellow] [y=1]
\definecolor [magenta] [m=1]
\definecolor [cyan] [c=1]

This gives us the following colors:

color name transparency specification

white black red r=1.000,g=0.000,b=0.000
white black green r=0.000,g=1.000,b=0.000
white black blue r=0.000,g=0.000,b=1.000
white black
white black yellow c=0.000,m=0.000,y=1.000,k=0.000
white black magenta c=0.000,m=1.000,y=0.000,k=0.000
white black cyan c=1.000,m=0.000,y=0.000,k=0.000

As you can see in this table, transparency is part of a color specification, so let’s define a

few transparent colors:

\definecolor [t-red] [r=1,a=1,t=.5]
\definecolor [t-green] [g=1,a=1,t=.5]
\definecolor [t-blue] [b=1,a=1,t=.5]

color name transparency specification

white black t-red a=1.000,t=0.500 r=1.000,g=0.000,b=0.000

109 109

109 109

108 Colors redone

white black t-green a=1.000,t=0.500 r=0.000,g=1.000,b=0.000
white black t-blue a=1.000,t=0.500 r=0.000,g=0.000,b=1.000

Because transparency is now separated from color, we can define transparent behaviour

as follows:

\definecolor[half-transparent] [a=1,t=.5]

Implementing process color spaces was not that complex, but spot and multitone colors

took a bit more code.

\definecolor [parentspot] [r=.5,g=.2,b=.8]
\definespotcolor [childspot-1] [parentspot] [p=.7]
\definespotcolor [childspot-2] [parentspot] [p=.4]

The three colors, two of them are spot colors, show up as follows:

color name transparency specification

white black parentspot r=0.500,g=0.200,b=0.800
white black childspot-1 p=0.700
white black childspot-2 p=0.400

Multitone colors can also be defined:

\definespotcolor [spotone] [red] [p=1]
\definespotcolor [spottwo] [green] [p=1]

\definespotcolor [spotone-t] [red] [a=1,t=.5]
\definespotcolor [spottwo-t] [green] [a=1,t=.5]

\definemultitonecolor
[whatever]
[spotone=.5,spottwo=.5]
[b=.5]

\definemultitonecolor
[whatever-t]
[spotone=.5,spottwo=.5]
[b=.5]
[a=1,t=.5]

Transparencies don’t carry over:

color name transparency specification

white black spotone p=1.000

110 110

110 110

Colors redone 109

white black spottwo p=1.000
white black spotone-t a=1.000,t=0.500 p=1.000
white black spottwo-t a=1.000,t=0.500 p=1.000
white black whatever p=.5,.5
white black whatever-t a=1.000,t=0.500 p=.5,.5

Transparencies combine as follows:

\blackrule[width=3cm,height=1cm,color=spotone-t]\hskip-1.5cm
\blackrule[width=3cm,height=1cm,color=spotone-t]

We can still clone colors and overload color dynamically. I used the following test code

for the MkIV code:

{\green green->red}
\definecolor[green] [g=1]
{\green green->green}
\definecolor[green] [blue]
{\green green->blue}
\definecolor[blue] [red]
{\green green->red}
\setupcolors[expansion=yes]%
\definecolor[blue] [red]
\definecolor[green] [blue]
\definecolor[blue] [r=1]
{\green green->blue}

green->red green->green green->blue green->red green->blue

Of course palets and color groups are supported too. We seldom use colorgroups, but

here is an example:

\definecolorgroup
[redish]
[1.00:0.90:0.90,1.00:0.80:0.80,1.00:0.70:0.70,1.00:0.55:0.55,
1.00:0.40:0.40,1.00:0.25:0.25,1.00:0.15:0.15,0.90:0.00:0.00]

The redish color is called by number:

\blackrule[width=3cm,height=1cm,depth=0pt,color=redish:1]\quad
\blackrule[width=3cm,height=1cm,depth=0pt,color=redish:2]\quad
\blackrule[width=3cm,height=1cm,depth=0pt,color=redish:3]

111 111

111 111

110 Colors redone

Palets work with names:

\definepalet
[complement]
[red=cyan,green=magenta,blue=yellow]

This is used as:

\blackrule[width=1cm,height=1cm,depth=0pt,color=red]\quad
\blackrule[width=1cm,height=1cm,depth=0pt,color=green]\quad
\blackrule[width=1cm,height=1cm,depth=0pt,color=blue]\quad
\setuppalet[complement]%
\blackrule[width=1cm,height=1cm,depth=0pt,color=red]\quad
\blackrule[width=1cm,height=1cm,depth=0pt,color=green]\quad
\blackrule[width=1cm,height=1cm,depth=0pt,color=blue]

Of course the real torture test is MetaPost inclusion:

\startMPcode
path p ; p := fullcircle scaled 4cm ;
fill p withcolor \MPcolor{spotone-t} ;
fill p shifted(2cm,0cm) withcolor \MPcolor{spottwo-t} ;

\stopMPcode

These transparent color circles up as:

Multitone colors also work:

\startMPcode
path p ; p := fullcircle scaled 2cm ;
fill p withcolor \MPcolor{spotone} ;

112 112

112 112

Colors redone 111

fill p shifted(2cm,0cm) withcolor \MPcolor{spottwo} ;
fill p shifted(4cm,0cm) withcolor \MPcolor{whatever} ;

\stopMPcode

This gives:

implementation

The implementation of colors using attributes if quite different from the traditional method.

In MkII color support works okay but the associated code is not that clean, if only be-

cause:

• we need to keep track of grouped color usage

• and we do that using dedicated marks (using TEX’s mark mechanism)

• since this has limitations, we have quite some optimizations

• like local (no marks) and global colors (marks)

• and real dirty code to push and pop color states around pages

• and some messy code to deal with document colors

• and quite some conversion macros (think of TEX not having floats)

Although recent versions of pdfTEX have a color stack mechanism, this is not adequate

for our usage, if only because we support more colorspaces than this mechanism is sup-

posed to deal with. (The color stack mechanism is written with a particular macro packag

ein mind.)

In MkIV attributes behave like colors and therefore we no longer need to care about

what happens at pageboundaries. Also, we no longer have to deal with the limitations of

marks. Here:

• we have distributed color spaces, color itself and transparency

• all injection of backend code is postponed to shipout time

• definition and conversion is delegated to Lua

Of course the current implementation is not as nice as we would like it to be. This be-

cause:

• support mechanism are under construction

• we need to support both MkII and MkIV in one interface

• backend support is yet limited

113 113

113 113

112 Colors redone

Although in principle a mechanism based on attributes is much faster than using marks

cum suis, the new implementation is slower. The main reason is that we need to finalize

the to be shipped out box. However, since this task involved more than just color, we

will gain back some runtime when other mechanisms also use attributes.

complications

This paragraph is somewhat complex, so skip it when you don’t feel comfortable with the

subject of when you’ve never seen low level ConTEXt code.

Attributes behave like fonts. This means that they are kind of frozen once material is

boxed. Consider that we define a box as follows:

\setbox0\hbox{default {\red red \green green} default}

What do you expect to come out the next code? In MkII the ‘default’ inside the box will

be colored yellow but the internal red and and green words will keep their color.

default {\yellow yellow \box0\ yellow} default

When we use fonts switches we don’t expect the content of the box to change. So, in the

following the ‘default’ texts will not become bold.

\setbox0\hbox{default {\sl slanted \bi bold italic} default}
default {\bf bold \box0\ bold} default

Future versions of LuaTEX will provide more control over how attributes are applied to

boxes, but for the moment we need to fallback on a solution built in MkIV:

default {\yellow yellow \attributedbox0\ yellow} default

There is also a\attributedcopymacro. These macros signal the attribute resolver (that

kicks in just before shipout) that this box is to be treated special.

In MkII we had a similar situation which is why we had the option (only used deep down

in ConTEXt) to encapsulate a bunch of code with

\startregistercolor[foregroundcolor]
some macro code ... here foregroundcolor is applied ... more code
\stopregisteringcode

This is for instance used in the\framedmacro. First we package the content, foreground-

color is not yet applied because the injected specials of literals can interfere badly, but by

registering the colors the nested color calls are tricked into thinking that preceding and

114 114

114 114

Colors redone 113

following content is colored. When packaged, we apply backgrounds, frames, and fore-

groundcolor to the whole result. Because nested colors were aware of the foreground-

color they have properly reverted to this color when needed.

In MkIV the situation is reversed. Here we definitely need to set the foregroundcolor be-

cause otherwise attributes are not set and here they don’t interfere at all (no extra nodes).

For this we use the same registration macros. When the lot is packaged, applying fore-

groundcolor is ineffective because the attributes are already applied. Instead of register-

ing we could have flushed the framed content using \attributedbox, but this way we

can keep the MkII and MkIV code base the same.

To summarize, first the naïve approach. Here the nested colors know how to revert, but

the color switch can interfere with the content (since color commands inject nodes).

\setbox\framed\vbox
{\color[foregroundcolor]{packaged framed content, can have color

switches}}

The MkII approach registers the foreground color so the nested colors know what to do.

There is no interfering code:

\startregistercolor[foregroundcolor]
\setbox\framed
\stopregisteringcode
\setbox\framed{\color[foregroundcolor]{\box\framed}}

The registration actually sets the color, so in fact the final coloring is not needed (does

nothing). An alternative MkIV approach is the following:

\color
[foregroundcolor]
{\setbox\framed{packaged framed content, can have color switches}}

This works ok because attributes are applied to the whole content, i.e. the box. In MkII

this would be quite ineffective and actually result in weird side effects.

< color stack is pushed and marks are set (unless local) >
< color special or literal sets color to foregroundcolor >
\setbox\framed{packaged framed content, can have color switches}
< color special or literal sets color to foregroundcolor >
< color stack is popped and marks are set (unless local) >

So, effectively we set a box, and end up with:

< whatsits (special, literal and.or mark) >

115 115

115 115

114 Colors redone

< whatsits (special, literal and.or mark) >

in the main vertical lost and that will interfere badly with spacing and friends.

In MkIV however, a color switch, like a font switch does not leave any traces, it just sets

a state. Anyway, keep in mind that there are some rather fundamental conceptual differ-

ences between the two appoaches.

Let’s end with an example that demonstrates the problem. We fill two boxes:

\setbox0\hbox{RED {\blue blue} RED}
\setbox2\hbox{RED {\blue blue} {\attributedcopy0} RED}

We will flush these in the following lines:

{unset \color[red]{red \CopyMe} unset
\color[red]{red \hbox{red \CopyMe}} unset}

{unset \color[red]{red \CopyMe} unset
{\red red \hbox{red \CopyMe}} unset}

{unset \color[red]{red \CopyMe} unset
{\red red \setbox0\hbox{red \CopyMe}\box0} unset}

{unset \color[red]{red \CopyMe} unset
{\hbox{\red red \CopyMe}} unset}

{\blue blue \color[red]{red \CopyMe} blue
\color[red]{red \hbox{red \CopyMe}} blue}

First we define \CopyMe as follows:

\def\CopyMe{\attributedcopy2\ \copy4}

This gives:

unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED unset

unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED unset

unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED un-

set unset red RED blue RED blue RED RED unset red RED blue RED blue RED RED unset

blue red RED blue RED blue RED RED blue red red RED blue RED blue RED RED blue

Compare this with:

\def\CopyMe{\copy2\ \copy4}

This gives:

unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED unset

unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED unset

116 116

116 116

Colors redone 115

unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED un-

set unset red RED blue RED blue RED RED unset red RED blue RED blue RED RED unset

blue red RED blue RED blue RED RED blue red red RED blue RED blue RED RED blue

You get the picture? At least in early version of MkIV you need to enable support for

inheritance with:

\enableattributeinheritance

117 117

117 117

116 Colors redone

118 118

118 118

Chinese, Japanese and Korean, aka CJK 117

XV Chinese, Japanese and Korean, aka CJK

This aspect of MkIV is under construction. We use non-realistic examples. We need to reim-

plement chinese numbering in Lua, etc. etc.

todo: There is no need for checkinf the width if the halfwidth feature is turned on.

introduction

In ConTEXt MkII we support cjk languages. Intercharacter spacing as well as linebreaks

are taken care of. Chinese numbering is dealt with and labels and other language specific

aspects are supported too. The implementation uses active characters and some special

encoding subsystem. Although it works quite okay, in MkIV we follow a different route.

The current implementation is an intermediate one and is used to explore the possibili-

ties and identify needs. One handicap in implementing cjk support is that the wishlist of

features and behaviour is somewhat dependent on who you talk to. This means that the

implementation will have some default behaviour but can be tuned to specific needs.

The current implementation uses the script related analyser and is triggered by fonts but

at some point I may decide to provide analysing independent of fonts.

As will all things TEX, we need to find a proper font to get our document typeset and

because cjk fonts are normally quite large they are not always available on your system

by default.

scripts and languages

I’m no expert on cjk and will never be one so don’t expect much insight in the scripts

and languages here. Here we only look at the way a sequence of characters in the input

turns into a typeset paragraph. For that it is important to keep in mind that in a Korean

or Japanese text we might find Chinese characters and that the spacing rules become

somewhat fuzzed by that. For instance Korean has spaces between words and words

can be broken at any point, while Chinese has no spaces.

Officially Chinese runs from top to bottom but here we focus on the horizontal variant.

When turned into glyphs the characters normally are of equal width and in principle we

could expect them all to be vertically aligned. However, a font can have characters that

take half that space: so called halfwidth characters. And, of course, in practice a font

might have shapes that fall into this categrory but happen to have their own width which

deviates from this.

This means that a mechanism that deals with cjk has to take care of a few things:

119 119

119 119

118 Chinese, Japanese and Korean, aka CJK

• Spaces at the end of the line (or actually anywhere in the input stream) need to be

removed but only for Chinese.

• Opening and closing symbols as well as punctuation needs special treatment espe-

cially when they are halfwidth.

• Korean uses proportially spaces punctuation and mixes with other latin fonts, while

Chinese often uses built in latin shapes.

• We may break anywhere but not after an opening symbol like (or and not before a

closing symbol like).

• We need to deal with mixed Chinese and Korean spacing rules.

Let’s start with showing some Korean. We use one of the fonts shipped by Adobe as part

of Acrobat but first we define a Korean featureset and a font.

\definefontfeature
[korean]
[script=hang,language=kor,mode=node,analyze=yes]

\definefont[KoreanSample][adobemyungjostd-medium*korean]

Korean looks like this:

\KoreanSample \setscript[hangul]

모든 인간은 태어날 때부터 자유로우며 그 존엄과 권리에 있어 동등하다.
인간은 천부적으로 이성과 양심을 부여받았으며 서로 형제애의 정신으로

행동하여야 한다.

모든 인간은 태어날 때부터 자유로우며 그 존엄과 권리에 있어 동등하다. 인간은 천부

적으로 이성과 양심을 부여받았으며 서로 형제애의 정신으로 행동하여야 한다.

The Korean script reflect syllabes and is very structured. Although modern fonts contain

prebuilt syllabes one can also use the jamo alphabet to build them from components.

The following example is provided by Dohyun Kim:

\definefontfeature [medievalkorean] [mode=node,script=hang,lang=kor,ccmp=yes,ljmo=yes,vjmo=yes,tjmo=yes]
\definefontfeature [modernkorean] [mode=node,script=hang,lang=kor]

\enabletrackers[scripts.analyzing]
\setscript[hangul]
\definedfont [UnBatang*medievalkorean at 20pt] \ruledhbox{} \ruledhbox{}
\ruledhbox{}\blank
\definedfont [UnBatang*modernkorean at 20pt] \ruledhbox{} \ruledhbox{}
\ruledhbox{}\blank
\disabletrackers[scripts.analyzing]

120 120

120 120

Chinese, Japanese and Korean, aka CJK 119

ᄒᆞᆫ글 ᄒᆞᆫ글 ᄒᆞᆫ 글

ᄒᆞᆫ글 ᄒᆞᆫ글 ᄒᆞᆫ 글

There are subtle differences between the medieval and modern shapes. It was this ex-

ample that lead to more advanced tounicode support in MkIV so that copy and paste

works out well now for such input.

For Chinese we define a couple of features

\definefontfeature
[chinese-traditional]
[mode=node,script=hang,lang=zht]

\definefontfeature
[chinese-simple]
[mode=node,script=hang,lang=zhs]

\definefontfeature
[chinese-traditional-hw]
[mode=node,script=hang,lang=zht,hwid=yes]

\definefontfeature
[chinese-simple-hw]
[mode=node,script=hang,lang=zhs,hwid=yes]

\definefont[ChineseSampleFW][adobesongstd-light*chinese-traditional]
\definefont[ChineseSampleHW][adobesongstd-light*chinese-traditional-hw]
\setscript[hanzi]

\ChineseSampleFW
兡也包因沘氓侷柵苗孫孫財崧淫設弼琶跑愍窟榜蒸奭稽
霄瓢館縲擻鼕〈孃魔釁〉佉沎岠狋垚柛胅娭涘罞偟惈牻荺
傒焱菏酡廅滘絺赩塴榗箂踃嬁澕蓴醊獧螗餟燱螬駸礑鎞
瀧鄿瀯騬醹躕鱕。

\ChineseSampleHW
兡也包因沘氓侷柵苗孫孫財崧淫設弼琶跑愍窟榜蒸奭稽
霄瓢館縲擻鼕〈孃魔釁〉佉沎岠狋垚柛胅娭涘罞偟惈牻荺
傒焱菏酡廅滘絺赩塴榗箂踃嬁澕蓴醊獧螗餟燱螬駸礑鎞
瀧鄿瀯騬醹躕鱕。

兡也包因沘氓侷柵苗孫孫財崧淫設弼琶跑愍窟榜蒸奭稽霄瓢館縲擻鼕〈孃魔釁〉佉沎岠
狋垚柛胅娭涘罞偟惈牻荺傒焱菏酡廅滘絺赩塴榗箂踃嬁澕蓴醊獧螗餟燱螬駸礑鎞瀧鄿
瀯騬醹躕鱕。

121 121

121 121

120 Chinese, Japanese and Korean, aka CJK

兡也包因沘氓侷柵苗孫孫財崧淫設弼琶跑愍窟榜蒸奭稽霄瓢館縲擻鼕〈孃魔釁〉佉沎岠
狋垚柛胅娭涘罞偟惈牻荺傒焱菏酡廅滘絺赩塴榗箂踃嬁澕蓴醊獧螗餟燱螬駸礑鎞瀧鄿
瀯騬醹躕鱕。

A few more samples:

\definefont[ChFntAT][name:adobesongstd-light*chinese-traditional-hw at 16pt]
\definefont[ChFntBT][name:songti*chinese-traditional at 16pt]
\definefont[ChFntCT][name:fangsong*chinese-traditional at 16pt]

\definefont[ChFntAS][name:adobesongstd-light*chinese-simple-hw at 16pt]
\definefont[ChFntBS][name:songti*chinese-simple at 16pt]
\definefont[ChFntCS][name:fangsong*chinese-simple at 16pt]

In these fonts traditional comes out as follows:

我〈能吞下玻璃而不傷身〉體。
我〈能吞下玻璃而不傷身〉體。
我〈能吞下玻璃而不傷身〉體。

And simple as:

我〈能吞下玻璃而不伤身〉体。
我〈能吞下玻璃而不伤身〉体。
我〈能吞下玻璃而不伤身〉体。

tracing

As usual in ConTEXt, we have some tracing built in. When you say

You will get the output colored according to the category that the analyser put them in.

When you say

some rudimentary information will be written to the log about whet gets inserted in the

nodelist.

Analyzed input looks like:

아아, 나는 이제야 도(道)를 알았도다. 마음이 어두운 자는 이목이

누(累)가 되지 않는다. 이목만을 믿는 자는 보고 듣는 것이

더욱 밝혀져서 병이 되는 것이다. 이제 내 마부가 발을 말굽에

밟혀서 뒷차에 실리었으므로, 나는 드디어 혼자 고삐를 늦추어

강에 띄우고, 무릎을 구부려 발을 모으고 안장 위에 앉았다.
한번 떨어지면 강이나 물로 땅을 삼고, 물로 옷을 삼으며,
물로 몸을 삼고, 물로 성정을 삼을 것이다. 이제야 내 마음은

122 122

122 122

Chinese, Japanese and Korean, aka CJK 121

한번 떨어질 것을 판단한 터이므로, 내 귓속에 강물 소리가 없어졌다.
무릇 아홉 번 건너는데도 걱정이 없어 의자 위에서 좌와(坐臥)하고
기거(起居)하는 것 같았다.

아아, 나는 이제야 도 (道)를 알았도다. 마음이 어두운 자는 이목이 누 (累)가 되지

않는다. 이목만을 믿는 자는 보고 듣는 것이 더욱 밝혀져서 병이 되는 것이다. 이제

내 마부가 발을 말굽에 밟혀서 뒷차에 실리었으므로, 나는 드디어 혼자 고삐를 늦추어

강에 띄우고, 무릎을 구부려 발을 모으고 안장 위에 앉았다. 한번 떨어지면 강이나

물로 땅을 삼고, 물로 옷을 삼으며, 물로 몸을 삼고, 물로 성정을 삼을 것이다. 이제야

내 마음은 한번 떨어질 것을 판단한 터이므로, 내 귓속에 강물 소리가 없어졌다. 무릇

아홉 번 건너는데도 걱정이 없어 의자 위에서 좌와 (坐臥) 하고 기거 (起居) 하는 것

같았다.

For developers (and those who provide them with input) we have another tracing

\definedfont[arialuni*korean at 10pt] \setscript[hangul] \ShowCombinationsKorean

We need to use a font that supports Chinese as well as Korean. This gives quite some

output.

々 +々 =々々 々々 々々 々々 non_starter + non_starter
々 +乕 =々乕 々

乕

々

乕

々乕 non_starter + chinese

々 +가 =々가 々

가

々

가

々가 non_starter + korean

々 +〈 =々〈 々

〈

々

〈

々〈 non_starter + full_width_open

々 + ‘ =々‘ 々

‘

々

‘

々‘ non_starter + half_width_open

々 + ’ =々’ 々’ 々’ 々’ non_starter + half_width_close
々 + M =々M 々M 々M 々M non_starter + other
々 +… =々… 々… 々… 々… non_starter + hyphen
々 +〉 =々〉 々〉 々〉 々〉 non_starter + full_width_close
乕 +々 =乕々 乕

々

乕

々

乕々 chinese + non_starter

乕 +乕 =乕乕 乕

乕

乕

乕

乕乕 chinese + chinese

乕 +가 =乕가 乕

가

乕

가

乕가 chinese + korean

乕 +〈 =乕〈 乕

〈

乕

〈

乕〈 chinese + full_width_open

乕 + ‘ =乕‘ 乕

‘

乕

‘

乕‘ chinese + half_width_open

乕 + ’ =乕’ 乕’ 乕’ 乕’ chinese + half_width_close
乕 + M =乕M 乕M 乕M 乕M chinese + other
乕 +… =乕… 乕… 乕… 乕… chinese + hyphen
乕 +〉 =乕〉 乕〉 乕〉 乕〉 chinese + full_width_close

123 123

123 123

122 Chinese, Japanese and Korean, aka CJK

가 +々 =가々 가

々

가

々

가々 korean + non_starter

가 +乕 =가乕 가

乕

가

乕

가乕 korean + chinese

가 +가 =가가 가

가

가

가

가가 korean + korean

가 +〈 =가〈 가

〈

가

〈

가〈 korean + full_width_open

가 + ‘ =가‘ 가

‘

가

‘

가‘ korean + half_width_open

가 + ’ =가’ 가’ 가’ 가’ korean + half_width_close
가 + M =가M 가M 가M 가M korean + other
가 +… =가… 가… 가… 가… korean + hyphen
가 +〉 =가〉 가〉 가〉 가〉 korean + full_width_close
〈 +々 =〈々 〈々 〈々 〈々 full_width_open + non_starter
〈 +乕 =〈乕 〈乕 〈乕 〈乕 full_width_open + chinese
〈 +가 =〈가 〈가 〈가 〈가 full_width_open + korean
〈 +〈 =〈〈 〈〈 〈〈 〈〈 full_width_open + full_width_open
〈 + ‘ =〈‘ 〈‘ 〈‘ 〈‘ full_width_open + half_width_open
〈 + ’ =〈’ 〈’ 〈’ 〈’ full_width_open + half_width_close
〈 + M =〈M 〈M 〈M 〈M full_width_open + other
〈 +… =〈… 〈… 〈… 〈… full_width_open + hyphen
〈 +〉 =〈〉 〈〉 〈〉 〈〉 full_width_open + full_width_close
‘ +々 = ‘々 ‘々 ‘々 ‘々 half_width_open + non_starter
‘ +乕 = ‘乕 ‘乕 ‘乕 ‘乕 half_width_open + chinese
‘ +가 = ‘가 ‘가 ‘가 ‘가 half_width_open + korean
‘ +〈 = ‘〈 ‘〈 ‘〈 ‘〈 half_width_open + full_width_open
‘ + ‘ = ‘‘ ‘‘ ‘‘ ‘‘ half_width_open + half_width_open
‘ + ’ = ‘’ ‘’ ‘’ ‘’ half_width_open + half_width_close
‘ + M = ‘M ‘M ‘M ‘M half_width_open + other
‘ +… = ‘… ‘… ‘… ‘… half_width_open + hyphen
‘ +〉 = ‘〉 ‘〉 ‘〉 ‘〉 half_width_open + full_width_close
’ +々 = ’々 ’々 ’々 ’々 half_width_close + non_starter
’ +乕 = ’乕 ’乕 ’乕 ’乕 half_width_close + chinese
’ +가 = ’가 ’가 ’가 ’가 half_width_close + korean
’ +〈 = ’〈 ’〈 ’〈 ’〈 half_width_close + full_width_open
’ + ‘ = ’‘ ’‘ ’‘ ’‘ half_width_close + half_width_open
’ + ’ = ’’ ’’ ’’ ’’ half_width_close + half_width_close
’ + M = ’M ’M ’M ’M half_width_close + other
’ +… = ’… ’… ’… ’… half_width_close + hyphen
’ +〉 = ’〉 ’〉 ’〉 ’〉 half_width_close + full_width_close
M +々 = M々 M々 M々 M々 other + non_starter
M +乕 = M乕 M乕 M乕 M乕 other + chinese
M +가 = M가 M가 M가 M가 other + korean

124 124

124 124

Chinese, Japanese and Korean, aka CJK 123

M +〈 = M〈 M〈 M〈 M〈 other + full_width_open
M + ‘ = M‘ M‘ M‘ M‘ other + half_width_open
M + ’ = M’ M’ M’ M’ other + half_width_close
M + M = MM MM MM MM other + other
M +… = M… M… M… M… other + hyphen
M +〉 = M〉 M〉 M〉 M〉 other + full_width_close
… +々 =…々 …

々

…

々

…々 hyphen + non_starter

… +乕 =…乕 …

乕

…

乕

…乕 hyphen + chinese

… +가 =…가 …

가

…

가

…가 hyphen + korean

… +〈 =…〈 …

〈

…

〈

…〈 hyphen + full_width_open

… + ‘ =…‘ …

‘

…

‘

…‘ hyphen + half_width_open

… + ’ =…’ …’ …’ …’ hyphen + half_width_close
… + M =…M …M …M …M hyphen + other
… +… =…… …… …… …… hyphen + hyphen
… +〉 =…〉 …〉 …〉 …〉 hyphen + full_width_close
〉 +々 =〉々 〉々 〉々 〉々 full_width_close + non_starter
〉 +乕 =〉乕 〉

乕

〉

乕

〉乕 full_width_close + chinese

〉 +가 =〉가 〉

가

〉

가

〉가 full_width_close + korean

〉 +〈 =〉〈 〉

〈

〉

〈

〉〈 full_width_close + full_width_open

〉 + ‘ =〉‘ 〉

‘

〉

‘

〉‘ full_width_close + half_width_open

〉 + ’ =〉’ 〉’ 〉’ 〉’ full_width_close + half_width_close
〉 + M =〉M 〉M 〉M 〉M full_width_close + other
〉 +… =〉… 〉… 〉… 〉… full_width_close + hyphen
〉 +〉 =〉〉 〉〉 〉〉 〉〉 full_width_close + full_width_close

125 125

125 125

124 Chinese, Japanese and Korean, aka CJK

126 126

126 126

Optimization 125

XVI Optimization

quality of code

How good is the MkIV code? Well, as good as I can make it. When you browse the code

you will probably notice differences in coding style and this is a related to the learning

curve. For instance the luat-inpmodule needs some cleanup, for instance hiding local

function from users.

Since benchmarking has been done right from the start there is probably not that much

to gain, but who knows. When coding in Lua you should be careful with defining global

variables, since they may override something. In MkIV we don’t guarantee that the name

you use for variable will not be used at some point. Therefore, best operate in a dedicated

Lua instance, or operate in userspace.

do
-- your code

end

If you want to use your data later on, think of working this way (the example is somewhat

silly):

userdata['your.name'] = userdata['your.name'] or { }

do
local mydata = userdata['your.name']

mydata.data = {}

local function foo() return 'bar' end

function mydata.dothis()
mydata[foo] = foo()

end

end

In this case you can always access your user data while temporary variables are hidden.

The userdata table is predefined. As is thirddata for modules that you may write. Of

course this assumes that you create a namespace within these global tables.

A nice test for checking global cluttering is the following:

for k, v in pairs(_G) do

127 127

127 127

126 Optimization

print(k, v)
end

When you incidentally define global variables like n or str they will show up here.

clean or dirty

Processing the first 120 pages of this document (16 chapters) takes some 23.5 seconds on

a dell M90 (2.3GHZ, 4GB mem, Windows Vista Ultimate). A rough estimate of where Lua

spends its time is:

acticvity sec

input load time 0.114

fonts load time 6.692

mps conversion time 0.004

node processing time 0.832

attribute processing time 3.376

Font loading takes some time, which is nu surprise because we load huge Zapfino, Arabic

and cjk fonts and define many instances of them. Some tracing learns that there are some

14.254.041 function calls, of which 13.339.226 concern functions that are called more than

5.000 times. A total of 62.434 function is counted, which is a result of locally defined

ones.

A rough indication of this overhead is given by the following test code:

local a,b,c,d,e,f = 1,2,3,4,5,6

function one (a) local n = 1 end
function three(a,b,c) local n = 1 end
function six (a,b,c,d,e,f) local n = 1 end

for i=1,14254041 do one (a) end
for i=1,14254041 do three(a,b,c) end
for i=1,14254041 do six (a,b,c,d,e,f) end

The runtime for these tests (excluding startup) is:

one argument 1.8 seconds

three arguments 2.0 seconds

six arguments 2.3 seconds

So, the of the total runtime for this document we easily spend a couple of seconds on

function calls, especially in node processing and attribute resolving. Does this mean that

128 128

128 128

Optimization 127

we need to change the code and follow a more inline approach? Eventually we may op-

timize some code, but for the moment we keep things as readable as possible, and even

then much code is still quite complex. Font loading is often constant for a document any-

way, and independent of the number of pages. Time spent on node processing depends

on the script, and often processing intense scripts are typeset in a larger font and since

they are less verbose than latin, this does not really influence the average time spent on

typesetting a page. Attribute handling is probably the most time consuming activity, and

for large documents the time spent on this is large compared to font loading and node

processing. But then, after a few MkIV development cycles the picture may be different.

When we turned on tracing of function calls, if becomes clear where currently the time

is spent in a document like this which demands complex Zapfino contextual analysis as

well as Arabic analysis and feature application (both fonts demand node insertion and

deletion). Of course using color also has a price. Handling weighted and conditional

spacing (new in MkIV) involves just over 10.000 calls to the main handler for 120 pages of

this document. Glyph related processing of node lists needs 42.000 calls, and contextual

analysis of OpenType fonts is good for 11.000 calls. Timing Lua related tasks involves 2

times 37.000 calls to the stopwatch. Collapsing utf in the input lines equals the number

of lines: 7700.

However, at the the top of the charts we find calls to attribute related functions. 97.000

calls for handling special effects, overprint, transparency and alike, and another 24.000

calls for combined color and colorspace handling. These calls result in over 6.000 in-

sertions of pdf literals (this number is large because we show Arabic samples with color

based tracing enabled). In case you wonder if the attribute handler can be made more

efficient (we’re talking seconds here), the answer is “possibly not”. This action is needed

for each shipped out object and each shipped out page. If we divide the 24.000 (calls)

by 120 (pages) we get 200 calls per page for color processing which is okay if you keep

in mind that we need to recurse in nested horizontal and vertical lists of the completely

made op page.

serialization

When serializing tables, we can end up with very large tables, especially when dealing

with big fonts like ‘arabtype’ or ‘zapfino’. When serializing tables one has to find a com-

promise between speed of writing, effeciency of loading and readability. First we had

(sub)tables like:

boundingbox = {
[1] = 0,
[2] = 0,
[3] = 100,
[4] = 200

129 129

129 129

128 Optimization

}

I mistakingly assumed that this would generate an indexed table, but at tug 2007 Roberto

Ierusalimschy explained to me that this was not that efficient, since this variant boils down

to the following byte code:

1 [1] NEWTABLE 0 0 4
2 [2] SETTABLE 0 -2 -3 ; 1 0
3 [3] SETTABLE 0 -4 -3 ; 2 0
4 [4] SETTABLE 0 -5 -6 ; 3 100
5 [5] SETTABLE 0 -7 -8 ; 4 200
6 [6] SETGLOBAL 0 -1 ; boundingbox
7 [6] RETURN 0 1

This creates a hashed table. The following variant is better:

boundingbox = { 0, 0, 100, 200 }

This results in:

1 [1] NEWTABLE 0 4 0
2 [2] LOADK 1 -2 ; 0
3 [3] LOADK 2 -2 ; 0
4 [4] LOADK 3 -3 ; 100
5 [6] LOADK 4 -4 ; 200
6 [6] SETLIST 0 4 1 ; 1
7 [6] SETGLOBAL 0 -1 ; boundingbox
8 [6] RETURN 0 1

The resulting tables are not only smaller in terms of bytes, but also are less memory hun-

gry when loaded. For readability we write tables with only numbers, strings or boolean

values in an inline--format:

boundingbox = { 0, 0, 100, 200 }

The serialized tables are somewhat smaller, depending on how many subtables are in-

dexed (boundary boxes, lookup sequences, etc.)

normal compact filename

34.055.092 32.403.326 arabtype.tma

1.620.614 1.513.863 lmroman10-italic.tma

1.325.585 1.233.044 lmroman10-regular.tma

1.248.157 1.158.903 lmsans10-regular.tma

194.646 153.120 lmtypewriter10-regular.tma

1.771.678 1.658.461 palatinosanscom-bold.tma

130 130

130 130

Optimization 129

1.695.251 1.584.491 palatinosanscom-regular.tma

13.736.534 13.409.446 zapfinoextraltpro.tma

Since we compile the tables to bytecode, the effects are more spectacular there.

normal compact filename

13.679.038 11.774.106 arabtype.tmc

886.248 754.944 lmroman10-italic.tmc

729.828 466.864 lmroman10-regular.tmc

688.482 441.962 lmsans10-regular.tmc

128.685 95.853 lmtypewriter10-regular.tmc

715.929 582.985 palatinosanscom-bold.tmc

669.942 540.126 palatinosanscom-regular.tmc

1.560.588 1.317.000 zapfinoextraltpro.tmc

Especially when a table is partially indexed and hashed, readability is a bit less than nor-

mal but in practice one will seldom consult such tables in its verbose form.

After going beta, users reported problems with scaling of the the Latin Modern and TEX-

Gyre fonts. The troubles originate in the fact that the OpenType versions of these fonts lack

a design size specification and it happens that the Latin Modern fonts do have design sizes

other than 10 points. Here the power of a flexible TEX engine shows . . . we can repair this

when we load the font. In MkIV we can now define patches:

do
local function patch(data,filename)

if data.design_size == 0 then
local ds = (file.basename(filename)):match("(%d+)")
if ds then

logs.report("load otf",string.format("patching design
size (%s)",ds))

data.design_size = tonumber(ds) * 10
end

end
end

fonts.otf.enhance.patches["^lmroman"] = patch
fonts.otf.enhance.patches["^lmsans"] = patch
fonts.otf.enhance.patches["^lmmono"] = patch

end

Eventually such code will move to typescripts instead of in the kernel code.

131 131

131 131

130 Optimization

132 132

132 132

XML revisioned 131

XVII XML revisioned

The code dealing with xml is evolving and the following text might be outdated. So, in case of

doubt, check the manual.

the parser

For quite a while ConTEXt has built-in support for xml processing and at Pragma ADE we

use this extensively. One of the first things I tried to deal with in Lua was xml, and now

that we have LuaTEX up and running it’s time to investigate this a bit more. First we’ll have

a look at the basic functions, the Lua side of the game.

We load an xml file as follows (the document namespace is predefined in ConTEXt):

\startluacode
document.xml = document.xml or { } -- define namespace
document.xml = xml.load("mk-xml.xml") -- load the file

\stopluacode

The loader constructs a table representing the document structure, including whitespace,

so let’s serialize the code and see what shows up:

\startluacode
local prn = xml.newhandlers { handle = tex.sprint }
tex.sprint("\\starttyping")
xml.serialize(document.xml, prn)
tex.sprint("\\stoptyping")

\stopluacode

In the first version of the serializer, we could pass extra function arguments that controlled

the way content was processed. This method has now been replaced by handlers. In this

example we create a simple handler where the handle function is responsible for the

final print.

<?xml version='1.0 standalone='yes' ?>

<one>
<two>

<a>alpha

<c>gamma</c>
<d/>
<e>epsilon</e>

133 133

133 133

132 XML revisioned

</two>
<three>

<some>pdftex</some>
<some>luatex</some>
<some>xetex</some>

</three>
<four>

<more:some name="hans"/>
<more:some name="taco"/>
<more:some name="hartmut"/>

</four>
<five>

<some>metapost</some>
</five>

</one>

This already gives us a rather basic way to manipulate documents and this method is even

not that slow because we bypass TEX reading from file.

\startluacode
local str = "<l> <w>hello</w> <w>world</w> </l>"
local prn = xml.newhandlers { handle = tex.sprint }
tex.sprint("\\starttyping")
xml.serialize(xml.convert(str),prn)
tex.sprint("\\stoptyping")

\stopluacode

Watch the extra print argument, we need this because otherwise the verbatim mode will

not work out well.

<l> <w>hello</w> <w>world</w> </l>

You need to keep in mind that in these examples we print to TEX under the current cat-

code regime.

You can save a xml table with the command:

\startluacode
xml.save(document.xml,"newfile.xml")

\stopluacode

These examples show that you have access to xml files from within your document. If

you want to convert the table to just a string, you can use xml.tostring. Actually,

this method is automatically used for occasions where Lua wants to print an xml table

134 134

134 134

XML revisioned 133

or wants to join string snippets. However, as we are inside TEX, we need to print to TEX

instead of the console or file. For this we use specialized handlers.

The reason why I wrote the xml parser is that we need it in the utilities (so it has to pro-

vide access to the content of elements) as well as in the text processing (so it needs to

provide some manipulation features). To serve both we have implemented a subset of

what standard xml tools qualify as path based searching.

\startluacode
xml.sprint(xml.first(document.xml, "/one/three/some"))

\stopluacode

The result of this snippet is the content of the first element that matches the specification:

‘<some>pdftex</some>’. As you can see, this comes out rather verbose. The reason for

this is that we need to enter xml mode in order to get such a snippet interpreted.

Below we give a few more variants, this time we use a generic filter:

\startluacode
xml.sprint(xml.filter(document.xml, "/one/three/some"))

\stopluacode

result: <some>pdftex</some><some>luatex</some><some>xetex</some>

\startluacode
xml.sprint(xml.filter(document.xml, "/one/three/some/first()"))

\stopluacode

result: <some>pdftex</some>

\startluacode
xml.sprint(xml.filter(document.xml, "/one/three/some[1]"))

\stopluacode

result: <some>pdftex</some>

\startluacode
xml.sprint(xml.filter(document.xml, "/one/three/some[-1]"))

\stopluacode

result: <some>luatex</some>

\startluacode
xml.sprint(xml.filter(document.xml, "/one/three/some/texts()"))

\stopluacode

result:

135 135

135 135

134 XML revisioned

\startluacode
xml.sprint(xml.filter(document.xml, "/one/three/some[2]/text()"))

\stopluacode

result: luatex

The next lines shows some more variants. There are more than these and we will extend

the repertoire over time. If needed you can define additional handlers.

performance

Before we continue with more examples, a few remarks about the performance. The

first version of the parser was an enhanced version of the one presented in the Lua book:

support for namespaces, processing instructions, comments, cdata and doctype, remap-

ping and a few more things. When playing with the parser I was quite satisfied about the

performance. However, when I started experimenting with 40 megabyte files, the pre-

processing (needed for the special elements) started to become more noticeable. For

smaller files its 40% overhead is not that disturbing, but for large files . . .

The current version uses lpeg. We follow the same approach as before, stack and top

and such but this time parsing is about twice as fast which is mostly due to the fact that

we don’t have to prepare the stream for cdata, doctype etc. Loading the mentioned large

file took 12.5 seconds (1.5 for file io and the rest for tree building) on my laptop (a 2.3 Ghz

Core Duo running Windows Vista). With the lpeg implementation we got that down to

less 7.3 seconds. Loading the 14 interface definition files (2.6 meg) went down from 1.05

seconds to 0.55 seconds. Namespace related issues take some 10% of this.

Of course these numbers might change over time. For instance, we now have the second

implementation of the filter mechanism which is more advanced and maybe somewhat

slower on some tasks.

patterns

We will not implement complete xpath functionality, but only the features that make

sense for documents that are well structured and needs to be typeset. In addition we

(will) implement text manipulation functions. Of course speed is also a consideration

when implementing such mechanisms.

The following list is not complete (after all here we only give an impression of the devel-

opment) but it gives a good impression.

pattern supported comment

a ⋆ not anchored

136 136

136 136

XML revisioned 135

!a ⋆ not anchored,negated

a/b ⋆ anchored on preceding

/a/b ⋆ anchored (current root)

^a/c ⋆ anchored (current root)

^^/a/c todo anchored (document root)

a/*/b ⋆ one wildcard

a//b ⋆ many wildcards

a/**/b ⋆ many wildcards

. ⋆ ignored self

.. ⋆ parent

a[5] ⋆ index upwards

a[-5] ⋆ index downwards

a[position()=5] maybe

a[first()] maybe

a[last()] maybe

(b|c|d) ⋆ alternates (one of)

b|c|d ⋆ alternates (one of)

!(b|c|d) ⋆ not one of

a/(b|c|d)/e/f ⋆ anchored alternates

(c/d|e) not likely nested subpaths

a/b[@bla] ⋆ any value of

a/b/@bla ⋆ any value of

a/b[@bla='oeps'] ⋆ equals value

a/b[@bla=='oeps'] ⋆ equals value

a/b[@bla<>'oeps'] ⋆ different value

a/b[@bla!='oeps'] ⋆ different value

...../attribute(id) ⋆

...../attributes() ⋆

...../text() ⋆

...../texts() ⋆

...../first() ⋆

...../last() ⋆

...../index(n) ⋆

...../position(n) ⋆

root:: ⋆
parent:: ⋆
child:: ⋆
ancestor:: ⋆
preceding-sibling:: not soon

following-sibling:: not soon

preceding-sibling-of-self:: not soon

137 137

137 137

136 XML revisioned

following-sibling-or-self:: not soon

descendent:: ⋆
descendent-or-self:: ⋆
preceding:: not soon

following:: not soon

self::node() not soon

id("tag") not soon

node() not soon

This list shows that it is also possible to ask for more matches at once. Namespaces are

supported (including a wildcard) and there are mechanisms for namespace remapping.

\startluacode
lxml.concat(document.xml,"/one/(three|five)/some",", "," and ")

\stopluacode

We get: <some>pdftex</some>, <some>luatex</some>, <some>xetex</some>
and <some>metapost</some> and if we say:

\startluacode
lxml.concat(document.xml,"/one/(three|five)/some",", "," and ",

true)
\stopluacode

We get: ‘pdftex, luatex, xetex and metapost’.

Watch how we use thelxmlnamespace here! Here live the functions that pipe the result

to TEX.

There a several helper functions, like xml.count which in this case returns 4.

\startluacode
lxml.count(document.xml,"/one/(three|five)/some")

\stopluacode

Functions like this gives the opportunity to loop over lists of elements by index.

manipulations

We can manipulate elements too. The next code will add some elements at specific lo-

cations.

\startluacode
xml.before(document.xml,"xml:///one/three/some","<be>ok</be>")
xml.after (document.xml,"xml:///one/three/some","<af>ok</af>")

138 138

138 138

XML revisioned 137

tex.sprint("\\starttyping")
xml.sprint(lxml.filter(document.xml,"/one/three"))
tex.sprint("\\stoptyping")

\stopluacode

And indeed, we suddenly have a couple of ‘ok’’s there:

<three>
<be>ok</be><some>pdftex</some><af>ok</af>
<be>ok</be><some>luatex</some><af>ok</af>
<be>ok</be><some>xetex</some><af>ok</af>
</three>

Of course wel can also delete elements:

\startluacode
xml.delete(document.xml,"/one/three/some")
xml.delete(document.xml,"/one/three/af")
tex.sprint("\\starttyping")
xml.sprint(lxml.filter(document.xml,"/one/three"))
tex.sprint("\\stoptyping")

\stopluacode

Now we have:

<three>
<be>ok</be><af>ok</af>
<be>ok</be><af>ok</af>
<be>ok</be><af>ok</af>
</three>

Replacing an element is also possible. The replacement can be a table (representing

elements) or a string which is then converted into a table first.

\startluacode
xml.replace(document.xml,"/one/three/be","<mid>done</mid>")
tex.sprint("\\starttyping")
xml.sprint(lxml.filter(document.xml,"/one/three"))
tex.sprint("\\stoptyping")

\stopluacode

And indeed we get:

<three>
<be>ok</be><af>ok</af>

139 139

139 139

138 XML revisioned

<be>ok</be><af>ok</af>
<be>ok</be><af>ok</af>
</three>

These are just a few features of the library. I will add some more (rather) generic manip-

ulaters and extend the functionality of the existing ones. Also, there will be a few manip-

ulation functions that come in handy when preparing texts for processing with TEX (most

of the xml that I deal with is rather dirty and needs some cleanup).

streaming trees

Eventually we will provies series of convenient macros that will provide an alternative for

most of the MkII code. In MkII we have a streaming parser, which boils down to attaching

macros to elements. This includes a mechanism for saving an restoring data, but this is not

always convenient because one also has to intercept elements that needs to be hidden.

In MkIV we do things different. First we load the complete document in memory (a Lua

table). Then we flush the elements that we want to process. We can associate setups

with elements using the filters mentioned before. We can either use TEX or use Lua to

manipulate content. Instead if a streaming parser we now have a mixture of streaming

and tree manipulation available. Interesting is that the xml loader is pretty fast and piping

data to TEX is also efficient. Since we no longer need to manipulate the elements in TEX

we gain processing time too, so in practice we have now much faster xml processing

available.

To give you an idea we show a few commands:

\xmlload {main}{mk-xml.xml}

So that we can do things like (there are and will be a few more):

command arguments result

\xmlfirst {main} {/one/three/some} <some>pdftex</some>

\xmllast {main} {/one/three/some} <some>xetex</some>

\xmlindex {main} {/one/three/some} {2} <some>luatex</some>

There is a set of about 30 commands that operates on the tree: loading, flushing, filtering,

associating setups and code in modules to elements. For instance when one uses so

called cals--tables, the processing is automatically activates when the namespace can be

resolved. Processing is collected in setups and those registered are these are processed

after loading the tree. In the following example we register a handler for content that

needs to end up bold.

\startxmlsetups xml:mysetups

140 140

140 140

XML revisioned 139

\xmlsetsetup{\xmldocument}{bold|bf}{xml:handlebold}
\stopxmlsetups

\xmlregistersetup{xml:mysetups}

\startxmlsetups xml:handlebold
\dontleavehmode
\bgroup
\bf
\xmlflush{#1}
\egroup

\stopxmlsetups

In this example #1 represents the root of the subtree. Say that we want to process an

index entry which is coded as follows:

<index>
<entry>whatever</entry>
<key>whatever</key>

</index>

We register an additional handler (here the * is a shortcut for using the element’s tag as

setup name):

\startxmlsetups xml:mysetups
\xmlsetsetup{\xmldocument}{bold|bf}{xml:handlebold}
\xmlsetsetup{\xmldocument}{index}{*}

\stopxmlsetups

\xmlregistersetup{xml:mysetups}

\startxmlsetups index
\index[\xmlfirst{#1}{key}]{\xmlfirst{#1}{entry}}

\stopxmlsetups

In practice MkIV definitions are more compact than the comparable MkII ones, espe-

cially for more complex constructs (tables and such).

\defineXMLenvironment
[index]
{\bgroup
\defineXMLsave[key]%
\defineXMLsave[entry]}
{\index[\XMLflush{key}]{\XMLflush{entry}}%

141 141

141 141

140 XML revisioned

\egroup}

This looks compact, but keep in mind that we also need to get rid of spurry spaces and

when the code grows, we usually use setups to separate the definition from the code.

In any case, the MkII solution involves a few definitions as well as saving the content of

elements. This is often much more costly than the MkIV method where we only locate

and flush content. Of course the document is stored in memory, but that happens pretty

fast: storing the 14 files (2 per interface) that define the ConTEXt user interface takes .85

seconds on a 2.3 Ghz Core Duo (Windows Vista) which is not that bad if you take into

account that we’re talking of 2.7 megabytes of highly structured data (many elements and

attributes, not that much text). Loading one of these files using MkII code (for storing

elements) takes many more seconds.

I didn’t do extensive speed tests yet but for normal streamed processing of simple doc-

uments the penalty of loading the tree can be neglected. When comparing traditional

MkII code like:

\defineXMLargument [title][id=] {\subject[\XMLop{at}]}
\defineXMLenvironment[p] {} {\par}

\starttext
\processXMLfilegrouped{testspeed.xml}

\stoptext

with its MkIV counterpart:

\startxmlsetups document
\xmlsetsetup\xmldocument{title|p}{*}

\stopxmlsetups

\xmlregistersetup{document}

\startxmlsetups title
\section[\xmlatt{#1}{id}]{\xmlcontent{#1}{/}}

\stopxmlsetups

\startxmlsetups p
\xmlflush{#1}\endgraf

\stopxmlsetups

\starttext
\processXMLfilegrouped{testspeed.xml}

\stoptext

142 142

142 142

XML revisioned 141

I found that processing a one megabyte file with some 400 sections
takes the same runtime for both approaches. However, as soon as more
complex manipulations enter the game the \MKIV\ method starts taking
less time. Think of the manipulations needed for \MATHML\ or converting
tables into something that \CONTEXT\ can handle. Also, when we deal
with documents where we need to ignore large portions of shuffle content
around, the traditional method also has to store data in memory and
in
that case \MKII\ code always loses from \MKIV\ code. Of course any
speed
we gain in handling \XML\ is lost on processing complex fonts and
attributes but there we gain in quality.

Another advantage of the MkIV mechanisms is that we suddenly have so called fully ex-

pandable xml handling. All manipulations take place in Lua and there is no interfering

code at the TEX end.

examples

For the path freaks we now show what patterns lead to. For this we will use the following

xml data:

<?xml version='1.0' ?>
<a>

<?what is this?>

<c n='x'>c1</c><d>d1</d>

<c n='y'>c2</c><d>d2</d>

<?what is that?>
<c><d>d3</d></c>
<c n='y'><d>d4</d></c>
<c><d>d5</d></c>

Here come the examples:

a/b/c

<c n="x">c1</c>
<c n="y">c2</c>

143 143

143 143

142 XML revisioned

/a/b/c

<c n="x">c1</c>
<c n="y">c2</c>

b/c

<c n="x">c1</c>
<c n="y">c2</c>

c

<c n="x">c1</c>
<c n="y">c2</c>
<c><d>d3</d></c>
<c n="y"><d>d4</d></c>
<c><d>d5</d></c>

a/*/c

<c n="x">c1</c>
<c n="y">c2</c>

a/**/c

<c n="x">c1</c>
<c n="y">c2</c>

a//c

<c n="x">c1</c>
<c n="y">c2</c>
<c><d>d3</d></c>
<c n="y"><d>d4</d></c>
<c><d>d5</d></c>

a/*/*/c

no match

*/c

<c><d>d3</d></c>
<c n="y"><d>d4</d></c>
<c><d>d5</d></c>

144 144

144 144

XML revisioned 143

**/c

<c><d>d3</d></c>
<c n="y"><d>d4</d></c>
<c><d>d5</d></c>
<c n="x">c1</c>
<c n="y">c2</c>

a/../*/c

<c><d>d3</d></c>
<c n="y"><d>d4</d></c>
<c><d>d5</d></c>

a/../c

no match

c[@n='x']

<c n="x">c1</c>

c[@n]

<c n="x">c1</c>
<c n="y">c2</c>
<c n="y"><d>d4</d></c>

c[@n='y']

<c n="y">c2</c>
<c n="y"><d>d4</d></c>

c[1]

<c n="x">c1</c>

b/c[1]

<c n="x">c1</c>

a/c[1]

<c><d>d3</d></c>

a/c[-1]

<c n="y"><d>d4</d></c>

145 145

145 145

144 XML revisioned

c[1]

<c n="x">c1</c>

c[-1]

<c n="y"><d>d4</d></c>

pi::

no match

pi::what

no match

146 146

146 146

Breaking apart 145

XVIII Breaking apart

[todo: mention changes to hyphenchar etc]

Because the long term objective is to have control over all aspects of the typesetting,

quite some effort went into opening up one of the cornerstones of TEX: breaking para-

graphs into lines. And because this is closely related to hyphenating words, this effort

also meant that we had to deal with ligature building and kerning.

This is best explained with an example. Imagine that we have the following sentence1

We imagined it was being ground down smaller and smaller, into a kind of powder.

And we realized that smaller and smaller could lead to bigger and bigger problems.

With the current language settings for US English this can be hyphenated as follows:

We imag-ined it was be-ing ground down smaller and smaller, into a kind of pow-

der. And we re-al-ized that smaller and smaller could lead to big-ger and big-ger

prob-lems.

So, when breaking a paragraph into lines, TEX has a few options, but here actually not that

many. If we permits two character snippets, we can get:

We imag-ined it was be-ing ground down small-er and small-er, in-to a kind of

pow-der. And we re-al-ized that small-er and small-er could lead to big-ger and

big-ger prob-lems.

If we revert to UK English, we get:

We ima-gined it was being ground down smal-ler and smal-ler, into a kind of

powder. And we real-ized that smal-ler and smal-ler could lead to big-ger and

big-ger prob-lems.

or, more tolerant,

We ima-gined it was being ground down smal-ler and smal-ler, into a kind of

powder. And we real-ized that smal-ler and smal-ler could lead to big-ger and

big-ger prob-lems.

or with Dutch patterns:

We ima-gi-ned it was being ground down smal-ler and smal-ler, in-to a kind of

pow-der. And we re-a-li-zed that smal-ler and smal-ler could lead to big-ger and

big-ger pro-blems.

The code in traditional TEX that deals with hyphenation and linebreaks is rather interwo-

ven. There is a relationship between the font encoding and the way patterns are encodes.

1 The World Without Us, Alan Weisman; a quote from Richard Thomson in chapter: Polymers are Forever.

147 147

147 147

146 Breaking apart

A few years after TEX was written, support for multiple languages was added, which re-

sulted in a mix of (kind of global) language settings (no nodes) and language nodes in the

node lists. Traditionally it roughly works as follows:

• The input We imagined it is tokenized and turned into glyph nodes. If non ascii

characters are used (like pre composed accented characters) there may be a transla-

tion step: macros or active characters can insert\char commands or map onto other

characters, for instance input byte 123 can become byte 198 which in turn ends up as

a reference in a glyph node to a font slot. Whatever method is used to go from input

to glyph node, eventually we have a reference to a position in a font. Unfortunately

we had only 256 such slots per font.

• When it’s time to break a paragraph into lines, traditional TEX walks over the list, re-

construct words and inserts hyphenation points. In the process, inter-character kerns

that are already injected need to be removed and reinserted, and ligatures have to

be decomposed and recomposed. The magic of hyphenation is controlled by dis-

cretionary nodes. These specify what to do when a word is hyphenated. Take for

instance the Dutch word effe which hyphenated becomes ef-fe so the ff either

stays, or is split into f- and f.

• Because a glyph node is bound to a font, there is a relationship with the font encoding.

Because there is no one 8-bit encoding that suits all languages, we may end up with

several instances of a font in one document (used for different languages) and each

when we switch language and/or font, we also have to enable a suitable set of patterns

(in a matching encoding).

You can imagine that this may lead to moderately complex mechanisms in macro pack-

ages. For instance, in ConTEXt, to each language multiple font encodings can be bound

and a switch of fonts (with related encoding) also results in a switch to a suitable set of

patterns. But in MkIV things are done different.

First of all, we got rid of font encodings by exclusively using Unicode. We already were

using utf encoded patterns (so that we could load them under different font encodings)

so less patterns had to be loaded per language. That happened even before the LuaTEX

development arrived at hyphenation.

Before that effort started, Taco and I already played a bit with alternative hyphenation

methods. For instance, we took large word lists with hyphenation points inserted. Taco

wrote a loader (Lua could not handle the large tables as function return value) and I made

some hyphenation code in Lua. Surprisingly we found out that it was pretty efficient,

although we didn’t have the weighted hyphenation points that patterns may provide.

Basically we simulated the \hyphenation command.

While we went back to fonts, Taco’s college Nanning wrote the first version of a new hy-

phenation storage mechanism, so when about half a year later we were ready to deal with

148 148

148 148

Breaking apart 147

the linebreak mechanisms, one of the key components was more or less ready. Where

fonts forced me to write quite some Lua code (still not finished), the new hyphenation

mechanisms could be supported rather easy, if only because the framework was already

kind of present (written during the experiments). Even better, when splitting the old code

into MkII and new MkIV code, I could do most housekeeping in Lua, and only needed

a minimal amount of TEX interfacing (partly redundant because of the shared interface).

The new mechanism also was no longer bound to the format, which means that we could

postpone loading of the patterns to runtime. Instead of the still supported traditional

loading of patterns and exceptions, we load them under Lua control. This gave me yet

another nice excercise in using lpeg (Lua’s string parser).

With a new pattern loader in place, Taco started separating the hyphenation, ligature

building and kerning. Each stage now has its own callback and each stage has an associ-

ated Lua function, so that one can create a different order of execution or integrate it in

other node parsing activities, most noticeably the handling of OpenType features.

When I was trying to integrate this into the already existing node processing sequences,

some nasty tricks were needed in order to feed the hyphenation function. At that mo-

ment it was still partly modelled after the traditional TEX way, which boiled down to the

following. As soon as the hyphenation function is invoked, it needs to know what the

current language is. This information is not stored in the node list, only mid paragraph

language switched are stored. Due to the fact that much information in TEX is global (well,

in LuaTEX less and less) this complicates matters. Because in MkIV hyphenation, ligature

building and kerning are done differently (dus to OpenType) we used the hyphenation

callback to collect the language parameters so that we could use them when we called

the hyphenation function later. This can definetely be qualified as an ugly hack.

Before we discuss how this was solved, we summarize the state of affairs. In LuaTEX we

now have a sequence of callbacks related to paragraph building and in between not

much happens any more.

• hyphenation

• ligaturing

• kerning

• preparing linebreaking

• linebreaking

• finishing linebreaking

Before we only had:

• preparing linebreaking

149 149

149 149

148 Breaking apart

and this is where MkIV hooks in ist code. The first three are disabled by associating

them with dummy functions. I’m still not sure how the last two will fit it, especially be-

cause there is some interplay between OpenType features and linebreaking, like alterna-

tive glyphs at the end of the line. Because the hz and protruding mechanisms also will be

supported we may as well end up with a mechanism for alternative glyphs built into the

linebreak algorithm.

Back to the current situation. What made matters even more complicated was the fact

that we need to manipulate node lists while building horizontal material (hpacking) as

well as for paragraphs (pre-linebreaking). Compare the following two situations. In the

first case the hbox is packaged and hyphenation is not needed.

text \hbox {text} text

However, when we unbox the content, hyphenation needs to be applied.

\setbox0=\hbox{text} text \unhbox0\ text

[I need to check the next]

Traditional TEX does not look at all potential hyphenation points, but only around places

that have a high probability as line-end. LuaTEX just hyphenates the whole list, although

the function can be used selectively over a range, in MkIV we see no reason for this and

hyphenate whole lists.

The new hyphenation routine not only operates on the whole list, but also can be made

transparent for uppercase characters. Because we assume Unicode lowercase codes are

no longer stored with the patterns (an 𝜀-TEX extension). The usual left- and righthyphen-

min control is still there. The first word of a paragraph is no longer ignored in the process.

Because the stages are separated now, the opportunity was there to separate between

characters and glyphs. As with traditional TEX, only characters are taken into account

when hyphenating, so how do we distinguish between the two? The subtype (a prop-

erty of each node) already registered if we were dealing with a ligature or not. Taco and

Nanning had decided to treat the subtype as a bitset and after a bit of testing ans skyping

we came to the conclusion that we needed an easy way to tag a glyph node as being ‘al-

ready processed’. Keep in mind that as in the unhboxed example, the unhboxed content

is already treated (hpack callback). If you wonder why we have these two moments of

treatment think of this: if you put something in a box and want to know its dimensions,

all font related features need to be applied. If the box is inserted as is, it can be recog-

nized (a hlist or vlist node) and safely skipped in the prelinebreak handling. However,

when it is unhboxed, we want to avoid reprocessing. Normally reprocessing will be pre-

vented because the glyph nodes are mixed with kerns and ligatures are already built, but

we can best play safe. Once we’re done with processing a list (which can involve many

passes, depending on what treatment is needed) we can tag the glyphs nodes as ‘done’

150 150

150 150

Breaking apart 149

by adding 256 to the subtype. We can then test on this property in callbacks while at the

same time built-in functions like those responsible for hyphenation ignore this high bit.

The transition from character to glyph is also done by changing bits in the subtype. At

some point we need to set the subtype so that it reflects the node being a glyph, ligature

or other special type (there are a few more types inherited from omega). I know that this

all sounds complicated, but in MkIV we now roughly do the following (of course this may

and probably will change):

• attribute driven manipulations (for instance case change)

• language driven manipulations (spell checking, hyphenation)

• font driven treatments, mostly features (ligature building, kerning)

• turn characters into glyphs (so that they will not be hyphenated again)

• normal ligaturing routine (currently still needed for not open type fonts, may become

obsolete)

• normal kerning routine (currently still needed for not open type fonts, may become

obsolete)

• attribute driven manipulations (special spacing and kerning)

When no callbacks are used, turning characters into glyphs happens automatically be-

hind the screens. When using callbacks (as in MkIV) this needs to be done explicitly (but

there is a helper function for this).

So, by now LuaTEX can determine which glyph nodes play a role in hyphenation but still

we have this ‘what language are we in’ problem. As usual in the development of LuaTEX,

these fundamental changes took place in a setting where Taco and I are in a persistent

state of Skyping, and it did not take much time to decide that in order to make the call-

backs usable, it made much sense to moving the language related information to the

glyph node as well, i.e. the number of the language object (patterns and exceptions), the

left and right min values, and the boolean that tells how to treat uppercase characters.

Each is now accessible in the usual way (by key). The penalty in additional memory is

zero because it’s stored along with the subtype bitset. By going this route, the ugly hack

mentioned before could be removed as well.

In the process of finalizing the code, discretionary nodes got a slightly different imple-

mentation. Originally they were organized as follows (ff is a ligature):

con-text == [c][o](pre=n-,post=,replace=1)[n][t][e][x][t]
effe == [e](pre=f-,post=f,replace=1)[ff][e]

So, a discretionaty node contained information about what to put at the end of the bro-

ken line and what to put in front of the next line, as well as the number of following nodes

in the list to skip when such a linebreak occured. Because this leads to rather messy code

especially when ligatures are involved, so the decision was made to change the replace-

ment counter into a node list holding those (optionally) to be replaced nodes.

151 151

151 151

150 Breaking apart

con-text == [c][o](pre=n-,post=,replace=n)[t][e][x][t]
effe == [e](pre=f-,post=f,replace=ff)[e]

This is much cleaner, but a consequence of this change was that all MkIV node manipu-

lation code written so far had to be reviewed.

Of course we need to spend a few words on performance. We keep doing performance

tests but currently we only remove bottlenecks that bother us. Later in the development

optimization will tke place in the code. One reason is that the code changes, another

reason is that large portions of Pascal code is turned into C. Because integrating these

changes (apart from preparations) took place within a few weeks, we could reasonably

well compare the old and the new hyphenation mechanisms using our (evolving) manu-

als and surprisingly the performance was certainly not worse than before.

152 152

152 152

Collecting garbage 151

XIX Collecting garbage

We use themk.texdocument for testing and because it keeps track of how LuaTEX evolves.

As a result it has some uncommon characteristics. For instance, you can see increments

in memory usage at points where we load fonts: the chapters on Zapfino, Arabic and CJK

(unfinished). This memory is not freed because the font memory is used permanently. In

the following graphic, the red line is the memory consumption of LuaTEX for the current

version of mk.tex. The blue line is the runtime per page.

luastate_bytes min:76184711, max:795257742, pages:320

At the moment of writing this Taco has optimized the LuaTEX code base and I have added

dynamic feature support to the MkIV and optimized much of the critical Lua code. At the

time of writing this (December 23, 2007), mk.tex counted 142 pages. Our rather aggres-

sive optimizations brought down runtime from about 29 seconds to under 16 seconds.

By sharing as much font data as possible at the Lua end (at the cost of a more complex

implementation) the memory consumption of huge fonts was brought down to a level

where a somewhat ‘older’ computer with 512 MB memory could also cope with MkIV.

Keep in mind that some fonts are just real big. Eventually we may decide to use a more

compact table model for passing OpenType fonts to Lua, but this will not happen in 2007.

The following tests show when Lua’s garbage collector becomes active. The blue spike

shows that some extra time is spent on this initially. After that garbage more garbage is

collected, which makes the time spent per page slightly higher.

\usemodule[timing] \starttext \dorecurse{2000}{
\input tufte \par \input tufte \par \input tufte \page

} \stoptext

luastate_bytes min:37009927, max:87755930, pages:2000

153 153

153 153

152 Collecting garbage

The maximum memory footprint is somewhat misleading because Lua reserves more

than needed. As discussed in an earlier chapter, it is possible to tweak to control memory

management somewhat, but eventually we decided that it does not make much sense

to divert from the default settings.

\usemodule[timing] \starttext \dorecurse{2000}{
\input tufte \par \input tufte \par \input tufte \par

} \stoptext

luastate_bytes min:36884954, max:86480013, pages:1385

The last example of this set does not load files, but stores the text in a macro. This is faster,

although not that mich because the operating system caches the file and there is not utf

collapsing needed for this file.

\usemodule[timing] \starttext \dorecurse{2000}{
\tufte \par \tufte \par \tufte \par

} \stoptext

luastate_bytes min:36876892, max:86359763, pages:1385

There are subtle differences in memory usage between the examples and eventually test

like these will permit us to optimize the code even further. For the record: the first test

runs in 39.5 seconds, the second on in 36.5 seconds and the last one only takes 31.5 sec-

onds (all in batch mode).

Keep in mind that these quotes in tufte.tex are just test samples, and not that realistic

in everyday documents. On the other hand, these tests involve the usual font loading,

node processing, attribute handling etc. They provide a decent baseline.

154 154

154 154

Collecting garbage 153

Another document that we use for testing functionality and performance is the reference

manual. The preliminary beta 2 version gives the following statistics.

luastate_bytes min:59690872, max:155651415, pages:112

The previous graphic shows the statistics of a run with runtime MetaPost graphics en-

abled. This means that, because each pagenumber comes with a graphic, for each page

MetaPost is called. The speed of this call is heavily influenced by the MetaPost startup

time, which in turn (in a windows platform) is influences by the initialization time of the

kpse library. Technically the call time can near zero but this demands sharing libraries and

databases. Anyhow, we’re moving towards an embedded MetaPost library anyway, and

the next graphic shows what will happen then. Here we run ConTEXt in delayed MetaPost

mode: graphics are collected and processed between runs. Where the runtime variant

takes some 45 seconds processing time, the intermediate versions takes 15.

luastate_bytes min:59690749, max:155669371, pages:112

In the mk.tex document we use Type1 fonts for the main body of the text and load some

(huge) OpenType fonts later on. Here we use OpenType fonts exclusively and since ConTEXt

loads fonts only when needed, you see several spikes in the time per page bars and mem-

ory consumption quickly becomes stable. Interesting is that contrary to the tufte.tex
samples, memory usage is quite stable. Here we don’t have a memory sawtooth and no

garbage collection spikes.

The previous graphics combine Lua memory consumption with time spent per page. The

following graphics show variants of this. The graphics concern this document (mk.tex).

Again, the blue lines represent the runtime per page.

155 155

155 155

154 Collecting garbage

cs_count min:44951, max:52390, pages:320

dyn_used min:632849, max:1959607, pages:320

elapsed_time min:0.005, max:0.808, pages:320

luabytecode_bytes min:21552, max:21552, pages:320

luastate_bytes min:76184711, max:795257742, pages:320

156 156

156 156

Collecting garbage 155

max_buf_stack min:302, max:2306, pages:320

obj_ptr min:6, max:1089, pages:320

pdf_mem_ptr min:1, max:10, pages:320

pdf_mem_size min:10000, max:10000, pages:320

pdf_os_cntr min:0, max:7, pages:320

157 157

157 157

156 Collecting garbage

str_ptr min:2145595, max:2155120, pages:320

In LuaTEX node memory management is rewritten. Contrary to what you may expect,

node memory consumption is not that large. Pages seldom contain more than 5000

nodes, although extensive use of attributes can easily duplicate this. Node usage in this

documents is as follows.

attribute min:33, max:33851, pages:320

attribute_list min:13, max:7309, pages:320

boundary min:2, max:66, pages:320

158 158

158 158

Collecting garbage 157

dir min:2, max:119, pages:320

disc min:1, max:300, pages:320

glue min:15, max:23120, pages:320

glue_spec min:38, max:6160, pages:320

glyph min:2, max:7901, pages:320

159 159

159 159

158 Collecting garbage

hlist min:5, max:1705, pages:320

if_stack min:0, max:15, pages:320

ins min:0, max:1, pages:320

kern min:4, max:691, pages:320

late_lua min:2, max:176, pages:320

160 160

160 160

Collecting garbage 159

local_par min:0, max:284, pages:320

margin_kern min:2, max:2, pages:320

math min:0, max:112, pages:320

noad min:1, max:1, pages:320

pdf_literal min:8, max:1864, pages:320

161 161

161 161

160 Collecting garbage

pdf_restore min:1, max:42, pages:320

pdf_save min:1, max:42, pages:320

pdf_setmatrix min:1, max:64, pages:320

penalty min:1, max:447, pages:320

rule min:4, max:1124, pages:320

162 162

162 162

Collecting garbage 161

special min:1, max:1, pages:320

temp min:3, max:8, pages:320

user_defined min:7, max:7, pages:320

vlist min:6, max:327, pages:320

If node memory usage stays high, i.e. is not reclaimed, this can be an indication of a mem-

ory leak. In the December 2007 beta version there is such a leak in math subformulas,

something that will be resolved when math node processing is opened up. The current

MkIV code cleans up most of its temporary data. We do so, because it permits us to keep

an eye on unwanted memory leaks. When writing this chapter, some of the peaks in the

graphics coincided with peaks in the runtime per page, which is no surprise.

If you want to run such tests yourself, you need to load a module at startup:

163 163

163 163

162 Collecting garbage

\usemodule[timing]

The graphics can be generated with:

\def\ShowUsage {optional filename}
\def\ShowNamedUsage {optional filename}{red graphic}{blue graphic}
\def\ShowMemoryUsage{optional filename}
\def\ShowNodeUsage {optional filename}

(This interface may change.)

164 164

164 164

Nice to know 163

XX Nice to know

XX.I Tricky ligatures

Getting the 1.06 release of Latin Modern out in the wild took some discussion and testing.

Not only were the names (internal names as well as file names) changed in such a way that

multiple paplications could deal with it, but also some more advanced ligature trickery

was added.

\definefontfeature
[ijtest]
[mode=node,
script=latn,language=nld,strategy=3,
liga=yes,kern=yes]

\definefont
[ijfont]
[name:lmroman10regular*ijtest at 36pt]

\start \ijfont \setstrut fijn ijsje fiets flink effe\stop

This bit of Dutch shows up as:

fĳn ĳsje fiets flink effe
Do you see the trick? There are both an ij and an fi ligature, but we need to prevent the

ij ligature in fijn. Of course not all fonts have this feature, which indicated that you can

never depend on it.

XX.II Herds

A while ago, Duane, Taco and I published the Cow Font. It’s non--trivial to cook up a

font made of cows, but of course Mojca Miklavec (who else) wants to typeset something

Slovenian in this font. Now, the problem is that in MkIV we don’t have fallback characters,

or more precisely, we don’t make utf characters active and accent composing commands

are mapped onto utf.

This means that nothing will show up when we have no characters in the defined fonts.

For the moment we stick to simple virtual fonts but because we can use node lists in virtual

fonts, in the near future we will cook up a way to create arbitrary fallback characters.

The following example demonstrates how to ‘complete’ a font that misses glyphs.

165 165

165 165

164 Nice to know

\definefontfeature[coward] [kern=yes,ligatures=yes]
\definefontfeature[cowgirl][kern=yes,ligatures=yes,compose=yes]

\definefontsynonym [cows] [koeieletters.afm*coward]
\definefontsynonym [herd] [koeieletters.afm*cowgirl]

\blank[3*medium]
\dontleavehmode\hbox{\definedfont[cows sa 5](č)(š)(ž)}
\blank[3*medium]
\dontleavehmode\hbox{\definedfont[herd sa 5](č)(š)(ž)}
\blank[3*medium]
\dontleavehmode\hbox{\definedfont[herd sa 5](\v{c})(\v{s})(\v{z})}

As expected (at least by me) the first line has no compose characters.

()()()

(č)(š)(ž)

(č)(š)(ž)

166 166

166 166

The luafication of TEX and ConTEXt 165

XXI The luafication of TEX and ConTEXt

introduction

Here I will present the current stage of LuaTEX around beta stage 2, and discuss the impact

so far on ConTEXt MkIV that we use as our testbed. I’m writing this at the end of February

2008 as part of the series of regular updates on LuaTEX. As such, this report is part of our

more or less standard test document (mk.tex). More technical details can be found in

the reference manual that comes with LuaTEX. More information on MkIV is available in

the ConTEXt mailing lists, Wiki, and mk.pdf.

For those who never heard of LuaTEX: this is a new variant of TEX where several long pend-

ing wishes are fulfilled:

• combine the best of all TEX engines

• add scripting capabilities

• open up the internals to the scripting engine

• enhance font support to OpenType

• move on to Unicode

• integrate MetaPost

There are a few more wishes, like converting the code base to C but these are long term

goals.

The project started a few years ago and is conducted by Taco Hoekwater (Pascal and

C coding, code base management, reference manual), Hartmut Henkel (pdf backend,

experimental features) and Hans Hagen (general overview, Lua and TEX coding, website).

The code development got a boost by a grant of the Oriental TEX project (project lead:

Idris Samawi Hamid) and funding via the tug. The related mplib project by the same team

is also sponsored by several user groups. The very much needed OpenType fonts are also

a user group funded effort: the Latin Modern and TEX Gyre projects (project leads: Jerzy

Ludwichowski, Volker RW Schaa and Hans Hagen), with development (the real work) by:

Bogusław Jackowski and Janusz Nowacki.

One of our leading principles is that we focus on opening up. This means that we don’t

implement solutions (which also saves us many unpleasant and everlasting discussions).

Implementing solutions is up to the user, or more precisely: the macro package writer,

and since there are many solutions possible, each can do it his or her way. In that sense

we follow the footsteps of Don Knuth: we make an extensible tool, you are free to like

it or not, you can take it and extend it where needed, and there is no need to bother us

(unless of course you find bugs or weird side effects). So far this has worked out quite

well and we’re confident that we can keep our schedule.

167 167

167 167

166 The luafication of TEX and ConTEXt

We do our tests of a variant of ConTEXt tagged MkIV, especially meant for LuaTEX, but

LuaTEX itself is in no way limited to or tuned for ConTEXt. Large chunks of the code written

for MkIV are rather generic and may eventually be packaged as a base system (especially

font handling) so that one can use LuaTEX in rather plain mode. To a large extent MkIV

will be functionally compatible with MkII, the version meant for traditional TEX, although

it knows how to profit from X ETEX. Of course the expectation is that certain things can be

done better in MkIV than in MkII.

status

By the end of 2007 the second major beta release of LuaTEX was published. In the first

quarter of 2008 Taco would concentrate on mplib, Hartmut would come up with the first

version of the image library while I could continue working on MkIV and start using LuaTEX

in real projects. Of course there is some risk involved in that, but since we have a rather

close loop for critical bug fixes, and because I know how to avoid some dark corners, the

risk was worth taking.

What did we accomplish so far? I can best describe this in relation to how ConTEXt MkIV

evolved and will evolve. Before we do this, it makes sense to spend some words on why

we started working on MkIV in the first place.

When the LuaTEX project started, ConTEXt was about 10 years in the field. I can safely

say that we were still surprised by the fact that what at first sight seems unsolvable in TEX

somehow could always be dealt with. However, some of the solutions were rather tricky.

The code evolved towards a more or less stable state, but sometimes depended on con-

trolled processing. Take for instance backgrounds that can span pages and columns, can

be nested and can have arbitrary shapes. This feature has been present in ConTEXt for

quite a while, but it involves an interplay between TEX and MetaPost. It depends on in-

formation collected in a previous run as well as (at runtime or not) processing of graphics.

This means that by now ConTEXt is not just a bunch of TEX macros, but also closely related

to MetaPost. It also means that processing itself is by now rather controlled by a wrapper,

in the case of MkII called TEXexec. It may sound complicated, but the fact that we have

implemented workflows that run unattended for many years and involve pretty complex

layouts and graphic manipulations demonstrates that in practice it’s not as bad as it may

sound.

With the arrival of LuaTEX we not only have a rigourously updated TEX engine, but also get

MetaPost integrated. Even better, the scripting language Lua is not only used for open-

ing up TEX, but is also used for all kind of management tasks. As a result, the develop-

ment of MkIV not only concerns rewriting whole chunks of ConTEXt, but also results in a

set of new utilities and a rewrite of existing ones. Since dealing with MkIV will demand

some changes in the way users deal with ConTEXt I will discuss some of them first. It also

demonstrates that LuaTEX is more than just TEX.

168 168

168 168

The luafication of TEX and ConTEXt 167

utilities

There are two main scripts: luatools and mtxrun. The first one started as a replacement

for kpsewhich but evolved into a base tool for generating (tds) file databases and gen-

erating formats. In MkIV we replace the regular file searching, and therefore we use a

different database model. That’s the easy part. More tricky is that we need to bootstrap

MkIV into this alternative mode and when doing so we don’t want to use the kpse library

because that would trigger loading of its databases. To discuss the gory details here might

cause users to refrain from using LuaTEX so we stick to a general description.

• When generating a format, we also generate a bootstrap Lua file. This file is compiled

to bytecode and is put alongside the format file. The libraries of this bootstrap file are

also embedded in the format.

• When we process a document, we instruct LuaTEX to load this bootstrap file before

loading the format. After the format is loaded, we re-initialize the embedded libraries.

This is needed because at that point more information may be available than at load-

ing time. For instance, some functionality is available only after the format is loaded

and LuaTEX enters the TEX state.

• File databases, formats, bootstrap files, and runtime-generated cached data is kept in

a tds tree specific cache directory. For instance, OpenType font tables are stored on

disk so that next time loading them is faster.

Starting LuaTEX and MkIV is done by luatools. This tool is generic enough to handle other

formats as well, like mptopdf or Plain. When you run this script without argument, you

will see:

version 1.1.1 - 2006+ - PRAGMA ADE / CONTEXT

--generate generate file database
--variables show configuration variables
--expansions show expanded variables
--configurations show configuration order
--expand-braces expand complex variable
--expand-path expand variable (resolve paths)
--expand-var expand variable (resolve references)
--show-path show path expansion of ...
--var-value report value of variable
--find-file report file location
--find-path report path of file
--make or --ini make luatex format
--run or --fmt= run luatex format
--luafile=str lua inifile (default is <progname>.lua)

169 169

169 169

168 The luafication of TEX and ConTEXt

--lualibs=list libraries to assemble (optional)
--compile assemble and compile lua inifile
--verbose give a bit more info
--minimize optimize lists for format
--all show all found files
--sort sort cached data
--engine=str target engine
--progname=str format or backend
--pattern=str filter variables
--lsr use lsr and cnf directly

For the Lua based file searching, luatools can be seen as a replacement for mktexlsr and

kpsewhich and as such it also recognizes some of the kpsewhich flags. The script is self

contained in the sense that all needed libraries are embedded. As a result no library

paths need to be set and packaged. Of course the script has to be run using LuaTEX itself.

The following commands generate the file databases, generate a ConTEXt MkIV format,

and process a file:

luatools --generate
luatools --make --compile cont-en
luatools --fmt=cont-en somefile.tex

There is no need to install Luain order to run this script. This is because LuaTEX can act

as such with the advantage that the built-in libraries are available too, for instance the

Lua file system lfs, the zip file manager zip, the Unicode libary unicode, md5, and of

course some of our own.

luatex a Lua--enhanced TEX engine

texlua a Lua engine enhanced with some libraries

texluac a Lua bytecode compiler enhanced with some libraries

In principle luatex can perform all tasks but because we need to be downward com-

patible with respect to the command line and because we want Lua compatible variants,

you can copy or symlink the two extra variants to the main binary.

The second script, mtxrun, can be seen as a replacement for the Ruby script texmfstart, a

utility whose main task is to launch scripts (or documents or whatever) in a tds tree. The

mtxrun script makes it possible to get away from installing Ruby and as a result a regular

TEX installation can be made independent of scripting tools.

version 1.0.2 - 2007+ - PRAGMA ADE / CONTEXT

--script run an mtx script

170 170

170 170

The luafication of TEX and ConTEXt 169

--execute run a script or program
--resolve resolve prefixed arguments
--ctxlua run internally (using preloaded libs)
--locate locate given filename

--autotree use texmf tree cf.\ environment settings
--tree=pathtotree use given texmf tree (def: 'setuptex.tmf')
--environment=name use given (tmf) environment file
--path=runpath go to given path before execution
--ifchanged=filename only execute when given file has changed
--iftouched=old,new only execute when given file has changed

--make create stubs for (context related) scripts
--remove remove stubs (context related) scripts
--stubpath=binpath paths where stubs wil be written
--windows create windows (mswin) stubs
--unix create unix (linux) stubs

--verbose give a bit more info
--engine=str target engine
--progname=str format or backend

--edit launch editor with found file
--launch (--all) launch files (assume os support)

--intern run script using built-in libraries

This help information gives an impression of what the script does: running other scripts,

either within a certain tds tree or not, and either conditionally or not. Users of ConTEXt

will probably recognize most of the flags. As with texmfstart, arguments with prefixes like

file: will be resolved before being passed to the child process.

The first option, --script is the most important one and is used like:

mtxrun --script fonts --reload
mtxrun --script fonts --pattern=lm

In MkIV you can access fonts by filename or by font name, and because we provide sev-

eral names per font you can use this command to see what is possible. Patterns can be

Lua expressions, as demonstrated here:

mtxrun --script font --list --pattern=lmtype.*regular

lmtypewriter10-capsregular LMTypewriter10-CapsRegular lmtypewriter10-capsregular.otf

171 171

171 171

170 The luafication of TEX and ConTEXt

lmtypewriter10-regular LMTypewriter10-Regular lmtypewriter10-regular.otf
lmtypewriter12-regular LMTypewriter12-Regular lmtypewriter12-regular.otf
lmtypewriter8-regular LMTypewriter8-Regular lmtypewriter8-regular.otf
lmtypewriter9-regular LMTypewriter9-Regular lmtypewriter9-regular.otf
lmtypewritervarwd10-regular LMTypewriterVarWd10-Regular lmtypewritervarwd10-regular.otf

A simple

mtxrun --script fonts

gives:

version 1.0.2 - 2007+ - PRAGMA ADE / CONTEXT | font tools

--reload generate new font database
--list list installed fonts
--save save open type font in raw table

--pattern=str filter files
--all provide alternatives

In MkIV font names can be prefixed byfile: orname: and when they are resolved, sev-

eral attempts are made, for instance non-characters are ignored. The --all flag shows

more variants.

Another example is:

mtxrun --script context --ctx=somesetup somefile.tex

Again, users of TEXexec may recognize part of this and indeed this is its replacement. In-

stead of TEXexec we use a script named mtx-context.lua. Currently we have the fol-

lowing scripts and more will follow:

The babel script is made in cooperation with Thomas Schmitz and can be used to con-

vert babelized Greek files into proper utf. More of such conversions may follow. With

cache you can inspect the content of the MkIV cache and do some cleanup. The chars
script is used to construct some tables that we need in the process of development. As

its name says, check is a script that does some checks, and in particular it tries to figure

out if TEX files are correct. The already mentioned context script is the MkIV replace-

ment of TEXexec, and takes care of multiple runs, preloading project specific files, etc. The

convert script will replace the Ruby script pstopdf.

A rather important script is the already mentioned fonts. Use this one for generating

font name databases (which then permits a more liberal access to fonts) or identifying

172 172

172 172

The luafication of TEX and ConTEXt 171

installed fonts. The unzip script indeed unzips archives. The update script is still some-

what experimental and is one of the building blocks of the ConTEXt minimal installer sys-

tem by Mojca Miklavec and Arthur Reutenauer. This update script synchronizes a local

tree with a repository and keeps an installation as small as possible, which for instance

means: no OpenType fonts for pdfTEX, and no redundant Type1 fonts for LuaTEX and X ETEX.

The (for the moment) last two scripts are watch and web. We use them in (either auto-

mated or not) remote publishing workflows. They evolved out of the eXaMpLe framework

which is currently being reimplemented in Lua.

As you can see, the LuaTEX project and its ConTEXt companion MkIV project not only deal

with TEX itself but also facilitates managing the workflows. And the next list is just a start.

context controls processing of files by MkIV

babel conversion tools for LATEX files

cache utilities for managing the cache

chars utilities used for MkIV development

check TEX syntax checker

convert helper for some basic graphic conversion

fonts utilities for managing font databases

update tool for installing minimal ConTEXt trees

watch hot folder processing tool

web utilities related to automate workflows

There will be more scripts. These scripts are normally rather small because they hook

into mtxrun which provides the libraries. Of course existing tools remain part of the

toolkit. Take for instance ctxtools, a Ruby script that converts font encoded pattern files

to generic utf encoded files.

Those who have followed the development of ConTEXt will notice that we moved from

utilities written in Modula to tools written in Perl. These were later replaced by Ruby

scripts and eventually most of them will be rewritten in Lua.

macros

I will not repeat what is said already in the MkIV related documents, but stick to a sum-

mary of what the impact on ConTEXt is and will be. From this you can deduce what the

possible influence on other macro packages can be.

Opening up TEX started with rewriting all io related activities. Because we wanted to be

able to read from zip files, the web and more, we moved away from the traditional kpse

based file handling. Instead MkIV uses an extensible variant written in Lua. Because we

need to be downward compatible, the code is somewhat messy, but it does the job,

and pretty quickly and efficiently too. Some alternative input media are implemented

173 173

173 173

172 The luafication of TEX and ConTEXt

and many more can be added. In the beginning I permitted several ways to specify a re-

source but recently a more restrictive url syntax was imposed. Of course the file locating

mechanisms provide the same control as provided by the file readers in MkII.

An example of reading from a zip file is:

\input zip:///archive.zip?name=blabla.tex
\input zip:///archive.zip?name=/somepath/blabla.tex

In addition one can register files, like:

\usezipfile[archive.zip]
\usezipfile[tex.zip][texmf-local]
\usezipfile[tex.zip?tree=texmf-local]

The last two variants register a zip file in the tds structure where more specific lookup

rules apply. The files in a registered file are known to the file searching mechanism so

one can give specifications like the following:

\input */blabla.tex
\input */somepath/blabla.tex

In a similar fashion one can use the http, ftp and other protocols. For this we use in-

dependent fetchers that cache data in the MkIV cache. Of course, in more structured

projects, one will seldom use the \input command but use a project structure instead.

Handling of files rather quickly reached a stable state, and we seldom need to visit the

code for fixes. Already after a few years of developing the first code for LuaTEX we reached

a state of ‘Hm, when did I write this?’. When we have reached a stable state I foresee that

much of the older code will need a cleanup.

Related to reading files is the sometimes messy area of input regimes (file encoding) and

font encoding, which itself relates to dealing with languages. Since LuaTEX is utf-8 based,

we need to deal with file encoding issues in the frontend, and this is what Lua based file

handling does. In practice users of LuaTEX will swiftly switch to utf anyway but we provide

regime control for historic reasons. This time the recoding tables are Lua based and as

a result MkIV has no regime files. In a similar fashion font encoding is gone: there is still

some old code that deals with default fallback characters, but most of the files are gone.

The same will be true for math encoding. All information is now stored in a character

table which is the central point in many subsystems now.

It is interesting to notice that until now users have never asked for support with regards

to input encoding. We can safely assume that they just switched to utf and recoded

older documents. It is good to know that LuaTEX is mostly pdfTEX but also incorporates

some features of Omega. The main reason for this is that the Oriental TEX project needed

174 174

174 174

The luafication of TEX and ConTEXt 173

bidirectional typesetting and there was a preference for this implementation over the

one provided by 𝜀-TEX. As a side effect input translation is also present, but since no one

seems to use it, that may as well go away. In MkIV we refrain from input processing as

much as possible and focus on processing the node lists. That way there is no interference

between user data, macro expansion and whatever may lead to the final data that ends

up in the to-be-typeset stream. As said, users seem to be happy to use utf as input, and

so there is hardly any need for manipulations.

Related to processing input is verbatim: a feature that is always somewhat complicated

by the fact that one wants to typeset a manual about TEX in TEX and therefore needs flex-

ible escapes from illustrative as well as real TEX code. In MkIV verbatim as well as all

buffering of data is dealt with in Lua. It took a while to figure out how LuaTEX should deal

with the concept of a line ending, but we got there. Right from the start we made sure

that LuaTEX could deal with collections of catcode settings (those magic states that char-

acters can have). This means that one has complete control at both the TEX and Lua end

over the way characters are dealt with.

In MkIV we also have some pretty printing features, but many languages are still missing.

Cleaning up the premature verbatim code and extending pretty printing is on the agenda

for the end of 2008.

Languages also are handled differently. A major change is that pattern files are no longer

preloaded but read in at runtime. There is still some relation between fonts and lan-

guages, no longer in the encoding but in dealing with OpenType features. Later we will do

a more drastic overhaul (with multiple name schemes and such). There are a few exper-

imental features, like spell checking.

Because we have been using utf encoded hyphenation patterns for quite some time now,

and because ConTEXt ships with its own files, this transition probably went unnoticed,

apart maybe from a faster format generation and less startup time.

Most of these features started out as an experiment and provided a convenient way to

test the LuaTEX extensions. In MkIV we go quite far in replacing TEX code by Lua, and

how far one goes is a matter of taste and ambition. An example of a recent replacement

is graphic inclusion. This is one of the oldest mechanisms in ConTEXt and it has been

extended many times, for instance by plugins that deal with figure databases (selective

filtering from pdf files made for this purpose), efficient runtime conversion, color conver-

sion, downsampling and product dependent alternatives.

One can question if a properly working mechanism should be replaced. Not only is

there hardly any speed to gain (after all, not that many graphics are included in docu-

ments), a Lua–TEX mix may even look more complex. However, when an opened-up TEX

keeps evolving at the current pace, this last argument becomes invalid because we can

no longer give that TEXie code to Lua. Also, because most of the graphic inclusion code

175 175

175 175

174 The luafication of TEX and ConTEXt

deals with locating files and figuring out the best quality variant, we can benefit much

from Lua: file handling is more robust, the code looks cleaner, complex searches are

faster, and eventually we can provide way more clever lookup schemes. So, after all,

switching to Lua here makes sense. A nice side effect is that some of the mentioned plu-

gins now take a few lines of extra code instead of many lines of TEX. At the time of writing

this, the beta version of MkIV has Lua based graphic inclusion.

A disputable area for Luafication is multipass data. Most of that has already been moved

to Lua files instead of TEX files, and the rest will follow: only tables of contents still use a TEX

auxiliary file. Because at some point we will reimplement the whole section numbering

and cross referencing, we postponed that till later. The move is disputable because in

the end, most data ends up in TEX again, which involves some conversion. However,

in Lua we can store and manipulate information much more easily and so we decided

to follow that route. As a start, index information is now kept in Lua tables, sorted on

demand, depending on language needs and such. Positional information used to take up

much hash space which could deplete the memory pool, but now we can have millions

of tracking points at hardly any cost.

Because it is a quite independent task, we could rewrite the MetaPost conversion code

in Lua quite early in the development. We got smaller and cleaner code, more flexibility,

and also gained some speed. The code involved in this may change as soon as we start ex-

perimenting with mplib. Our expectations are high because in a bit more modern designs

a graphic engine cannot be missed. For instance, in educational material, backgrounds

and special shapes are all over the place, and we’re talking about many MetaPost runs

then. We expect to bring down the processing time of such documents considerably, if

only because the MetaPost runtime will be close to zero (as experiments have shown us).

While writing the code involved in the MetaPost conversion a new feature showed up

in Lua: lpeg, a parsing library. From that moment on lpeg was being used all over the

place, most noticeably in the code that deals with processing xml. Right from the start I

had the feeling that Lua could provide a more convenient way to deal with this input for-

mat. Some experiments with rewriting the MkII mechanisms did not show the expected

speedup and were abandoned quickly.

Challenged by lpeg I then wrote a parser and started playing with a mixture of a tree

based and stream approach to xml (MkII is mostly stream based). Not only is loading

xml code extremely fast (we used 40 megaByte files for testing), dealing with the tree is

also convenient. The additional MkIV methods are currently being tested in real projects

and so far they result in an acceptable and pleasant mix of TEX and xml. For instance,

we can now selectively process parts of the tree using path expressions, hook in code,

manipulate data, etc.

The biggest impact of LuaTEX on the ConTEXt code base is not the previously mentioned

mechanisms but one not yet mentioned: fonts. Contrary to X ETEX, which uses third party

176 176

176 176

The luafication of TEX and ConTEXt 175

libraries, LuaTEX does not implement dealing with font specific issues at all. It can load

several font formats and accepts font data in a well-defined table format. It only processes

character nodes into glyph nodes and it’s up to the user to provide more by manipulating

the node lists. Of course there is still basic ligature building and kerning available but one

can bypass that with other code.

In MkIV, when we deal with Type1 fonts, we try to get away from traditional tfm files and

use afm files instead (indeed, we parse them using lpeg). The fonts are mapped onto

Unicode. Awaiting extensions of math we only use tfm files for math fonts. Of course

OpenType fonts are dealt with and this is where we find most Lua code in MkIV: imple-

menting features. Much of that is a grey area but as part of the Oriental TEX project we’re

forced to deal with complex feature support, so that provides a good test bed as well as

some pressure for getting it done. Of course there is always the question to what extent

we should follow the (maybe faulty) other programs that deal with font features. We’re

lucky that the Latin Modern and TEX Gyre projects provide real fonts as well as room for

discussion and exploring these grey areas.

In parallel to writing this, I made a tracing feature for Oriental TEXer Idris so that he could

trace what happened with the Arabic fonts that he is making. This was relatively easy be-

cause already in an early stage of MkIV some debugging mechanisms were built. One

of its nice features is that on an error, or when one traces something, the results will be

shown in a web browser. Unfortunately I have not enough time to explore such aspects

in more detail, but at least it demonstrates that we can change some aspects of the tradi-

tional interaction with TEX in more radical ways.

Many users may be aware of the existence of so-called virtual fonts, if only because it can

be a cause of problems (related to map files and such). Virtual fonts have a lot of potential

but because they were related to TEX’s own font data format they never got very popular.

In LuaTEX we can make virtual fonts at runtime. In MkIV for instance we have a feature

(we provide features beyond what OpenType does) that completes a font by composing

missing glyphs on the fly. More of this trickery can be expected as soon as we have time

and reason to implement it.

In pdfTEX we have a couple of font related goodies, like character expansion (inspired

by Hermann Zapf) and character protruding. There are a few more but these had limita-

tions and were suboptimal and therefore have been removed from LuaTEX. After all, they

can be implemented more robustly in Lua. The two mentioned extensions have been

(of course) kept and have been partially reimplemented so that they are now uniquely

bound to fonts (instead of being common to fonts that traditional TEX shares in memory).

The character related tables can be filled with Lua and this is what MkIV now does. As

a result much TEX code could go away. We still use shape related vectors to set up the

values, but we also use information stored in our main character database.

177 177

177 177

176 The luafication of TEX and ConTEXt

A likely area of change is math and not only as a result of the TEX gyre math project which

will result in a bunch of Unicode compliant math fonts. Currently in MkIV the initializa-

tion already partly takes place using the character database, and so again we will end up

with less TEX code. A side effect of removing encoding constraints (i.e. moving to Uni-

code) is that things get faster. Later this year math will be opened up.

One of the biggest impacts of opening up is the arrival of attributes. In traditional TEX

only glyph nodes have an attribute, namely the font id. Now all nodes can have at-

tributes, many of them. We use them to implement a variety of features that already

were present in MkII, but used marks instead: color (of course including color spaces

and transparency), inter-character spacing, character case manipulation, language de-

pendent pre and post character spacing (for instance after colons in French), special font

rendering such as outlines, and much more. An experimental application is a more ad-

vanced glue/penalty model with look-back and look-ahead as well as relative weights.

This is inspired by the one good thing that xml formatting objects provide: a spacing and

pagebreak model.

It does not take much imagination to see that features demanding processing of node lists

come with a price: many of the callbacks that LuaTEX provides are indeed used and as a

result quite some time is spent in Lua. You can add to that the time needed for handling

font features, which also boils down to processing node lists. The second half of 2007

Taco and I spent much time on benchmarking and by now the interface between TEX and

Lua (passing information and manipulating nodes) has been optimized quite well. Of

course there’s always a price for flexibility and LuaTEX will never be as fast as pdfTEX, but

then, pdfTEX does not deal with OpenType and such.

We can safely conclude that the impact of LuaTEX on ConTEXt is huge and that fundamen-

tal changes take place in all key components: files, fonts, languages, graphics, MetaPost

xml, verbatim and color to start with, but more will follow. Of course there are also less

prominent areas where we use Lua based approaches: handling url’s, conversions, al-

ternative math input to mention a few. Sometime in 2009 we expect to start working on

more fundamental typesetting related issues.

roadmap

On the LuaTEX website www.luatex.org you can find a roadmap. This roadmap is just

an indication of what happened and will happen and it will be updated when we feel the

need. Here is a summary.

178 178

178 178

The luafication of TEX and ConTEXt 177

• merging engines

Merge some of the Aleph codebase into pdfTEX (which already has 𝜀-TEX) so that LuaTEX

in dvi mode behaves like Aleph, and in pdf mode like pdfTEX. There will be Lua call-

backs for file searching. This stage is mostly finished.

• OpenType fonts

Provide pdf output for Aleph bidirectional functionality and add support for OpenType

fonts. Allow Lua scripts to control all aspects of font loading, font definition and ma-

nipulation. Most of this is finished.

• tokenizing and node lists

Use Lua callbacks for various internals, complete access to tokenizer and provide ac-

cess to node lists at moments that make sense. This stage is completed.

• paragraph building

Provide control over various aspects of paragraph building (hyphenation, kerning, lig-

ature building), dynamic loading loading of hyphenation patterns. Apart from some

small details these objectives are met.

• MetaPost (mplib)

Incorporate a MetaPost library and investigate options for runtime font generation

and manipulation. This activity is on schedule and integration will take place before

summer 2008.

• image handling

Image identification and loading in Lua including scaling and object management.

This is nicely on schedule, the first version of the image library showed up in the 0.22

beta and some more features are planned.

• special features

Cleaning up of hz optimization and protruding and getting rid of remaining global font

properties. This includes some cleanup of the backend. Most of this stage is finished.

• page building

Control over page building and access to internals that matter. Access to inserts. This

is on the agenda for late 2008.

179 179

179 179

178 The luafication of TEX and ConTEXt

• TEX primitives

Access to and control over most TEX primitives (and related mechanisms) as well as all

registers. Especially box handling has to be reinvented. This is an ongoing effort.

• pdf backend

Open up most backend related features, like annotations and object management.

The first code will show up at the end of 2008.

• math

Open up the math engine parallel to the development of the TEX Gyre math fonts.

Work on this will start during 2008 and we hope that it will be finished by early 2009.

• cweb

Convert the TEX Pascal source into cweb and start using Lua as glue language for com-

ponents. This will be tested on mplib first. This is on the long term agenda, so maybe

around 2010 you will see the first signs.

In addition to the mentioned functionality we have a couple of ideas that we will imple-

ment along the road. The first formal beta was released at tug 2007 in San Diego (usa).

The first formal release will be at tug 2008 in Cork (Ireland). The production version will

be released at EuroTEX in the Netherlands (2009).

Eventually LuaTEX will be the successor to pdfTEX (informally we talk of pdfTEX version 2).

It can already be used as a drop-in for Aleph (the stable variant of Omega). It provides

a scripting engine without the need to install a specific scripting environment. These

factors are among the reasons why distributors have added the binaries to the collections.

Norbert Preining maintains the linux packages, Akira Kakuto provides Windows binaries

as part of his distribution, Arthur Reutenauer takes care of MacOSX and Christian Schenk

recently added LuaTEX to MikTEX. The LuaTEX and mplib projects are hosted at Supelec

by Fabrice Popineau (one of our technical consultants). And with Karl Berry being one

of our motivating supporters, you can be sure that the binaries will end up someplace in

TEXLive this year.

180 180

180 180

The MetaPost Library 179

XXII The MetaPost Library

This chapter is written by Taco and Hans around the time that mplib was integrated into

LuaTEX. It is part of our torture test.

introduction

If MetaPost support had not been as tightly integrated into ConTEXt as it is, at least half of

the projects Pragma ADE has been doing in the last decade could not have been done

at all. Take for instance backgrounds behind text or graphic markers alongside text. Th-

ese are probably the most complex mechanisms in ConTEXt: positions are stored, and

positional information is passed on to MetaPost, where intersections between the text

areas and the running text are converted into graphics that are then positioned in the

background of the text. Underlining of text (sometimes used in the educational docu-

ments that we typeset) and change bars (in the margins) are implemented using the same

mechanism because those are basically a background with only one of the frame sides

drawn.

You can probably imagine that a 300 page document with several such graphics per page

takes a while to process. A nice example of such integrated graphics is the LuaTEX refer-

ence manual, that has an unique graphic at each page: a stylized image of a revolving

moon.

Most of the running time integrating such graphics seemed to be caused by the mechan-

ics of the process: starting the separate MetaPost interpreter and having to deal with a

number of temporary files. Therefore our expectations were high with regards to inte-

grating MetaPost more tightly into LuaTEX. Besides the speed gain, it also true that the

simpler the process of using such use of graphics becomes, the more modern a TEX runs

looks and the less problems new users will have with understanding how all the processes

cooperate.

This article will not discuss the application interface of the mplib library in detail, for that

there is the LuaTEX manual. In short, using the embedded MetaPost interpreter in LuaTEX

boils down to the following:

• Open an instance using mplib.new, either to process images with a format to be

loaded, or to create such a format. This function returns a library object.

• Execute sequences of MetaPost commands, using the object’sexecutemethod. This

returns a result.

• Check if the result is valid and (if it is okay) request the list of objects. Do whatever

you want with them, most probably convert them to some output format. You can

181 181

181 181

180 The MetaPost Library

also request a string representation of a graphic in PostScript format.

There is no need to close the library object. As long as you didn’t make any fatal errors,

the library recovers well and can stay alive during the entire LuaTEX run.

Support for mplib depends on a few components: integration, conversion and exten-

sions. This article shows some of the code involved in supporting the library. Let’s start

with the conversion.

conversion

The result of a MetaPost run traditionally is a PostScript language description of the gen-

erated graphic(s). When pdf is needed, that PostScript code has to be converted to the

target format. This includes embedded text as well as penshapes used for drawing. To

demonstrate, here is a simple example graphic:

Figure XXII.1

draw fullcircle
scaled 2cm
withpen pencircle xscaled 1mm yscaled .5mm rotated 30
withcolor .75red ;

Notice how the pen is not a circle but a rotated ellipse. Later on it will be-

come clear what the consequences of that are for the conversion.

How does this output look in PostScript? If the preamble is left out it looks like this:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: -30 -30 30 30
%%HiResBoundingBox: -29.624 -29.28394 29.624 29.28394
%%Creator: MetaPost 1.9991
%%CreationDate: 2016.07.29:0935
%%Pages: 1
%%DocumentResources: procset mpost
%%DocumentSuppliedResources: procset mpost
%%EndComments
%% <<stripped preamble was here>>
%%BeginSetup
%%EndSetup
%%Page: 1 1
0.75 0 0 R 2.55511 hlw rd 1 lj 10 ml

q n 28.34645 0 m
28.34645 7.51828 25.35938 14.72774 20.04356 20.04356 c
14.72774 25.35938 7.51828 28.34645 0 28.34645 c
-7.51828 28.34645 -14.72774 25.35938 -20.04356 20.04356 c
-25.35938 14.72774 -28.34645 7.51828 -28.34645 0 c

182 182

182 182

The MetaPost Library 181

-28.34645 -7.51828 -25.35938 -14.72774 -20.04356 -20.04356 c
-14.72774 -25.35938 -7.51828 -28.34645 0 -28.34645 c
7.51828 -28.34645 14.72774 -25.35938 20.04356 -20.04356 c
25.35938 -14.72774 28.34645 -7.51828 28.34645 0 c p
[0.96075 0.55469 -0.27734 0.48038 0 0] t S Q

P
%%EOF

The most prominent code here concerns the path. The numbers in brackets define the

transformation matrix for the pen we used. The pdf variant looks as follows:

The operators don’t look much different from the PostScript, which is mostly due to the

fact that in the PostScript code, the preamble defines shortcuts likec forcurveto. Again,

most code involves the path. However, this time the numbers are different and the trans-

formation comes before the path.

In the case of pdf output, we could use TEX itself to do the conversion: a generic con-

verter is implemented in supp-pdf.tex, while a converter optimized for ConTEXt MkII

is defined in the files whose names start with meta-pdf. But in ConTEXt MkIV we use Lua

code for the conversion instead. Thanks to Lua’s powerful lpeg parsing library, this gives

cleaner code and is also faster. This converter currently lives in mlib-pdf.lua.

Now, with the embedded MetaPost library, conversion goes different still because now

it is possible to request the drawn result and associated information in the form of Lua

tables.

figure={
["boundingbox"]={
["llx"]=-29.623992919922,
["lly"]=-29.283935546875,
["urx"]=29.623992919922,
["ury"]=29.283935546875,

},
["objects"]={
{
["color"]={ 0.75, 0, 0 },
["linecap"]=1,
["linejoin"]=1,
["miterlimit"]=10,
["path"]={
{
["left_x"]=28.346450805664,
["left_y"]=-7.5182800292969,
["right_x"]=28.346450805664,

183 183

183 183

182 The MetaPost Library

["right_y"]=7.5182800292969,
["x_coord"]=28.346450805664,
["y_coord"]=0,

},
{
["left_x"]=25.359375,
["left_y"]=14.727737426758,
["right_x"]=14.727737426758,
["right_y"]=25.359375,
["x_coord"]=20.043563842773,
["y_coord"]=20.043563842773,

},
{
["left_x"]=7.5182800292969,
["left_y"]=28.346450805664,
["right_x"]=-7.5182800292969,
["right_y"]=28.346450805664,
["x_coord"]=0,
["y_coord"]=28.346450805664,

},
{
["left_x"]=-14.727737426758,
["left_y"]=25.359375,
["right_x"]=-25.359375,
["right_y"]=14.727737426758,
["x_coord"]=-20.043563842773,
["y_coord"]=20.043563842773,

},
{
["left_x"]=-28.346450805664,
["left_y"]=7.5182800292969,
["right_x"]=-28.346450805664,
["right_y"]=-7.5182800292969,
["x_coord"]=-28.346450805664,
["y_coord"]=0,

},
{
["left_x"]=-25.359375,
["left_y"]=-14.727737426758,
["right_x"]=-14.727737426758,
["right_y"]=-25.359375,
["x_coord"]=-20.043563842773,

184 184

184 184

The MetaPost Library 183

["y_coord"]=-20.043563842773,
},
{
["left_x"]=-7.5182800292969,
["left_y"]=-28.346450805664,
["right_x"]=7.5182800292969,
["right_y"]=-28.346450805664,
["x_coord"]=0,
["y_coord"]=-28.346450805664,

},
{
["left_x"]=14.727737426758,
["left_y"]=-25.359375,
["right_x"]=25.359375,
["right_y"]=-14.727737426758,
["x_coord"]=20.043563842773,
["y_coord"]=-20.043563842773,

},
},
["pen"]={
{
["left_x"]=2.4548797607422,
["left_y"]=1.4173278808594,
["right_x"]=-0.70866394042969,
["right_y"]=1.2274475097656,
["x_coord"]=0,
["y_coord"]=0,

},
["type"]="elliptical",

},
["type"]="outline",
},

},
}

This means that instead of parsing PostScript output, we now can operate on a proper

datastructure and get code like the following:

function convertgraphic(result)
if result then

local figures = result.fig
if figures then

for fig in ipairs(figures) do

185 185

185 185

184 The MetaPost Library

local llx, lly, urx, ury = unpack(fig:boundingbox())
if urx > llx then

startgraphic(llx, lly, urx, ury)
for object in ipairs(fig:objects()) do

if object.type == "..." then
...
flushgraphic(...)
...

else
...

end
end
finishgraphic()

end
end

end
end

end

Here result is what the library returns when one or more graphics are processed. As

you can deduce from this snippet, a result can contain multiple figures. Each figure cor-

responds with a beginfig ... endfig. The graphic operators that the converter gen-

erates (so called pdf literals) have to be encapsulated in a proper box so this is why we

have:

• startgraphic: start packaging the graphic

• flushgraphic: pipe literals to TEX

• finishgraphic: finish packaging the graphic

It does not matter what number you passed to beginfig, the graphics come out in the

natural order.

Little over half a dozen different object types are possible. The example MetaPost draw
command from above results in an outline object. This object contains not only path

information but also carries rendering data, like the color and the pen. So, in the end we

will flush code like 1 M which sets the miterlimit to one or .5 g which sets the color

to 50% gray, in addition to a path.

Because objects are returned in a way that closely resembles a MetaPost’s internals, some

extra work needs to be done in order to calculate paths with elliptical pens. An example

of a helper function in somewhat simplified form is shown next:

function pen_characteristics(object)
local p = object.pen[1]

186 186

186 186

The MetaPost Library 185

local wx, wy, width
if p.right_x == p.x_coord and p.left_y == p.y_coord then

wx = abs(p.left_x - p.x_coord)
wy = abs(p.right_y - p.y_coord)

else -- pyth: sqrt(a^2 +b^2)
wx = pyth(p.left_x - p.x_coord, p.right_x - p.x_coord)
wy = pyth(p.left_y - p.y_coord, p.right_y - p.y_coord)

end
if wy/coord_range_x(object.path, wx) >=

wx/coord_range_y(object.path, wy) then
width = wy

else
width = wx

end
local sx, sy = p.left_x, p.right_y
local rx, ry = p.left_y, p.right_x
local tx, ty = p.x_coord, p.y_coord
if width ~= 1 then

if width == 0 then
sx, sy = 1, 1

else
rx, ry, sx, sy = rx/width, ry/width, sx/width, sy/width

end
end
if abs(sx) < eps then sx = eps end
if abs(sy) < eps then sy = eps end
return sx, rx, ry, sy, tx, ty, width

end

If sx and sy are 1, there is no need to transform the path, otherwise a suitable transforma-

tion matrix is calculated and returned. The function itself uses a few helpers that make the

calculations even more obscure. This kind of code does not fall in the category trivial and

as already mentioned, these basic algorithms were derived from the MetaPost sources.

Even so, these snippets demonstrate that interfacing using Lua does not look that bad.

In the actual MkIV code things look a bit different because it does a bit more and uses

optimized code. There you will also find the code dealing with the actual transformation,

of which these helpers are just a portion.

If you compare the PostScript and the pdf code you will notice that the paths looks differ-

ent. This is because the use and application of a transformation matrix in pdf is different

from how it is handled in PostScript. In pdf more work is assumed to be done by the

pdf generating application. This is why in both the TEX and the Lua based converters you

187 187

187 187

186 The MetaPost Library

will find transformation code and the library follows the same pattern. In that respect pdf

differs fundamentally from PostScript.

Within the TEX based converter there was the problem of keeping the needed calcu-

lations within TEX’s accuracy, which fortunately permits larger values that MetaPost can

produce. This plus the parsing code resulted in a not-that-easy to follow bunch of TEX

code. The Lua based parser is more readable, but since it also operates on PostScript

code it is kind of unnatural too, but at least there are less problems with keeping the cal-

culations sane. The mplib based converter is definitely the cleanest and least sensitive to

future changes in the PostScript output. Does this mean that there is no ugly code left?

Alas, as we will see in the next section, dealing with extensions is still somewhat messy.

In practice users will not be bothered with such issues, because writing a converter is a

one time job by macro package writers.

extensions

In MetaFun, which is the MetaPost format used with ConTEXt, a few extensions are pro-

vided, like:

• cmyk, spot and multitone colors

• including external graphics

• lineair and circulair shades

• texts converted to outlines

• inserting arbitrary texts

Until now, most of these extensions have been implemented by using specially coded

colors and by injecting so called specials (think of them as comments) into the output.

On one of our trips to a TEX conference, we discussed ways to pass information along

with paths and eventually we arrived at associating text strings with paths as a simple and

efficient solution. As a result, recently MetaPost was extended by withprescript and

withpostscript directives. For those who are unfamiliar with these new scripts, they

are used as follows:

draw fullcircle withprescript "hello" withpostscript "world" ;

In the PostScript output these scripts end up before and after the path, but in the pdf

converter they can be overloaded to implement extensions, and that works reasonably

well. However, at the moment there cannot be multiple pre- and postscripts associated

with a single path inside the MetaPost internals. This means that for the moment, the

scripts mechanism is only used for a few of the extensions. Future versions of mplib may

provide more sophisticated methods for carrying information around.

The MkIV conversion mechanism uses scripts for graphic inclusion, shading and text pro-

cessing but unfortunately cannot use them for more advanced color support.

188 188

188 188

The MetaPost Library 187

A nasty complication is that the color spaces in MetaPost don’t cast, which means that

one cannot assign any color to a color variables: each colorspace has it’s own type of

variable.

color one ; one := (1,1,0) ; % correct
cmykcolor two ; two := (1,0,0,1) ; % correct
one := two ; % error
fill fullcircle scaled 1cm withcolor .5[one,two] ; % error

In ConTEXt we use constructs like this:

\startreusableMPgraphic{test}
fill fullcircle scaled 1cm withcolor \MPcolor{mycolor} ;

\stopreusableMPgraphic

\reuseMPgraphic{test}

Because withcolor is clever enough to understand what color type it receives, this is

ok, but how about:

\startreusableMPgraphic{test}
color c ; c := \MPcolor{mycolor} ;
fill fullcircle scaled 1cm withcolor c ;

\stopreusableMPgraphic

Here the color variable only accepts an rgb color and because in ConTEXt there is mixed

color space support combined with automatic colorspace conversions, it doesn’t know

in advance what type it is going to get. By implementing color spaces other than rgb using

special colors (as before) such type mismatches can be avoided.

The two techniques (coding specials in colors and pre/postscripts) cannot be combined

because a script is associated with a path and cannot be bound to a variable like c. So

this again is an argument for using special colors that remap onto cmyk spot or multi-tone

colors.

Another area of extensions is text. In previous versions of ConTEXt the text processing

was already isolated: text ended up in a separate file and was processed in an separate

run. More recent versions of ConTEXt use a more abstract model of boxes that are pre-

processed before a run, which avoids the external run(s). In the new approach everything

can be kept internal. The conversion even permits constructs like:

for i=1 upto 100 :
draw btex oeps etex rotated i ;

endfor ;

189 189

189 189

188 The MetaPost Library

but since this construct is kind of obsolete (at least in the library version of MetaPost) it is

better to use:

for i=1 upto 100 :
draw textext("cycle " & decimal i) rotated i ;

endfor ;

Internally a trial pass is done so that indeed 100 different texts will be drawn. The through-

put of texts is so high that in practice one will not even notice that this happens.

Dealing with text is yet another example of using lpeg. The following snippet of code

sheds some light on how text in graphics is dealt with. Actually this is a variation on a

previous implementation. That one was slightly faster but looked more complex. It was

also not robust for complex texts defined in macros in a format.

local P, S, V, Cs = lpeg.P, lpeg.S, lpeg.V, lpeg.Cs

local btex = P("btex")
local etex = P(" etex")
local vtex = P("verbatimtex")
local ttex = P("textext")
local gtex = P("graphictext")
local spacing = S(" \n\r\t\v")^0
local dquote = P('"')

local found = false

local function convert(str)
found = true
return "textext(\"" .. str .. "\")"

end
local function ditto(str)

return "\" & ditto & \""
end
local function register()

found = true
end

local parser = P {
[1] = Cs((V(2)/register + V(3)/convert + 1)^0),
[2] = ttex + gtex,
[3] = (btex + vtex) * spacing *

Cs((dquote/ditto + (1-etex))^0) * etex,
}

190 190

190 190

The MetaPost Library 189

function metapost.check_texts(str)
found = false
return parser:match(str), found

end

If you are unfamiliar with lpeg it may take a while to see what happens here: we replace

the text between btex and etex by a call to textext, a macro. Special care is given to

embedded double quotes.

When text is found, the graphic is processed two times. The definition of textext is

different for each run. The first run we have:

vardef textext(expr str) =
image (

draw unitsquare
withprescript "tf"
withpostscript str ;

)
enddef ;

After the first run the result is not really converted, but just the outlines with the tf pre-

script are filtered. In the loop over the object there is code like:

local prescript = object.prescript
if prescript then

local special = metapost.specials[prescript]
if special then

special(object.postscript,object)
end

end

Here, metapost is just the namespace used by the converter. The prescript tag tf trig-

gers a function:

function metapost.specials.tf(specification,object)
tex.sprint(tex.ctxcatcodes,format("\\MPLIBsettext{%s}{%s}",

metapost.textext_current,specification))
if metapost.textext_current < metapost.textext_last then

metapost.textext_current = metapost.textext_current + 1
end
...

end

Again, you can forget about the details of this function. Important is that there is a call

out to TEX that will process the text. Each snippet gets the number of the box that holds

191 191

191 191

190 The MetaPost Library

the content. The macro that is called just puts stuff in a box:

\def\MPLIBsettext#1#2%
{\global\setbox#1\hbox{#2}}

In the next processing cycle of the MetaPost code, the textext macro does something

different :

vardef textext(expr str) =
image (

_tt_n_ := _tt_n_ + 1 ;
draw unitsquare

xscaled _tt_w_[_tt_n_]
yscaled (_tt_h_[_tt_n_] + _tt_d_[_tt_n_])
withprescript "ts"
withpostscript decimal _tt_n_ ;

)
enddef ;

This time the by then known dimensions of the box that is used to store the snippet are

used. These are stored in the_tt_w_, _tt_h_ and_tt_d_ arrays. The arrays are defined

by Lua using information about the boxes, and passed to the library before the second

run. The result from the second MetaPost run is converted, and again the prescript is

used as trigger:

function metapost.specials.ts(specification,object,result)
local op = object.path
local first, second, fourth = op[1], op[2], op[4]
local tx, ty = first.x_coord , first.y_coord
local sx, sy = second.x_coord - tx, fourth.y_coord - ty
local rx, ry = second.y_coord - ty, fourth.x_coord - tx
if sx == 0 then sx = 0.00001 end
if sy == 0 then sy = 0.00001 end
metapost.flushfigure(result)
tex.sprint(tex.ctxcatcodes,format(

"\\MPLIBgettext{%f}{%f}{%f}{%f}{%f}{%f}{%s}",
sx,rx,ry,sy,tx,ty,metapost.textext_current))

...
end

At this point the converter is actually converting the graphic and passing pdf literals to TEX.

As soon as it encounters a text, it flushes the pdf code collected so far and injects some

TEX code. The TEX macro looks like:

192 192

192 192

The MetaPost Library 191

\def\MPLIBgettext#1#2#3#4#5#6#7%
{\ctxlua{metapost.sxsy(\number\wd#7,\number\ht#7,\number\dp#7)}%
\pdfliteral{q #1 #2 #3 #4 #5 #6 cm}%
\vbox to \zeropoint{\vss\hbox to \zeropoint

{\scale[sx=\sx,sy=\sy]{\raise\dp#7\box#7}\hss}}%
\pdfliteral{Q}}

Because text can be transformed, it needs to be scale back to the right dimensions, using

both the original box dimensions and the transformation of the unitquare associated with

the text.

local factor = 65536*(7200/7227)

function metapost.sxsy(wd,ht,dp) -- helper for text
commands.edef("sx",(wd ~= 0 and 1/(wd /(factor))) or 0)
commands.edef("sy",(wd ~= 0 and 1/((ht+dp)/(factor))) or 0)

end

So, in fact there are the following two processing alternatives:

• tex: calls a Lua function that processed the graphic

• lua: parse the MetaPost code for texts and decide if two runs are needed

Now, if there was no text to be found, the continuation is:

• lua: process the code using the library

• lua: convert the resulting graphic (if needed) and check if texts are used

Otherwise, the next steps are:

• lua: process the code using the library

• lua: parse the resulting graphic for texts (in the postscripts) and signal TEX to process

these texts afterwards

• tex: process the collected text and put the result in boxes

• lua: process the code again using the library but this time let the unitsquare be trans-

formed using the text dimensions

• lua: convert the resulting graphic and replace the transformed unitsquare by the boxes

with text

The processor itself is used in the MkIV graphic function that takes care of the multiple

passes mentioned before. To give you an idea of how it works, here is how the main

graphic processing function roughly looks.

local current_format, current_graphic

193 193

193 193

192 The MetaPost Library

function metapost.graphic_base_pass(mpsformat,str,preamble)
local prepared, done = metapost.check_texts(str)
metapost.textext_current = metapost.first_box
if done then

current_format, current_graphic = mpsformat, prepared
metapost.process(mpsformat, {

preamble or "",
"beginfig(1); ",
"_trial_run_ := true ;",
prepared,
"endfig ;"

}, true) -- true means: trialrun
tex.sprint(tex.ctxcatcodes,

"\\ctxlua{metapost.graphic_extra_pass()}")
else

metapost.process(mpsformat, {
preamble or "",
"beginfig(1); ",
"_trial_run_ := false ;",
str,
"endfig ;"

})
end

end

function metapost.graphic_extra_pass()
metapost.textext_current = metapost.first_box
metapost.process(current_format, {

"beginfig(0); ",
"_trial_run_ := false ;",
table.concat(metapost.texttextsdata()," ;\n"),
current_graphic,
"endfig ;"

})
end

The box information is generated as follows:

function metapost.texttextsdata()
local t, n = { }, 0
for i = metapost.first_box, metapost.last_box do

n = n + 1
local box_i = tex.box[i]

194 194

194 194

The MetaPost Library 193

if box_i then
t[#t+1] = format(

"_tt_w_[%i]:=%f;_tt_h_[%i]:=%f;_tt_d_[%i]:=%f;",
n, box_i.width /factor,
n, box_i.height/factor,
n, box_i.depth /factor

)
else

break
end

end
return t

end

This is a typical example of accessing information available inside TEX from Lua, in this

case information about boxes.

The trial_run flag is used at the MetaPost end, in fact the textext macro looks as

follows:

vardef textext(expr str) =
if _trial_run_ :

% see first variant above
else :

% see second variant above
fi

enddef ;

This trickery is not new. We used it already in ConTEXt for some time, but until now the

multiple runs took way more time and from the perspective of the user this all looked

much more complex.

It may not be that obvious, but: in the case of a trial run (for instance when texts are

found), after the first processing stage, and during the parsing of the result, the commands

that typeset the content will be printed to TEX. After processing, the command to do an

extra pass is printed to TEX also. So, once control is passed back to TEX, at some point TEX

itself will pass control back to Lua and do the extra pass.

The base function is called in:

function metapost.graphic(mpsformat,str,preamble)
local mpx = metapost.format(mpsformat or "metafun")
metapost.graphic_base_pass(mpx,str,preamble)

end

195 195

195 195

194 The MetaPost Library

The metapost.format function is part of mlib-run. It loads the metafun format, pos-

sibly after (re)generating it.

Now, admittedly all this looks a bit messy, but in pure TEX macros it would be even more

so. Sometime in the future, the postponed calls to \ctxlua and the explicit \pdflit-
erals can and will be replaced by using direct node generation, but that requires a

rewrite of the internal LuaTEX support for pdf literals.

The snippets are part of the mlib-* files of MkIV. These files are tagged as experimental

and will stay that way for a while yet. This is proved by the fact that by now we use a

slightly different approach.

Summarizing the impact of mplib on extensions, we can conclude that some are done

better and some more or less the same. There are some conceptual problems that pro-

hibit using pre- and postscripts for everything (at least currently).

integrating

The largest impact of mplib is processing graphics at runtime. In MkII there are two meth-

ods: real runtime processing (each graphic triggered a call to MetaPost) and collective

processing (between TEX runs). The first method slows down the TEX run, the second

method generates a whole lot of intermediate PostScript files. In both cases there is a lot

of file io involved.

In MkIV, the integrated library is capable of processing thousands of graphics per second,

including conversion. The preliminary tests (which involved no extensions) involved graph-

ics with 10 random circles drawn with penshapes in random colors, and the thoughput

was around 2000 such graphics per second on a 2.3 MHz Core Duo:

In practice there will be some more overhead involved than in the tests. For instance,

in ConTEXt information about the current state of TEX has to be passed on also: page

dimensions, font information, typesetting related parameters, preamble code, etc.

The whole TEX interface is written around one process function:

metapost.graphic(metapost.format("metafun"),"mp code")

optionally a preamble can be passed as the third argument. This one function is used in

several other macros, like:

196 196

196 196

The MetaPost Library 195

\startMPcode ... \stopMPcode
\startMPpage ... \stopMPpage
\startuseMPgraphic {name} ... \stopuseMPgraphic
\startreusableMPgraphic{name} ... \stopreusableMPgraphic
\startuniqueMPgraphic {name} ... \stopuniqueMPgraphic

\useMPgraphic{name}
\reuseMPgraphic{name}
\uniqueMPgraphic{name}

The user interface is downward compatible: in MkIV the same top-level commands are

provided as in MkII. However, the (previously required) configuration macros and flags

are obsolete.

This time, the conclusion is that the impact on ConTEXt is immense: The code for embed-

ding graphics is very clean, and the running time for graphics inclusion is now negligible.

Support for text in graphics is more natural now, and takes no runtime either (in MkII

some parsing in TEX takes place, and if needed long lines are split; all this takes time).

In the styles that Pragma ADE uses internally, there is support for the generation of place-

holders for missing graphics. These placeholders are MetaPost graphics that have some

60 randomly scaled circles with randomized colors. The time involved in generating 50

such graphics is (on Hans’ machine) some 14 seconds, while in LuaTEX only half a second

is needed.

state: unknown state: unknown state: unknown state: unknown

Because LuaTEX needs more startup time and deals with larger fonts resources, pdfTEX is

generally faster, but now that we have mplib, LuaTEX suddenly is the winner.

197 197

197 197

196 The MetaPost Library

198 198

198 198

The LuaTEX Mix 197

XXIII The LuaTEX Mix

introduction

The idea of embedding Lua into TEX originates in some experiments with Lua embedded

in the SciTE editor. You can add functionality to this editor by loading Lua scripts. This is

accomplished by a library that gives access to the internals of the editing component.

The first integration of Lua in pdfTEX was relatively simple: from TEX one could call out

to Lua and from Lua one could print to TEX. My first application was converting math en-

coded a calculator syntax to TEX. Following experiments dealt with MetaPost. At this point

integration meant as little as: having some scripting language as addition to the macro

language. But, even in this early stage further possibilities were explored, for instance in

manipulating the final output (i.e. the pdf code). The first versions of what by then was

already called LuaTEX provided access to some internals, like counter and dimension reg-

isters and the dimensions of boxes.

Boosted by the oriental TEX project, the team started exploring more fundamental possi-

bilities: hooks in the input/output, tokenization, fonts and nodelists. This was followed

by opening up hyphenation, breaking lines into paragraphs and building ligatures. At

that point we not only had access to some internals but also could influence the way TEX

operates.

After that, an excursion was made to mplib, which fulfilled a long standing wish for a more

natural integration of MetaPost into TEX. At that point we ended up with mixtures of TEX,

Lua and MetaPost code.

Medio 2008 we still need to open up more of TEX, like page building, math, alignments

and the backend. Eventually LuaTEX will be nicely split up in components, rewritten in C,

and we may even end up with Lua glueing together the components that make up the

TEX engine. At that point the interoperation between TEX and Lua may be more rich that

it is now.

In the next sections I will discuss some of the ideas behind LuaTEX and the relationship be-

tween Lua and TEX and how it presents itself to users. I will not discuss the interface itself,

which consists of quite some functions (organized in pseudo libraries) and the mecha-

nisms used to access and replace internals (we call them callbacks).

tex vs. lua

TEX is a macro language. Everything boils down to either allowing stepwise expansion or

explicitly preventing it. There are no real control features, like loops; tail recursion is a

199 199

199 199

198 The LuaTEX Mix

key concept. There are few accessible data-structures like numbers, dimensions, glue,

token lists and boxes. What happens inside TEX is controlled by variables, mostly hidden

from view, and optimized within the constraints of 30 years ago.

The original idea behind TEX was that an author would write a specific collection of macros

for each publication, but increasing popularity among non-programmers quickly resulted

in distributed collections of macros, called macro packages. They started small but grew

and grew and by now have become pretty large. In these packages there are macros

dealing with fonts, structure, page layout, graphic inclusion, etc. There is also code deal-

ing with user interfaces, process control, conversion and much of that code looks out of

place: the lack of control features and string manipulation is solved by mimicking other

languages, the unavailability of a float datatype is compensated by misusing dimension

registers, and you can find provisions to force or inhibit expansion all over the place.

TEX is a powerful typographical programming language but lacks some of the handy fea-

tures of scripting languages. Handy in the sense that you will need them when you want

to go beyond the original purpose of the system. Lua is a powerful scripting language, but

knows nothing of typesetting. To some extent it resembles the language that TEX was writ-

ten in: Pascal. And, since Lua is meant for embedding and extending existing systems, it

makes sense to bring Lua into TEX. How do they compare? Let’s give some examples.

About the simplest example of using Lua in TEX is the following:

\directlua { tex.print(math.sqrt(10)) }

This kind of application is probably what most users will want and use, if they use Lua at

all. However, we can go further than that.

In TEX a loop can be implemented as in the plain format (copied with comment):

\def\loop#1\repeat{\def\body{#1}\iterate}
\def\iterate{\body\let\next\iterate\else\let\next\relax\fi\next}
\let\repeat=\fi % this makes \loop...\if...\repeat skippable

This is then used as:

\newcount \mycounter \mycounter=1
\loop

...
\advance\mycounter 1
\ifnum\mycounter < 11

\repeat

The definition shows a bit how TEX programming works. Of course such definitions can

be wrapped in macros, like:

200 200

200 200

The LuaTEX Mix 199

\forloop{1}{10}{1}{some action}

and this is what often happens in more complex macro packages. In order to use such

control loops without side effects, the macro writer needs to take measures that per-

mit for instance nested usage and avoids clashes between local variables (counters or

macros) and user defined ones. Here we use a counter in the condition, but in practice

expressions will be more complex and this is not that trivial to implement.

The original definition of the iterator can be written a bit more efficient:

\def\iterate{\body \expandafter\iterate \fi}

And indeed, in macro packages you will find many such expansion control primitives

being used, which does not make reading macros easier.

Now, get me right, this does not make TEX less powerful, it’s just that the language is fo-

cused on typesetting and not on general purpose programming, and in principle users

can do without: documents can be preprocessed using another language, and docu-

ment specific styles can be used.

We have to keep in mind that TEX was written in a time when resources in terms of mem-

ory and cpu cycles weres less abundant than they are now. The 255 registers per class

and the about 3000 hash slots in original TEX were more than enough for typesetting a

book, but in huge collections of macros they are not all that much. For that reason many

macropackages use obscure names to hide their private registers from users and instead

of allocating new ones with meaningful names, existing ones are shared. It is therefore

not completely fair to compare TEX code with Lua code: in Lua we have plenty of memory

and the only limitations are those imposed by modern computers.

In Lua, a loop looks like this:

for i=1,10 do
...

end

But while in the TEX example, the content directly ends up in the input stream, in Lua we

need to do that explicitly, so in fact we will have:

for i=1,10 do
tex.print("...")

end

And, in order to execute this code snippet, in LuaTEX we will do:

\directlua 0 {
for i=1,10 do

201 201

201 201

200 The LuaTEX Mix

tex.print("...")
end

}

So, eventually we will end up with more code than just Lua code, but still the loop itself

looks quite readable and more complex loops are possible:

\directlua 0 {
local t, n = { }, 0
while true do

local r = math.random(1,10)
if not t[r] then

t[r], n = true, n+1
tex.print(r)
if n == 10 then break end

end
end

}

This will typeset the numbers 1 to 10 in randomized order. Implementing a random num-

ber generator in pure TEX takes some bit of code and keeping track of already defined

numbers in macros can be done with macros, but both are not very efficient.

I already stressed that TEX is a typographical programming language and as such some

things in TEX are easier than in Lua, given some access to internals:

\setbox0=\hbox{x} \the\wd0

In Lua we can do this as follows:

\directlua 0 {
local n = node.new('glyph')
n.font = font.current()
n.char = string.byte('x')
tex.box[0] = node.hpack(n)
tex.print(tex.box[0].width/65536 .. "pt")

}

One pitfall here is that TEX rounds the number differently than Lua. Both implementations

can be wrapped in a macro cq. function:

\def\measured#1{\setbox0=\hbox{#1}\the\wd0\relax}

Now we get:

\measured{x}

202 202

202 202

The LuaTEX Mix 201

The same macro using Lua looks as follows:

\directlua 0 {
function measure(chr)

local n = node.new('glyph')
n.font = font.current()
n.char = string.byte(chr)
tex.box[0] = node.hpack(n)
tex.print(tex.box[0].width/65536 .. "pt")

end
}
\def\measured#1{\directlua0{measure("#1")}}

In both cases, special tricks are needed if you want to pass for instance a # to TEX’s variant,

or a " to Lua. In both cases we can use shortcuts like \# and in the second case we can

pass strings as long strings using double square brackets to Lua.

This example is somewhat misleading. Imagine that we want to pass more than one char-

acter. The TEX variant is already suited for that, but the function will now look like:

\directlua 0 {
function measure(str)

if str == "" then
tex.print("0pt")

else
local head, tail = nil, nil
for chr in str:gmatch(".") do

local n = node.new('glyph')
n.font = font.current()
n.char = string.byte(chr)
if not head then

head = n
else

tail.next = n
end
tail = n

end
tex.box[0] = node.hpack(head)
tex.print(tex.box[0].width/65536 .. "pt")

end
end

}

203 203

203 203

202 The LuaTEX Mix

And still it’s not okay, since TEX inserts kerns between characters (depending on the font)

and glue between words, and doing that all in Lua takes more code. So, it will be clear

that although we will use Lua to implement advanced features, TEX itself still has quite

some work to do.

In the following example we show code, but this is not of production quality. It just

demonstrates a new way of dealing with text in TEX.

Occasionally a design demands that at some place the first character of each word should

be uppercase, or that the first word of a paragraph should be in small caps, or that each

first line of a paragraph has to be in dark blue. When using traditional TEX the user then

has to fall back on parsing the data stream, and preferably you should then start such a

sentence with a command that can pick up the text. For accentless languages like English

this is quite doable but as soon as commands (for instance dealing with accents) enter

the stream this process becomes quite hairy.

The next code shows how ConTEXt MkII defines the \Word and \Wordsmacros that cap-

italize the first characters of word(s). The spaces are really important here because they

signal the end of a word.

\def\doWord#1%
{\bgroup\the\everyuppercase\uppercase{#1}\egroup}

\def\Word#1%
{\doWord#1}

\def\doprocesswords#1 #2\od
{\doifsomething{#1}{\processword{#1} \doprocesswords#2 \od}}

\def\processwords#1%
{\doprocesswords#1 \od\unskip}

\let\processword\relax

\def\Words
{\let\processword\Word \processwords}

Actually, the code is not that complex. We split of words and feed them to a macro that

picks up the first token (hopefully a character) which is then fed into the \uppercase
primitive. This assumes that for each character a corresponding uppercase variant is de-

fined using the \uccode primitive. Exceptions can be dealt with by assigning relevant

code to the token register \everyuppercase. However, such macros are far from ro-

bust. What happens if the text is generated and not input as-is? What happens with com-

mands in the stream that do something with the following tokens?

204 204

204 204

The LuaTEX Mix 203

A Lua based solution can look as follows:

\def\Words#1{\directlua 0
for s in unicode.utf8.gmatch("#1", "([^])") do

tex.sprint(string.upper(s:sub(1,1)) .. s:sub(2))
end

}

But there is no real advantage here, apart from the fact that less code is needed. We

still operate on the input and therefore we need to look to a different kind of solution:

operating on the node list.

function CapitalizeWords(head)
local done = false
local glyph = node.id("glyph")
for start in node.traverse_id(glyph,head) do

local prev, next = start.prev, start.next
if prev and prev.id == kern and prev.subtype == 0 then

prev = prev.prev
end
if next and next.id == kern and next.subtype == 0 then

next = next.next
end
if (not prev or prev.id ~= glyph) and

next and next.id == glyph then
done = upper(start)

end
end
return head, done

end

A node list is a forward-linked list. With a helper function in the node library we can loop

over such lists. Instead of traversing we can use a regular while loop, but it is probably less

efficient in this case. But how to apply this function to the relevant part of the input? In

LuaTEX there are several callbacks that operate on the horizontal lists and we can use one

of them to plug in this function. However, in that case the function is applied to probably

more text than we want.

The solution for this is to assign attributes to the range of text that such a function has

to take care of. These attributes (there can be many) travel with the nodes. This is also a

reason why such code normally is not written by end users, but by macropackage writers:

they need to provide the frameworks where you can plug in code. In ConTEXt we have

several such mechanisms and therefore in MkIV this function looks (slightly stripped) as

follows:

205 205

205 205

204 The LuaTEX Mix

function cases.process(namespace,attribute,head)
local done, actions = false, cases.actions
for start in node.traverse_id(glyph,head) do

local attr = has_attribute(start,attribute)
if attr and attr > 0 then

unset_attribute(start,attribute)
local action = actions[attr]
if action then

local _, ok = action(start)
done = done and ok

end
end

end
return head, done

end

Here we check attributes (these are set at the TEX end) and we have all kind of actions

that can be applied, depending on the value of the attribute. Here the function that does

the actual uppercasing is defined somewhere else. The cases table provides us a name-

space; such namespaces needs to be coordinated by macro package writers.

This approach means that the macro code looks completely different; in pseudo code

we get:

\def\Words#1{{<setattribute><cases><somevalue>#1}}

Or alternatively:

\def\StartWords{\begingroup<setattribute><cases><somevalue>}
\def\StopWords {\endgroup}

Because starting a paragraph with a group can have unwanted side effects (like\everypar
being expanded inside a group) a variant is:

\def\StartWords{<setattribute><cases><somevalue>}
\def\StopWords {<resetattribute><cases>}

So, what happens here is that the users sets an attribute using some high level command,

and at some point during the transformation of the input into node lists, some action

takes place. At that point commands, expansion and whatever no longer can interfere.

In addition to some infrastructure, macro packages need to carry some knowledge, just

as with the \uccode used in \uppercase. The upper function in the first example looks

as follows:

206 206

206 206

The LuaTEX Mix 205

local function upper(start)
local data, char = characters.data, start.char
if data[char] then

local uc = data[char].uccode
if uc and fonts.ids[start.font].characters[uc] then

start.char = uc
return true

end
end
return false

end

Such code is really macro package dependent: LuaTEX only provides the means, not the

solutions. In ConTEXt we have collected information about characters in a data table

in the characters namespace. There we have stored the uppercase codes (uccode).

The, again ConTEXt specific, fonts table keeps track of all defined fonts and before we

change the case, we make sure that this character is present in the font. Here id is the

number by which LuaTEX keeps track of the used fonts. Each glyph node carries such a

reference.

In this example, eventually we end up with more code than in TEX, but the solution is

much more robust. Just imagine what would happen when in the TEX solution we would

have:

\Words{\framed[offset=3pt]{hello world}}

It simply does not work. On the other hand, the Lua code never sees TEX commands, it

only sees the two words represented by glyphs nodes and separated by glue.

Of course, there is a danger when we start opening TEX’s core features. Currently macro

packages know what to expect, they know what TEX can and cannot do. Of course macro

writers have exploited every corner of TEX, even the dark ones. Where dirty tricks in the

TEXbook had an educational purpose, those of users sometimes have obscene traits. If

we just stick to the trickery introduced for parsing input, converting this into that, doing

some calculations, and alike, it will be clear that Lua is more than welcome. It may hurt to

throw away thousands of lines of impressive code and replace it by a few lines of Lua but

that’s the price the user pays for abusing TEX. Eventually ConTEXt MkIV will be a decent

mix of Lua and TEX code, and hopefully the solutions programmed in those languages are

as clean as possible.

Of course we can discuss until eternity whether Lua is the best choice. Taco, Hartmut and

I are pretty confident that it is, and in the couple of years that we are working on LuaTEX

nothing has proved us wrong yet. We can fantasize about concepts, only to find out that

they are impossible to implement or hard to agree on; we just go ahead using trial and

207 207

207 207

206 The LuaTEX Mix

error. We can talk over and over how opening up should be done, which is what the

team does in a nicely closed and efficient loop, but at some points decisions have to be

made. Nothing is perfect, neither is LuaTEX, but most users won’t notice it as long as it

extends TEX’s live and makes usage more convenient.

Users of TEX and MetaPost will have noticed that both languages have their own grouping

(scope) model. In TEX grouping is focused on content: by grouping the macro writer (or

author) can limit the scope to a specific part of the text or keep certain macros live within

their own world.

.1. \bgroup .2. \egroup .1.

Everything done at 2 is local unless explicitly told otherwise. This means that users can

write (and share) macros with a small chance of clashes. In MetaPost grouping is available

too, but variables explicitly need to be saved.

.1. begingroup ; save p ; path p ; .2. endgroup .1.

After using MetaPost for a while this feels quite natural because an enforced local scope

demands multiple return values which is not part of the macro language. Actually, this is

another fundamental difference between the languages: MetaPost has (a kind of) func-

tions, which TEX lacks. In MetaPost you can write

draw origin for i=1 upto 10 : .. (i,sin(i)) endfor ;

but also:

draw some(0) for i=1 upto 10 : .. some(i) endfor ;

with

vardef some (expr i) =
if i > 4 : i = i - 4 fi ;
(i,sin(i))

enddef ;

The condition and assignment in no way interfere with the loop where this function is

called, as long as some value is returned (a pair in this case).

In TEX things work differently. Take this:

\count0=1
\message{\advance\count0 by 1 \the\count0}
\the\count0

The terminal wil show:

208 208

208 208

The LuaTEX Mix 207

\advance \count 0 by 1 1

At the end the counter still has the value 1. There are quite some situations like this, for

instance when data like a table of contents has to be written to a file. You cannot write

macros where such calculations are done and hidden and only the result is seen.

The nice thing about the way Lua is presented to the user is that it permits the following:

\count0=1
\message{\directlua0{tex.count[0] = tex.count[0] + 1}\the\count0}
\the\count0

This will report 2 to the terminal and typeset a 2 in the document. Of course this does not

solve everything, but it is a step forward. Also, compared to TEX and MetaPost, grouping is

done differently: there is a local prefix that makes variables (and functions are variables

too) local in modules, functions, conditions, loops etc. The Lua code in this story contains

such locals.

In practice most users will use a macro package and so, if a user sees TEX, he or she sees

a user interface, not the code behind it. As such, they will also not encounter the code

written in Lua that deals with for instance fonts or node list manipulations. If a user sees

Lua, it will most probably be in processing actual data. Therefore, in the next section I

will give an example of two ways to deal with xml: one more suitable for traditional TEX,

and one inspired by Lua. It demonstrates how the availability of Lua can result in different

solutions for the same problem.

an example: xml

In ConTEXt MkII, the version that deals with pdfTEX and X ETEX, we use a stream based xml

parser, written in TEX. Each < and & triggers a macro that then parses the tag and/or entity.

This method is quite efficient in terms of memory but the associated code is not simple

because it has to deal with attributes, namespaces and nesting.

The user interface is not that complex, but involves quite some commands. Take for in-

stance the following xml snippet:

<document>
<section>

<title>Whatever</title>
<p>some text</p>
<p>some more</p>

</section>
</document>

When using ConTEXt commands, we can imagine the following definitions:

209 209

209 209

208 The LuaTEX Mix

\defineXMLenvironment[document]{\starttext} {\stoptext}
\defineXMLargument [title] {\section}
\defineXMLenvironment[p] {\ignorespaces}{\par}

When attributes have to be dealt with, for instance a reference to this section, things

quickly start looking more complex. Also, users need to know what definitions to use

in situations like this:

<table>
<tr><td>first</td><td>...</td> <td>last</td></tr>
<tr><td>left</td><td>...</td> <td>right</td></tr>

</table>

Here we cannot be sure if a cell does not contain a nested table, which is why we need

to define the mapping as follows:

\defineXMLnested[table]{\bTABLE} {\eTABLE}
\defineXMLnested[tr] {\bTR} {\eTR}
\defineXMLnested[td] {\bTD} {\eTD}

The \defineXMLnested macro is rather messy because it has to collect snippets and

keep track of the nesting level, but users don’t see that code, they just need to know

when to use what macro. Once it works, it keeps working.

Unfortunately mappings from source to style are never that simple in real life. We usually

need to collect, filter and relocate data. Of course this can be done before feeding the

source to TEX, but MkII provides a few mechanisms for that too. If for instance you want

to reverse the order you can do this:

<article>
<title>Whatever</title>
<author>Someone</author>
<p>some text</p>

</article>

\defineXMLenvironment[article]
{\defineXMLsave[author]}
{\blank author: \XMLflush{author}}

This will save the content of the author element and flush it when the end tag article
is seen. So, given previous definitions, we will get the title, some text and then the author.

You may argue that instead we should use for instance xslt but even then a mapping is

needed from the xml to TEX, and it’s a matter of taste where the burden is put.

210 210

210 210

The LuaTEX Mix 209

Because ConTEXt also wants to support standards like MathML, there are some more

mechanisms but these are hidden from the user. And although these do a good job in

most cases, the code associated with the solutions has never been satisfying.

Supporting xml this way is doable, and ConTEXt has used this method for many years in

fairly complex situations. However, now that we have Lua available, it is possible to see

if some things can be done simpler (or differently).

After some experimenting I decided to write a full blown xml parser in Lua, but contrary

to the stream based approach, this time the whole tree is loaded in memory. Although

this uses more memory than a streaming solution, in practice the difference is not signif-

icant because often in MkII we also needed to store whole chunks.

Loading xml files in memory is real fast and once it is done we can have access to the

elements in a way similar to xpath. We can selectively pipe data to TEX and manipulate

content using TEX or Lua. In most cases this is faster than the stream-based method. In-

teresting is that we can do this without linking to existing xml libraries, and as a result we

are pretty independent.

So how does this look from the perspective of the user? Say that we have the simple

article definition stored in demo.xml.

<?xml version ='1.0'?>
<article>

<title>Whatever</title>
<author>Someone</author>
<p>some text</p>

</article>

This time we associate so called setups with the elements. Each element can have its own

setup, and we can use expressions to assign them. Here we have just one such setup:

\startxmlsetups xml:document
\xmlsetsetup{main}{article}{xml:article}

\stopxmlsetups

When loading the document it will automatically be associated with the tag main. The

previous rule associates setup xml:article with the article element in tree main.

We need to register this setup so that it will be applied to the document after loading:

\xmlregistersetup{xml:document}

and the document itself is processed with:

\xmlprocessfile{main}{demo.xml}{} % optional setup

211 211

211 211

210 The LuaTEX Mix

The setup xml:article can look as follows:

\startxmlsetups xml:article
\section{\xmltext{#1}{/title}}
\xmlall{#1}{!(title|author)}
\blank author: \xmltext{#1}{/author}

\stopxmlsetups

Here#1 refers to the current node in the xml tree, in this case the root element, article.

The second argument of \xmltext and \xmlall is a path expression, comparable with

xpath: /titlemeans: thetitleelement anchored to the current root (#1), and!(title|author)
is the negation of (complement to) title or author. Such expressions can be more

complex that the one above, like:

\xmlfirst{#1}{/one/(alpha|beta)/two/text()}

which returns the content of the first element that satisfies one of the paths (nested tree):

/one/alpha/two
/one/beta/two

There is a whole bunch of commands like \xmltext that filter content and pipe it into

TEX. These are calling Lua functions. This is no manual, so we will not discuss them here.

However, it is important to realize that we have to associate setups (consider them free

formatted macros) to at least one element in order to get started. Also, xml inclusions

have to be dealt with before assigning the setups. These are simple one-line commands.

You can also assign defaults to elements, which saves some work.

Because we can use Lua to access the tree and manipulate content, we can now imple-

ment parts of xml handling in Lua. An example of this is dealing with so-called Cals tables.

This is done in approximately 150 lines of Lua code, loaded at runtime in a module. This

time the association uses functions instead of setups and those functions will pipe data

back to TEX. In the module you will find:

\startxmlsetups xml:cals:process
\xmlsetfunction {\xmldocument} {cals:table} {lxml.cals.table}

\stopxmlsetups

\xmlregistersetup{xml:cals:process}

\xmlregisterns{cals}{cals}

These commands tell MkIV that elements with a namespace specification that contains

calswill be remapped to the internal namespace cals and the setup associates a func-

tion with this internal namespace.

212 212

212 212

The LuaTEX Mix 211

By now it will be clear that from the perspective of the user hardly any Lua is visible. Sure,

he or she can deduce that deep down some magic takes place, especially when you run

into more complex expressions like this (the @ denotes an attribute):

\xmlsetsetup
{main} {item[@type='mpctext' or @type='mrtext']}
{questions:multiple:text}

Such expressions resemble xpath, but can go much further than that, just by adding more

functions to the library.

b[position() > 2 and position() < 5 and text() == 'ok']
b[position() > 2 and position() < 5 and text() == upper('ok')]
b[@n=='03' or @n=='08']
b[number(@n)>2 and number(@n)<6]
b[find(text(),'ALSO')]

Just to give you an idea . . . in the module that implements the parser you will find def-

initions that match the function calls in the above expressions.

xml.functions.find = string.find
xml.functions.upper = string.upper
xml.functions.number = tonumber

So much for the different approaches. It’s up to the user what method to use: stream

based MkII, tree based MkIV, or a mixture.

The main reason for taking xml as an example of mixing TEX and Lua is in that it can be a

bit mind boggling if you start thinking of what happens behind the screens. Say that we

have

<?xml version ='1.0'?>
<article>

<title>Whatever</title>
<author>Someone</author>
<p>some bold text</p>

</article>

and that we use the setup shown before with article.

At some point, we are done with defining setups and load the document. The first thing

that happens is that the list of manipulations is applied: file inclusions are processed first,

setups and functions are assigned next, maybe some elements are deleted or added,

etc. When that is done we serialize the tree to TEX, starting with the root element. When

213 213

213 213

212 The LuaTEX Mix

piping data to TEX we use the current catcode regime; linebreaks and spaces are honored

as usual.

Each element can have a function (command) associated and when this is the case, con-

trol is given to that function. In our case the root element has such a command, one that

will trigger a setup. And so, instead of piping content to TEX, a function is called that lets

TEX expand the macro that deals with this setup.

However, that setup itself calls Lua code that filters the title and feeds it into the\section
command, next it flushes everything except the title and author, which again involves

calling Lua. Last it flushes the author. The nested sequence of events is as follows:

lua: Load the document and apply setups and alike.

lua: Serialize the article element, but since there is an associated setup, tell TEX do

expand that one instead.

tex: Execute the setup, first expand the\sectionmacro, but its argument is a call

to Lua.

lua: Filter title from the subtree under article, print the content to TEX

and return control to TEX.

tex: Tell Lua to filter the paragraphs i.e. skip title and author; since the b ele-

ment has no associated setup (or whatever) it is just serialized.

lua: Filter the requested elements and return control to TEX.

tex: Ask Lua to filter author.

lua: Pipe author’s content to TEX.

tex: We’re done.

lua: We’re done.

This is a really simple case. In my daily work I am dealing with rather extensive and com-

plex educational documents where in one source there is text, math, graphics, all kind

of fancy stuff, questions and answers in several categories and of different kinds, either

or not to be reshuffled, omitted or combined. So there we are talking about many more

levels of TEX calling Lua and Lua piping to TEX etc. To stay in TEX speak: we’re dealing with

one big ongoing nested expansion (because Luacalls expand), and you can imagine that

this somewhat stresses TEX’s input stack, but so far I have not encountered any problems.

214 214

214 214

The LuaTEX Mix 213

some remarks

Here I discussed several possible applications of Lua in TEX. I didn’t mention yet that be-

cause LuaTEX contains a scripting engine plus some extra libraries, it can also be used

purely for that. This means that support programs can now be written in Lua and that

there are no longer dependencies of other scripting engines being present on the sys-

tem. Consider this a bonus.

Usage in TEX can be organized in four categories:

1. Users can use Lua for generating data, do all kind of data manipulations, maybe read

data from file, etc. The only link with TEX is the print function.

2. Users can use information provided by TEX and use this when making decisions. An

example is collecting data in boxes and use Lua to do calculations with the dimen-

sions. Another example is a converter from MetaPost output to pdf literals. No real

knowledge of TEX’s internals is needed. The MkIV xml functionality discussed before

demonstrates this: it’s mostly data processing and piping to TEX. Other examples are

dealing with buffers, defining character mappings, and handling error messages, ver-

batim . . . the list is long.

3. Users can extend TEX’s core functionality. An example is support for OpenType fonts:

LuaTEX itself does not support this format directly, but provides ways to feed TEX with

the relevant information. Support for OpenType features demands manipulating node

lists. Knowledge of internals is a requirement. Advanced spacing and language spe-

cific features are made possible by node list manipulations and attributes. The alter-

native \Words macro is an example of this.

4. Users can replace existing TEX functionality. In MkIV there are numerous example of

this, for instance all file io is written in Lua, including reading from zip files and remote

locations. Loading and defining fonts is also under Lua control. At some point MkIV

will provide dedicated splitters for multicolumn typesetting and probably also better

display spacing and display math splitting.

The boundaries between these categories are not frozen. For instance, support for image

inclusion and mplib in ConTEXt MkIV sits between category 3 and 4. Category 3 and 4, and

probably also 2 are normally the domain of macro package writers and more advanced

users who contribute to macro packages. Because a macropackage has to provide some

stability it is not a good idea to let users mess around with all those internals, because

of potential interference. On the other hand, normally users operate on top of a kernel

using some kind of api and history has proved that macro packages are stable enough for

this.

Sometime around 2010 the team expects LuaTEX to be feature complete and stable. By

that time I can probably provide a more detailed categorization.

215 215

215 215

214 The LuaTEX Mix

216 216

216 216

How to convince Don and Hermann to use LuaTEX 215

METAFONT

METAFONT

217 217

217 217

216 How to convince Don and Hermann to use LuaTEX

METAFONT

218 218

218 218

How to convince Don and Hermann to use LuaTEX 217

219 219

219 219

218 How to convince Don and Hermann to use LuaTEX

220 220

220 220

How to convince Don and Hermann to use LuaTEX 219

221 221

221 221

220 How to convince Don and Hermann to use LuaTEX

222 222

222 222

How to convince Don and Hermann to use LuaTEX 221

2 This is accomplished by adding composecharacters(t) at an undisclosed location in the previous code.

223 223

223 223

222 How to convince Don and Hermann to use LuaTEX

224 224

224 224

OpenType: too open? 223

XXV OpenType: too open?

In this chapter I will reflect on OpenType from within my limited scope and experience.

What I’m writing next is my personal opinion and I may be wrong in many ways.

Until recently installing fonts in a TEX system was not something that a novice user could

do easily. First of all, the number of files involved is large:

• If it is a bitmap font, then for each size used there is a pk file, and this is reflected in the

suffix, for instance pk300.

• If it is an outline font, then there is a Type1 file with suffix pfb or sometimes glyphs are

taken from OpenType fonts (with ttf or otf as suffix). In the worst case such wide

fonts have to be split into smaller ones.

• Because TEX needs information about the dimensions of the glyphs, a metric file is

needed; it has the suffix tfm. There is limit of 256 characters per font.

• If the font lacks glyphs it can be turned into a virtual font and borrow glyphs from other

fonts; this time the suffix is vf.

• If no such metric file is present, one can make one from a file that ships with the fonts;

it has the suffix afm.

• In order to include the font in the final file, the backend to TEX has to match glyph

references to the glyph slots in the font file, and for that it needs an encoding vector,

for historical reasons this is a PostScript blob in a file with suffix enc.

• This whole lot is associated in a map file, with suffix map, which couples metric files

to encodings and to font files.

Of course the user also needs TEX code that defines the font, but this differs per macro

package. If the user is lucky the distributions ships with files and definitions of his/her

favourite fonts, but otherwise work is needed. Font support in TEX systems has been

complicated by the facts that the first TEX fonts were not ascii complete, that a 256 limit

does not go well with multilingual typesetting and that most fonts lacked glyphs and de-

manded drop-ins. Users of ConTEXt could use the texfontprogram to generate metrics

and map file for traditional TEX but this didn’t limit the number of files.

In modern TEX engines, like X ETEX and LuaTEX, less files are needed, but even then some

expertise is needed to use Type1 fonts. However, when OpenType fonts are used in combi-

nation with Unicode, things become easy. The (one) fontfile needs to be put in a location

that the TEX engine knows and things should work.

225 225

225 225

224 OpenType: too open?

In LuaTEX with ConTEXt MkIV support for traditional Type1 fonts is also simplified: only the

pfb and afm files are needed. Currently we only need tfm files for math fonts but that

will change too. Virtual fonts can be built at runtime and we are experimenting with real

time font generation. Of course filenames are still just as messy and inconsistent as ever,

so other tools are still needed to figure out the real names of fonts.

So, what is this OpenType and will it really make TEXies life easier? The qualification ‘open’

in OpenType carries several suggestions:

• the format is defined in an open way, everybody can read the specification and what

is said there is clear

• the format is open in the sense that one can add additional features, so there are no

limits and/or limits can be shifted

• there is an open community responsible for the advance of this specification and

commercial objectives don’t interfere and/or lead to conflicts

Is this true or not? Indeed the format is defined in the open although the formal specifi-

cation is an expensive document. A free variant is available at the Microsoft website but

it takes some effort to turn that into a nicely printable document. What is said there is

quite certainly clear for the developers, but it takes quite some efforts to get the picture.

The format is binary so one cannot look into the file and see what happens.

The key concept is ‘features’, which boils down to a collection of manipulations of the text

stream based on rules laid down in the font. These can be simple rules, like ‘replace this

character by its smallcaps variant’ or more complex, like ‘if this character is followed by

that character, replace both by yet another’. There are currently two classes of features:

substitutions and (relative) positioning. One can indeed add features so there seem to

be no limits.

The specification is a hybrid of technologies developed by Microsoft and Adobe with

some influence by Apple. These companies may have conflicting interests and therefore

this may influence the openness.

So, in practice we’re dealing with a semi-open format, crippled by a lack of documen-

tation and mostly controlled by some large companies. These characteristics make that

developing support for OpenType is not that trivial. Maybe we should keep in mind that

this font format is used for word processors (no focus on typography), desk top publish-

ing (which permits in-situ tweaking) and rendering text in graphical user interfaces (where

script and language specific rendering is more important than glyph variants). Depending

on the use features can be ignored, or applied selectively, of even compensated.

Anyhow, a font specification is only part of the picture. In order to render it useful we

need support in programs that display and typeset text and of course we need fonts. And

226 226

226 226

OpenType: too open? 225

in order to make fonts, we need programs dedicated to that task too.

Let’s go back for a moment to traditional TEX. A letter can be represented by its standard

glyph or by a smallcaps variant. A digit can be represented by a shape that sits on the

baseline, or one that may go below: an oldstyle numeral. Digits can have the same

width, or be spaced proportionally. There can be special small shapes for super- and

subscripts. In traditional TEX each such variant demanded a font. So, say that one wants

normal shapes, smallcaps and oldstyle, three fonts were needed and this for each of the

styles normal, bold, italic, etc. Also a font switch is needed in order to get the desired

shapes.

In an OpenType universe normal, smallcaps and oldstyle shapes can be included in one

font and they are organized in features. It will be clear that this will make things easier for

users: if one buys a font, there is no longer a need to sort out what file has what shapes,

there is no longer a reason for reencodings because there is no 256 limit, map files are

therefore obsolete, etc. Only the TEX definition part remains, and even that is easier be-

cause one file can be used in different combinations of features.

One of the side effects of the already mentioned semi-open character of the standard is

that we cannot be completely sure about how features are implemented. Of course one

can argue that the specification defines what a feature is and how a font should obey it,

but in practice it does not work out that way.

• Nobody forces a font designer (or foundry) to implement features. And if a designer

provides variants, they may be incomplete. In the transition from Type1 to OpenType

fonts may even have no features at all.

• Some advanced features, like fractions, demand extensive substitution rules in the

font. The completeness may depend on the core application the font was made for,

or the ambition of the programmer who assists the designer, or on the program that

is used to produce the font.

• Many of the features are kind of generic, in the sense that they don’t depend on

heuristics in the typesetting program: it’s just rules that need to be applied. How-

ever, the typesetting program may be written in such a way that it only recognized

certain features.

• Some features make assumptions, for instance in the sense that they expect the pro-

gram to figure out what the first character of a word is. Other features only work well

if the program implements the dedicated machinery for it.

• Features can originate from different vendors and as a result programs may interpret

them differently. Developers of programs may decide only to support certain fea-

tures, even if similar features can be supported out of the box. In the worst case a

227 227

227 227

226 OpenType: too open?

symbiosis between bugs in programs and bugs in fonts from the same vendor can

lead to pseudo standards.

• Designers (or programmers) may assume that features are applied selectively on a

range of input, but in automated workflows this may not be applicable. Style design-

ers may come up with specifications that cannot be matched due to fonts that have

only quick and dirty rules.

• Features can be specific for languages and scripts. There are many languages and

many scripts and only a few are supported. Some features cover similar aspects (for

instance ligatures) and where a specific rendering ends up in the language, script,

feature matrix is not beforehand clear.

In some sense OpenType fonts are intelligent, but they are not programs. Take for instance

the frac feature. When enabled, and when supported in the font, it may result in 1/2 being

typeset with small symbols. But what about a/b? or this/that? In principle one can have

rules that limit this feature to numerals only or to a simple cases with a few characters. But

I have seen fonts that produce garbage when such a feature is applied to the whole text.

Okay, so one should apply it selectively. But, if that’s the way to go, we could as well have

let the typesetting program deal with it and select superior and inferior glyphs from the

font. In that case the program can deal with fuzzy situations and we’re not dependent on

the completeness of rules. In practice, at least for the kind of applications that I have for

TEX, I cannot rely on features being implemented correctly.

For ages TEXies have been claiming that their documents can be reprocessed for years

and years. Of course there are dependencies on fonts and hyphenation patterns, but

these are relatively stable. However, in the case of OpenType we have not only shapes,

but also rules built in. And rules can have bugs. Because fonts vendors don’t provide

automated updating as with programs, your own system can be quite stable. However,

chances are that different machines have variants with better or worse rules, or maybe

even with variants with features deleted.

I’m sure that at some time Idris Samawi Hamid of the Oriental TEX project (related to

LuaTEX) will report on his experiences with font editors, feature editors, and typesetting

engines in the process of making an Arabic font that performs the same way in all systems.

Trial and error, rereading the specifications again and again, participating in discussions

on forums, making special test fonts . . . it’s a pretty complex process. If you want to make

a font that works okay in many applications you need to test your font with each of them,

as the Latin Modern and TEX Gyre font developers can tell you.

This brings me to the main message of this chapter. On the one hand we’re better of

with OpenType fonts: installation is trivial, definitions are easy, and multi-lingual docu-

ments are no problem due to the fact that fonts are relatively complete. However, in

228 228

228 228

OpenType: too open? 227

traditional TEX the user just used what came with the system and most decisions were al-

ready made by package writers. Now, with OpenType, users can choose features and this

demands some knowledge about what they are, when they are supposed to be used (!),

and what limitations they carry. In traditional TEX the options were limited, but now there

are many under user control. This demands some discipline. So, what we see is a shift

from technology (installing, defining) to application (typography, quality). In ConTEXt this

has resulted in additional interfaces, like for instance dynamic feature switching, which

decouples features from font definitions.

It is already clear that OpenType fonts combined with Unicode input will simplify TEX usage

considerably. Also, for macro writers things become easier, but they should be prepared

to deal with the shortcomings on both Unicode and OpenType. For instance characters

that belong together are not always organized logically in Unicode, which results for in-

stance in math characters being (sort of) all over the place, which in turn means that in

TEX characters can be either math or text, which in turn relates to the fonts being used,

formatting etc. Als, macro package writers now need to take more languages and related

interferences into account, but that’s mostly a good thing, because it improves the quality

of the output.

It will be interesting to see how ten years from now TEX macro packages deal with all the

subtleties, exceptions, errors, and user demands. Maybe we will end up with as com-

plex font support as for Type1 with its many encodings. On the other hand, as with all

technology, OpenType is not the last word on fonts.

229 229

229 229

228 OpenType: too open?

230 230

230 230

It works! 229

XXVI It works!

One of the more powerful commands in ConTEXt is \framed. You can pass quite some

parameters that control the spacing, alignment, backgrounds and more. This command

is used all over the place (although often hidden for the user) which means that it also

has to be quite stable. However, there is one nasty bit of code that is hard to get right.

Calculating the height of a box is not that complex: the height that TEX reports is indeed

the height. However, the width of box is determined by the value of \hsize at the time

of typesetting. The actual content can be smaller. In the \framed macro by default the

width is calculated automatically.

\framed
[align=middle,width=fit]
{Out beyond the ethernet the spectrum spreads \unknown}

this shows up as:3

Out beyond the ethernet the spectrum spreads . . .

Or take this quote:4

\hsize=.6\hsize \framed [align=middle,width=fit] {\input weisman }

This gives a multi-line paragraph:

Since the mid-1990s, humans have taken an

unprecedented step in Earthly annals by

introducing not just exotic flora or fauna from one

ecosystem into another, but actually inserting

exotic genes into the operating systems

of individual plants and animals, where

they’re intended to do exactly the same

thing: copy themselves, over and over.

Here the outer\hsizewas made a bit smaller. As you can see the frame is determined by

the widest line. Because it was one of the first features we needed, the code in ConTEXt

that is involved in determining the maximum natural width is pretty old. It boils down

to unboxing a \vbox and stepwise grabbing the last box, penalty, kern and skip. You

unwind the box backwards. However, you cannot grab everything or in TEX speak: there

is only a limited number of \lastsomething commands. Special nodes, like whatsits

3 Taken from ‘Casino Nation’ by Jackson Browne.
4 Taken from ‘A World Without Us’ by Alan Weisman.

231 231

231 231

230 It works!

cannot be grabbed and they make the analyzer abort its analysis. There is no way that we

can solve this in traditional TEX and in ConTEXt MkII.

So how about LuaTEX and ConTEXt MkIV? The macro used in the \framed commands is:

\doreshapeframedbox{do something with \box\framebox}

In LuaTEX we can manipulate box content at the Lua level. Instead of providing a truck-

load of extra primitives (which would also introduce new data types at the TEX end) we

just delegate the job to Lua.

\def\doreshapeframedbox
{\ctxlua{commands.doreshapeframedbox(\number\framebox)}}

Here \ctxlua is our reserved instance and commandsprovides the namespace for com-

mands that we delegate to Lua (so, there are more of them). The amount of Lua code is

way less than the TEX code which we will not show here; it’s in supp-box.tex if you

really want to see it.

function commands.doreshapeframedbox(n)
local box_n = tex.box[n]
if box_n.width ~= 0 then

local hpack = node.hpack
local free = node.free
local copy = node.copy_list
local noflines, lastlinelength, width = 0, 0, 0
local list = box_n.list
local done = false
for h in node.traverse_id('hlist',list) do

done = true
local p = hpack(copy(h.list))
lastlinelength = p.width
if lastlinelength > width then

width = lastlinelength
end
free(p)

end
if done then

if width ~= 0 then
for h in node.traverse_id('hlist',list) do

if h.width ~= width then
h.list = hpack(h.list,width,'exactly')
h.width = width

end

232 232

232 232

It works! 231

end
end
box_n.width = width

end
-- we can also do something with lastlinelength

end
end

In the first loop we inspect all lines (nodes with type hlist) and repack them to their

natural width with node.hpack. In the process we keep track of the maximum natural

width. In the second loop we repack the content again, but this time permanently. Now

we use the maximum encountered width which is forced by the keyword exactly. Be-

cause all glue is still present we automatically get the desired alignment. We create local

shortcuts to some node functions which makes it run faster; keep in mind that this is a

core function called many times in a regular ConTEXt job.

In ConTEXt MkIV you will find quite some Lua code and often it looks rather complex,

especially if you have no clue why it’s needed. Think of OpenType font handling which

involves locating fonts, loading and caching them, storing features and later on applying

them to node lists, etc. However, once we are beyond the stage of developing all the

code that is needed to support the basics, we will start doing the things that more relate

to the typesetting process itself, like the previous code. One of the candidates for a similar

Lua based solution is for instance column balancing. From the previous example code

you can deduce that manipulating the node lists from Lua can make that easier. Of course

we’re a few more years down the road then.

233 233

233 233

232 It works!

234 234

234 234

Virtual Reality 233

XXVII Virtual Reality

When a font lacks glyphs we can add new ones by making the font virtual. A virtual font

has virtual glyphs: instead of a reference to a slot in the current font, such a glyph refers

to a slot in another font, or it combines several glyphs into one, or it just contains code

that ends up in the result (for instance a sequence of pdf commands that describes the

shape). For TEX a character and its dimensions are what matters and what ends up in the

result is mostly a matter for the backend. In LuaTEX the backend is integrated but even

then during the typesetting process only the characteristics of a glyph are used and not

the shape.

In ConTEXt we have a feature called ‘compose’ which extends the font with extra charac-

ters and constructs its representation from those of other characters.

\definefontfeature
[composes]
[kern=yes,ligatures=yes,compose=yes]

When this feature is applied, ConTEXt will try to fill in the gaps in the Unicode vector of

the font based on for instance (de)composition information. Of course this has some

limitations. For instance OpenType fonts can ships with features, like smallcaps. Currently

we ignore this property when we add composed characters. Technically it is no big deal

to add variants but we simply didn’t do it yet at the time of this writing. After all, such

fallbacks can best be avoided by using proper fonts.

Our ConTEXt MkIV wishlist mentions a mechanism for combining fonts into one font.

For this we can use virtual fonts and the machinery for that is in available in Lua code.

However such a mechanism will be used for more drastic completion of a font than the

compose feature. For instance, often Chinese fonts lack proper Latin glyphs and vise

versa. But when we combine such fonts we really do want to keep OpenType features

working and so we cannot use virtual fonts (unless we start merging features which can

become really messy and runtime consuming).

There is a relative simple solution using real fonts that kind of behave like virtual ones:

virtual real fonts. The trick is in the fact that TEX permits access to characters not present

in the font. Say that we have

<char 123><char 124><char 125>

and that slot 124 has no glyph. In that case TEX just inserts a glyph node with a reference

to the current font and this character. Of course, when we let TEX carry on, at some point

it will need glyph properties like the width, height and/or depth. And in the backend,

when writing the result to file, TEX wants to insert the glyph data in the file. In both cases

we end up with a message in the log file and a result file with missing data.

235 235

235 235

234 Virtual Reality

In ConTEXt MkIV we intercept the node lists at several points and one of those is directly

after the construction. So let’s consider the previous example again.

Because the font has no character 124 we need a way to substitute it with another charac-

ter. All we have to do is to change the font identifier 32 into one that makes sense. Such

a replacement loop is kind of trivial.

for n in traverse_id(glyph,head) do
local v = vectors[n.font]
if v then

local id = v[n.char]
if id then

n.font = id
end

end
end

We have a table (vectors) that can have a subtable (v) for font with id (n.font) in which

there can be a reference from the current character (n.char) to another font (id) that we

use to replace the font reference (n.font).

Filling the table is relatively easy but an explanation is beyond this chapter. We only show

the high level interface, one that certainly will evolve.

\definefontfallback
[SerifFallback]
[Mono]
[0x000-0x3FF]
[check=yes,force=no]

This command registers an entry in the SerifFallback namespace. There can be mul-

tiple replacement in row (by just using more of these commands), but here we have only

one. The range 0x000–0x3FF will be checked and if the main font lacks a glyph in that

range, it will be taken from the font with the symbolic name Mono. That name will be re-

solved when the fallback is associated with a font. The check option tells the machinery

that we need to check for existence and because we don’t force, we will only replace

missing glyphs. There is also an rscale option, that permits relative scaling of the fall-

back font to the main font, something that may be needed when fonts come from differ-

ent sources.

\definefontsynonym
[SerifPlus]
[Serif]

236 236

236 236

Virtual Reality 235

[fallbacks=SerifFallback]

This command associates a fallback with a font. There is always a parent font and that is

the font that triggers the checking of the node list.

\definefont [MySerif] [SerifPlus at 10pt]

Here we defines a font called \MySerif that refers to a symbolic name SerifPlus
which in turn refers to the currentSerif font (these symbolic names are resolved in type-

scripts, one of the building blocks of ConTEXts font system). The mentioned fallbacks will

be initialized when the font is defined. This examples demonstrates that there is a clean

separation between font definitions and fallbacks. This makes it possible to share fallback

definitions.

So, let’s summarize what happens:

• a font is defined in the normal way but has falbacks

• the associated fallback fonts are defined too

• the main font gets a table with fallback id’s

• the main font is used in the document stream

• the node list is intercepted and parsed for this font

• references to fallback fonts take care of missing glyphs

We end with an example.

\definefontfallback [Demo] [Mono] [0x30-0x39] [force=yes]
\definefontsynonym [DemoSerif] [Serif] [fallbacks=Demo]

\definefont [MyDemoSerif] [DemoSerif at 20pt]

\MyDemoSerif Here the digits, like 13579, are replaced.

Here the digits, like 13579, are replaced.

Beware: the fallback definitions are global, but this is hardly a problem because normal

such trickery is taking place at the document level.

237 237

237 237

236 Virtual Reality

238 238

238 238

Everything structure 237

XXVIII Everything structure

At the time of this writing, ConTEXt MkIV spends some 50% of its time in Lua. There are

several reasons for this.

• All io goes via Lua, including messages and logging. This includes file searching which

happened to be done by the kpse library.

• Much font handling is done by Lua too, for instance OpenType features are completely

handled by Lua.

• Because TEX is highy optimized, its influence on runtime is less prominent. Even if we

delegate some tasks to Lua, TEX still has work to do.

Among the reported statistics of a 242 page version of mk.pdf (not containing this chap-

ter) we find the following:

input load time - 0.094 seconds
startup time - 0.905 seconds (including runtime option file processing)
jobdata time - 0.140 seconds saving, 0.062 seconds loading
fonts load time - 5.413 seconds
xml load time - 0.000 seconds, lpath calls: 46, cached calls: 31
lxml load time - 0.000 seconds preparation, backreferences: 0
mps conversion time - 0.000 seconds
node processing time - 1.747 seconds including kernel
kernel processing time - 0.343 seconds
attribute processing time - 2.075 seconds
language load time - 0.109 seconds, n=4
graphics processing time - 0.109 seconds including tex, n=7
metapost processing time - 0.484 seconds, loading: 0.016 seconds, execution: 0.203 seconds, n: 65
current memory usage - 332 MB
loaded patterns - gb:gb:pat:exc:3 nl:nl:pat:exc:4 us:us:pat:exc:2
control sequences - 34245 of 165536
callbacks - direct: 235579, indirect: 18665, total: 254244 (1050 per page)
runtime - 25.818 seconds, 242 processed pages, 242 shipped pages, 9.373 pages/second

The startup time includes initial font loading (we don’t store fonts in the format). Jobdata

time involves loading and saving multipass data used for tables of contents, references,

positioning, etc. The time needed for loading fonts is over 5 seconds due to the fact

that we load a couple of real large and complex fonts. Node processing time mostly is

related to OpenType feature support. The kernel processing time refers to hyphenation

and line breaking, for which (of course) we use TEX. Direct callbacks are implicit calls to

Lua, using \directlua while the indirect calls concern overloaded TEX functions and

callbacks triggered by TEX itself.

Depending on the system load on my laptop, the throughput is around 10 pages per

second for this document, which is due to the fact that some font trickery takes place

239 239

239 239

238 Everything structure

using a few arabic fonts, some chinese, a bunch of metapost punk instances, Zapfino,

etc.

The times reported are accumulated times and contain quite some accumulated round-

ing errors so assuming that the operating system rounds up the times, the totals in practice

might be higher. So, looking at the numbers, you might wonder if the load on Lua will

become even larger. This is not necessary. Some tasks can be done better in Lua but not

always with less code, especially when we want to extend functionality and to provide

more robust solutions. Also, even if we win some processing time we might as well waste

it in interfacing between TEX and Lua. For instance, we can delegate pretty printing to Lua,

but most documents don’t contain verbatim at all. We can handle section management

by Lua, but how many section headers does a document have?

When the future of TEX is discussed, among the ideas presented is to let TEX stick to type-

setting and implement it as a component (or library) on top of a (maybe dedicated) lan-

guage. This might sound like a nice idea, but eventually we will end up with some kind

of user interface and a substantial amount of code dedicated to dealing with fonts, struc-

ture, character management, math etc.

In the process of converting ConTEXt to MkIV we try to use each language (TEX, Lua, Me-

taPost) for what it is best suited for. Instead of starting from scratch, we start with existing

code and functionality, because we need a running system. Eventually we might find TEX’s

role as language being reduced to (or maybe we can better talk of ‘focused on’) mostly

aspects of typesetting, but ConTEXt as a whole will not be much different from the per-

spective of the user.

So, this is how the transition of ConTEXt takes place:

• We started with replacing isolated bits and pieces of code where Lua is a more natural

candidate, like file io, encoding issues.

• We implement new functionality, for instance OpenType and Type1 support.

• We reimplement mechanisms that are not efficient as we want them to be, like buffers

and verbatim.

• We add new features, for instance tree based xml processing.

• After evaluating we reimplement again when needed (or when LuaTEX evolves).

Yet another transition is the one we will discuss next:

• We replace complex mechanisms by new ones where we separate management and

typesetting.

This not so trivial effort because it affects many aspects of ConTEXt and as such we need

to adapt a lot of code at the same time: all things related to structure:

240 240

240 240

Everything structure 239

• sectioning (chapters, sections, etc)

• numbering (pages, itemize, enumeration, floats, etc)

• marks (used for headers and footers)

• lists (tables of contents, lists of floats, sorted lists)

• registers (including collapsing of page ranges)

• cross referencing (to text as well as pages)

• notes (footnotes, endnotes, etc)

All these mechanisms are somehow related. A section head can occur in a list, can be

cross referenced, might be shows in a header and of course can have a number. Such

a number can have multiple components (1.A.3) where each component can have its

own conversion, rendering (fonts, colors) and selectively have less components. In tables

of contents either or not we want to see all components, separators etc. Such a table

can be generated at each level, which demands filtering mechanisms. The same is true

for registers. There we have page numbers too, and these may be prefixed by section

numbers, possibly rendered differently than the original section number.

Much if this is possible in ConTEXt MkII, but the code that deals with this is not always

nice and clean and right from the start of the LuaTEX project it has been on the agenda to

clean it up. The code evolved over time and functionality was added when needed. But,

the projects that we deal with demand more (often local) control over the components

of a number.

What makes structure related data complex is that we need to keep track of each aspect in

order to be able to reproduce the rendering in for instance a table of contents, where we

also may want to change some of the aspects (for instance separators in a different color).

Another pending issue is xml and although we could normally deal with this quite well, it

started making sense to make all multi-pass data (registers, tables of content, sorted lists,

references, etc.) more xml aware. This is a somewhat hairy task, if only because we need

to switch between TEX mode and xml mode when needed and at the same time keep an

eye on unwanted expansion: do we keep structure in the content or not?

Rewriting the code that deals with these aspects of typesetting is the first step in a separa-

tion of code in MkII and MkIV. Until now we tried to share much code, but this no longer

makes sense. Also, at the ConTEXt conference in Bohinj (2008) it was decided that given

the development of MkIV, it made sense to freeze MkII (apart from bug fixes and minor

extensions). This decision opens the road to more drastic changes. We will roll back

some of the splits in code that made sharing code possible and just replace whole com-

ponents of ConTEXt as a whole. This also gives us the opportunity to review code more

drastically than until now in the perspective of 𝜀-TEX.

Because this stage in the rewrite of ConTEXt might bring some compatibility issues with

it (especially for users who use the more obscure tuning options), I will discuss some of

the changes here. A bit of understanding might make users more tolerant.

241 241

241 241

240 Everything structure

The core data structure that we need to deal with is a number, which can be constructed

in several ways.

sectioning 1.A.2.II some title

pagenumber page 1.A – 23

reference in chapter 2.II

marking A : some title with preceding number

contents 2.II some title with some page number 1.A – 23

index some word 23 , A – 42 — B – 48

itemize a first item a.1 subitem item

enumerate example 1.A.2.II . a

floatcaption figure 1 – 2

footnotes note ⋆

In this table we see how numbers are composed:

section number It has several components, separated by symbols and with an optional

final symbol

separator This can be different for each level and can have dedicated rendering

options

page number That can be preceded by a (partial) sectionnumber and separated from

the page number by another symbol

counter It can be preceded by a (partial) sectionnumber and can also have

subnumbers with its own separation properties

symbol Sometimes numbers get represented by symbols in which case we

use pagewise restarting symbol sets

Say that at some point we store a section number and/or page number. With the num-

ber we need to store information about the conversion (number, character, roman nu-

meral, etc) and the separators, including their rendering. However, when we reuse that

stored information we might want to discard some components and/or use a different

rendering. In traditional ConTEXt we have control over some aspects but due to the way

numbers are stored for later reuse this control is limited.

Say that we have cloned a subsection head as follows:

\definehead[MyHead][section]

This is used as:

\MyHead[example]{Example}

In MkII we save a list entry (which has the number, the title and a reference to the page)

and a reference to the the number, the title and the page (tagged example). Page num-

bers are stored in such a way that we can filter at specific section levels. This permits local

242 242

242 242

Everything structure 241

tables of contents.

The entry in the multi pass data file looks as follows (we collect all multi pass data in one

file):

\mainreference{}{example}{2--0-1-1-0-0-0-0--1}{1}{{I.I}{Example}}%
\listentry{MyHead}{2}{I.I}{Example}{2--0-1-1-0-0-0-0--1}{1}%

In MkIV we store more information and use tables for that. Currently the entry looks as

follows:

structure.lists.collected={
{

...
},
{
metadata={
catcodes=4,
coding="tex",
internal=2,
kind="section",
name="MyHead",
reference="example",
},
pagenumber={
numbers={ 1, 1, 0 },
},
sectionnumber={
conversion="R",
conversionset="default",
numbers={ 0, 2 },
separatorset="default",
},
sectiontitle={
label="MyHead",
title="Example",
},

},
{
...

},
}

243 243

243 243

242 Everything structure

There can be much more information in each of the subtables. For instance, thepagenumber
andsectionnumber subtables can haveprefix,separatorset,conversion,conversionset,

stopper, segments and connector fields, and the metadata table can contain infor-

mation about the xml root document so that associated filtering and handling can be

reconstructed. With the section title we store information about the preceding label text

(seldom used, think of ‘Part B’).

This entry is used for lists as well as cross referencing. Actually, the stored information is

also used for markings (running heads). This means that these mechanisms must be able

to distinguish between where and how information is stored.

These tables look rather verbose and indeed they are. We end up with much larger multi-

pass data files but fortunately loading them is quite efficient. Serializing on the other

hand might cost some time which is compensated by the fact that we no longer store

information in token lists associated with nodes in TEX’s lists and in the future we might

even move more data handling to the Lua end. Also, in future versions we will share

similar data (like page number information) more efficiently.

Storing date at the Lua end also has consequences for the typesetting. When specific

data is needed a call to Lua is necessary. In the future we might offer both push and pull

methods (Lua pushing information to the typesetting code versus Lua triggering type-

setting code). For lists we pull, and for registers we currently push. Depending on our

experiences we might change these strategies.

A side effect of the rewrite is that we force more consistency. For instance, you see a

conversion field in the list. This is the old way of defining the way a number gets con-

verted. The modern approach is to use sets. Because we now have a more stringent in-

heritance model at the user interface level, this might lead to incompatible conversions

at lower levels (when unset). Instead of cooking up some nasty compatibility hacks, we

accept some incompatibility, if only because users have to adapt their styles to new font

technology anyway. And for older documents there is still MkII.

Instead of introducing many extra configuration variables (for each level of sectioning)

we introduce sets. These replace some of the existing parameters and are the follow up

on some (undocumented) precursor of sets. Examples of sets are:

\definestructureseparatorset [default][][.]
\definestructureconversionset[default][][numbers]
\definestructureresetset [default][][0]
\definestructureprefixset [default][section-2,section-3][]
\definestructureseparatorset [appendix][][.]
\definestructureconversionset[appendix][Romannumerals,Characters][]
\definestructureresetset [appendix][][0]

244 244

244 244

Everything structure 243

The third parameter is the default value. The sets that relate to typesetting can have a

rendering specification:

\definestructureseparatorset
[demosep]
[demo->!,demo->?,demo->*,demo->@]
[demo->/]

Here we apply demo to each of the separators as well as to the default. The renderer is

defined with:

\defineprocessor[demo][style=\bfb,color=red]

You can imagine that, although this is quite possible in TEX, dealing with sets, splitting

them, handling the rendering, etc. is easier in Lua that in TEX. Of course the code still

looks somewhat messy, if only because the problem is messy. Part if this mess is related

to the fact that we might have to specify all components that make up a number.

section section number as part of head

list section number as part of list entry

section number as part of page number prefix

(optionally prefixed) page number

counter section number as part of counter prefix

(optionally prefixed) counter value(s)

pagenumber section number as part of page number

pagenumber components (realpage, page, subpage)

As a result we have upto 3 sets of parameters:

section section*
list section* prefix* page*
counter section* number*
pagenumber prefix* page*

When reimplementing the structure related commands, we also have to take mecha-

nisms into account that relate to them. For instance, index sorter code is also used for

sorted lists, so when we adapt one mechanism we also have to adapt the other. The same

is true for cross references, that are used all over the place. It helps that for the moment

we can omit the more obscure interaction related mechanism, if only because users will

seldom use them. Such mechanisms are also related to the backend and we’re not yet in

the stage where we upgrade the backend code. In case you wonder why references can

be such a problematic areas think of the following:

\goto{here}[page(10),StartSound{ping},StartVideo{demo}]
\goto{there}[page(10),VideLayer{example},JS(SomeScript{hi world})]

245 245

245 245

244 Everything structure

\goto{anywhere}[url(mypreviouslydefinedurl)]

The ConTEXt cross reference mechanism permits mixed usage of simple hyperlinks (jump

to some page) and more advanced viewer actions like showing widgets and runnign Java-

Script code. And even a simple reference like:

\at{here and there}[somefile::sometarget]

involves some code because we need to handle the three words as well as the outer

reference.5 The reason why we need to reimplement referencing along with structure lays

in the fact that for some structure components (like section headers and float references)

we no longer store cross reference information separately but filter it from the data stored

in the list (see example before).

The Lua code involved in dealing with the more complex references shown here is much

more flexible and robust than the original TEX code. This is a typical example of where the

accumulated time spent on the TEX based solution is large compared to the time spent

on the Lua variant. It’s like driving 200 km by car through hilly terrain and wondering

how one did that in earlier times. Just like today scenery is not by definition better than

yestedays, MkIV code is not always better than MkII code.

5 Currently ConTEXt does its own splitting of multiword references, and does so by reusing hyperlink re-

sources in the backend format. This might change in the future.

246 246

246 246

Tracking 245

XXIX Tracking

We entered 2009 with a partial reimplementation of the OpenType feature handler. One

of the reasons was an upgrade of the FontForge libraries that LuaTEX uses.

The specification of OpenType is kind of vague. Apart from a lack of a proper free specifi-

cations there’s also the problem that Microsoft and Adobe may have their own interpre-

tation of how and in what order to apply features. In general the Microsoft website has

more detailed specifications and is a better reference. There is also some information in

the FontForge help files.

Because there is so much possible, fonts might contain bugs and/or be made to work

with certain renderers. These may evolve over time which may have the side effect that

suddenly fonts behave differently.

After a lot of experiments (mostly by Taco, me and Idris) we’re now at yet another imple-

mentation. Of course all errors are mine and of course the code can be improved. There

are quite some optimization going on here and processing speed is currently acceptable.

Not all functions are implemented yet, often because I lack the fonts for testing. Many

scripts are not yet supported either, but I will look into them as soon as ConTEXt users ask

for it.

The data provided by the FontForge library has organized lookups (which relate to fea-

tures) in a certain way. A first implementation of this code was organized featurewise:

information related to features was collected and processing boiled down to a run over

the features. The current implementation honours the order in the main feature table.

Since we can reorder this table as we want, we can eventually support several models

of processing. We kept the static as well as dynamic feature processing, because it had

proved to be rather useful. The formerly three loop variants have been discarded but

might reappear at some time.

One reason for this change is that the interactive version of FontForge now provides a

more detailed overview of the way lookups are supposed to be handled. When you

consult the information of a font and in particular a glyph in a font, you now get quite

some information about what features can be applied and in what order this takes place.

In ConTEXt MkIV we deal with this as follows. Keep in mind that we start with charac-

ters but stepwise these can become more abstract representation, named glyphs. For

instance a letter a can be represented by a shape (glyph) that is similar to an uppercase A.

• We loop over all lookups. Normally there are only a few lookups but fonts that deal

with scripts that resemble handwriting, like arabic of Zapfino, might have hundreds

247 247

247 247

246 Tracking

of them. Each lookup has a detailed specification of what language and/or scripts it

applies to.

• For each lookup we do a run over the list of glyphs. So, if we have 50 lookups, and a

paragraph has 500 glyphs, we do some 25000 loops. Keep in mind that for arab we

start with a sequence of characters and vowels, and during a run, these might be re-

placed by for instance ligatures and combined vowels, so the 500 stepwise becomes

less.

• We only process the features that are enabled. Normally the lookups are organized

in such a way that features take place in a similar way: (de)composition, replacement

of initial, medial, final and isolated forms, specific replacements by one or more vari-

ant, composition of ligatures, mark positioning, cursive corrections and kerning. The

font itself does not contain information about what features are to be enabled by de-

fault. Some applications have built in presets, others might extend their repertoire

over time.

• A lookup can be a contextual lookup, which means that treatment takes place on a

match of a sequence of characters (glyphs), either of not preceded or followed by

specific other characters (glyphs). We we loop over all contexts till we have a match.

Some fonts have lots of contextual lookups, which in turn might increase the num-

ber of loops over the list of characters (glyphs). If we have a match, we process the

associated list of sublookups. Technically it is possible to replace (say) five charac-

ters by first a ligature (that replaces the first two by one), then a multiple substitution

(resulting in an extra three glyphs replacing one) and then discarding the other rest

(being two characters). Because by that time characters (say, unicode points) might

have been replaced by glyphs (an index in the font) a contextual lookup can involve

quite some match points.

In ConTEXt we do this for each font that is used in a list, so in practice we have quite

some nested loops. Each font can have its own set of features enables of features might

be applied dynamically, independent of font related settings. So, around the mentioned

loops there is another one: a loop over the fonts used in a list (paragraph).

We process the whole list and then consult the glyph nodes. An alternative approach is to

collect strings of characters using the same font including spaces (because some lookups

involve spaces). However, we then need to reconstruct the list which is no fun. Also, we

need to carry quite some information, like attributes, so eventually we don’t gain much

(if we gain something at all).

Another consideration has been to operate on sublists of font usage (using a subhead

and subtail) but again this would complicate matters as we then neext to keep track of

a changing subhead and subtail. On the other hand, this might save some runtime. The

248 248

248 248

Tracking 247

number of changes in the code needed to do this is not that large but it only makes sense

when we have many fonts in a list and don’t change fonts to frequently.

This whole treatment is rather extensively optimized and so the process is reasonable fast

(you really don’t want to know how much time was spent on figuring out fast methods,

testing and reimplementing this). While I was implementing the Lua code, Taco made

sure that access to the information in nodes was as fast as possible and in our usual chat

sessions we compared the output with the one produced by the FontForge preview.

It was for this reason that more and more debugging code was added but even that made

tracking of what really happened cumbersome. Therefore a more visual method was

written, which will be shown laster on.

You can enable tracing using the designated commands:

\enabletracker[otf.ligatures,otf.singles]

and disable them for instance with:

\disabletracker[otf.*]

Or you can pass directives to the command line:

context --track=otf.ligatures myfile.tex

With regards to OpenType handling we have the following tracker keys available:

otf.actions show all replacements and positioning

otf.alternatives show what glyph is replaced by what alternative

otf.analyzing color glyphs according to script specific analysis

otf.applied applied features per font instance

otf.bugs show diagnostic information

otf.contexts show what contextual lookups take place

otf.cursive show cursive anchoring when applied

otf.details show more details about lookup handling

otf.dynamics show dynamic feature definitions

otf.features show what features are a applied

otf.kerns show kerning between glyphs when applied

otf.ligatures show what glyphs are replaced by one other

otf.loading show more information when loading (caching) a font

otf.lookups keep track of what lookups are consulted

otf.marks show mark anchoring when applied

otf.multiples show what glyph is replaced by multiple others

otf.positions show what glyphs are positioned (combines other trackers)

otf.preparing show what information is collected for later usage in lookups

249 249

249 249

248 Tracking

otf.replacements show what glyphs are replaced (combines other trackers)

otf.sequences
otf.singles show what glyph is replaced by one other

Some other trackers might also come in handy:

fonts.combining show what extra characters are added when forcing combined shapes

fonts.defining show what fonts are defined

fonts.loading show more details when a font is loaded (and cached) for the first

time

We now show another way to track what happens with your text. Because this is rather

verbose, you should only apply it to words. The second argument can be-1 (right to left),

0 (default) or 1 (left to right). The third argument can be invisible in the code because the

font used for verbatim might lack the shapes. A font has a different ordering than Uni-

code because after all one character can have multiple representations, one shape can

be used for multiple characters, or shapes might not have a Unicode point at all. In MkIV

we push all shapes that have no direct relationship with Unicode to the private area so

that TEX still sees them (hence the large numbers in the following examples).

The next example uses Latin Modern. Here we apply the following features:

\definefontfeature
[latin-default]
[mode=node,language=dflt,script=latn,
liga=yes,calt=yes,clig=yes,
kern=yes]

\showotfcomposition
{name:lmroman12regular*latin-default at 24pt}
{0}
{flinke fietser}

font 162: lmroman12-regular.otf @ 24.0pt

features analyze=yes, calt=yes, clig=yes, devanagari=yes,
dummies=yes, extensions=yes, extrafeatures=yes,
kern=yes, language=dflt, liga=yes, mathkerns=yes,
mode=node, script=latn, spacekern=yes

step 1 flinke fietser U+66:f U+6C:l U+69:i U+6E:n
U+6B:k U+65:e [glue] U+66:f U+69:i U+65:e U+74:t
U+73:s U+65:e U+72:r

250 250

250 250

Tracking 249

feature 'liga', type 'gsub_ligature', lookup 's_s_8',
replacing U+00066 (f) upto U+0006C (l) by ligature
U+0FB02 (f_l) case 2

step 2 flinke fietser U+FB02:fl U+69:i U+6E:n U+6B:k
U+65:e [glue] U+66:f U+69:i U+65:e U+74:t U+73:s
U+65:e U+72:r
feature 'liga', type 'gsub_ligature', lookup 's_s_9',
replacing U+00066 (f) upto U+00069 (i) by ligature
U+0FB01 (f_i) case 2

step 3 flinke fietser U+FB02:fl U+69:i U+6E:n U+6B:k
U+65:e [glue] U+FB01:fi U+65:e U+74:t U+73:s U+65:e
U+72:r
feature 'kern', type 'gpos_pair', lookup 'p_s_1',
shifting single U+00065 (e) by -0.648pt

result flinke fietser U+FB02:fl U+69:i U+6E:n U+6B:k
[kern] U+65:e [glue] U+FB01:fi U+65:e U+74:t U+73:s
U+65:e U+72:r

The next example uses Arabtype. Here we apply the following features:

\definefontfeature
[arabtype-default]
[mode=node,language=dflt,script=arab,
init=yes,medi=yes,fina=yes,isol=yes,
ccmp=yes,locl=yes,calt=yes,
liga=yes,clig=yes,dlig=yes,rlig=yes,
mark=yes,mkmk=yes,kern=yes,curs=yes]

\showotfcomposition
{arabtype*arabtype-default at 48pt}
{-1}
{}

font 163: arabtype.ttf @ 48.0pt

features analyze=yes, calt=yes, ccmp=yes, clig=yes, curs=yes,
devanagari=yes, dlig=yes, dummies=yes, extensions=yes,
extrafeatures=yes, fina=yes, init=yes, isol=yes,
kern=yes, language=dflt, liga=yes, locl=yes, mark=yes,
mathkerns=yes, medi=yes, mkmk=yes, mode=node,
rlig=yes, script=arab, spacekern=yes

251 251

251 251

250 Tracking

step 1 َّرَّضلا [+TRT] U+627:ا U+644:ل U+636:ض U+651:ّ

U+64E:َ U+631:ر U+651:ّ U+64E:َ
feature 'ccmp', type 'gsub_ligature', lookup 's_s_1',
replacing U+00651 upto U+0064E by ligature U+F0171
case 1

feature 'ccmp', type 'gsub_ligature', lookup 's_s_1',
replacing U+00651 upto U+0064E by ligature U+F0171
case 1

step 2 َّرَّضلا [+TRT] U+627:ا U+644:ل U+636:ض
U+F0171:َّ U+631:ر U+F0171:َّ
feature 'fina', type 'gsub_alternate', lookup 's_s_6',
replacing U+00631 by alternative 'U+0FEAE' to value
1, taking 1,

step 3 َّرَّضلا [+TRT] U+627:ا U+644:ل U+636:ض
U+F0171:َّ U+FEAE:ر U+F0171:َّ
feature 'medi', type 'gsub_single', lookup 's_s_7',
replacing U+00636 by single U+0FEC0

step 4 َّرَّضلا [+TRT] U+627:ا U+644:ل U+FEC0:ض U+F0171:َّ
U+FEAE:ر U+F0171:َّ
feature 'init', type 'gsub_single', lookup 's_s_8',
replacing U+00644 by single U+0FEDF

step 5 َّرَّضلا [+TRT] U+627:ا U+FEDF:ل U+FEC0:ض U+F0171:َّ
U+FEAE:ر U+F0171:َّ

252 252

252 252

Tracking 251

feature 'liga', type 'gsub_ligature', lookup 's_s_38',
replacing U+0FEC0 upto U+0FEAE by ligature U+0FD2C
case 2

step 6 ََّّضرلا [+TRT] U+627:ا U+FEDF:ل U+FD2C:ضر U+F0171:َّ
U+F0171:َّ
feature 'mark', type 'gpos_mark2ligature', lookup
'p_s_16', anchor , index 1, bound 1, anchoring mark
U+F0171 to baselig U+0FD2C at index 1 =>
(22.73438pt,0.70313pt)

feature 'mark', type 'gpos_mark2ligature', lookup
'p_s_16', anchor , index 2, bound 2, anchoring mark
U+F0171 to baselig U+0FD2C at index 2 =>
(5.39063pt,-3.75pt)

result ََّّضرلا [+TRT] U+627:ا U+FEDF:ل U+FD2C:ضر U+F0171:َّ
U+F0171:َّ

\showotfcomposition
{arabtype*arabtype-default at 48pt}
{-1}
{}

font 163: arabtype.ttf @ 48.0pt

features analyze=yes, calt=yes, ccmp=yes, clig=yes, curs=yes,
devanagari=yes, dlig=yes, dummies=yes, extensions=yes,
extrafeatures=yes, fina=yes, init=yes, isol=yes,
kern=yes, language=dflt, liga=yes, locl=yes, mark=yes,
mathkerns=yes, medi=yes, mkmk=yes, mode=node,
rlig=yes, script=arab, spacekern=yes

step 1 ِهّٰلِل [+TRT] U+644:ل U+650:ِ U+644:ل U+651:ّ U+670:ٰ
U+647:ه U+650:ِ
feature 'ccmp', type 'gsub_ligature', lookup 's_s_1',
replacing U+00651 upto U+00670 by ligature U+F0174

253 253

253 253

252 Tracking

case 1

step 2 ِهّٰلِل [+TRT] U+644:ل U+650:ِ U+644:ل U+F0174:ّٰ
U+647:ه U+650:ِ
feature 'fina', type 'gsub_alternate', lookup 's_s_6',
replacing U+00647 by alternative 'U+0FEEA' to value
1, taking 1,

step 3 ِهّٰلِل [+TRT] U+644:ل U+650:ِ U+644:ل U+F0174:ّٰ
U+FEEA:ه U+650:ِ
feature 'medi', type 'gsub_single', lookup 's_s_7',
replacing U+00644 by single U+0FEE0

step 4 ِهّٰلِل [+TRT] U+644:ل U+650:ِ U+FEE0:ل U+F0174: ّٰ
U+FEEA:ه U+650:ِ
feature 'init', type 'gsub_single', lookup 's_s_8',
replacing U+00644 by single U+0FEDF

step 5 ِهّٰلِل [+TRT] U+FEDF:ل U+650:ِ U+FEE0:ل U+F0174:ّٰ U+FEEA:ه
U+650:ِ

feature 'calt', type 'gsub_contextchain', chain lookup
's_s_29', index -1, replacing single U+0FEDF by
U+F0058 (uniFEDF.alt1)

step 6 ِهّٰلِل [+TRT] U+F0058:ل U+650:ِ U+FEE0:ل U+F0174:ّٰ
U+FEEA:ه U+650:ِ
feature 'liga', type 'gsub_ligature', lookup 's_s_38',
replacing U+F0058 (uniFEDF.alt1) upto U+0FEEA by
ligature U+F03E6 (uni064406440647.isol) case 2

254 254

254 254

Tracking 253

step 7 ِِّٰلله [+TRT] U+F03E6:لله U+650:ِ U+F0174:ّٰ U+650:ِ
feature 'mark', type 'gpos_mark2ligature', lookup
'p_s_16', anchor , index 1, bound 1, anchoring mark
U+00650 to baselig U+F03E6 (uni064406440647.isol) at
index 1 => (23.4375pt,8.20313pt)

feature 'mark', type 'gpos_mark2ligature', lookup
'p_s_16', anchor , index 2, bound 2, anchoring mark
U+F0174 to baselig U+F03E6 (uni064406440647.isol) at
index 2 => (13.35938pt,-0.9375pt)

feature 'mark', type 'gpos_mark2ligature', lookup
'p_s_16', anchor , index 3, bound 3, anchoring mark
U+00650 to baselig U+F03E6 (uni064406440647.isol) at
index 3 => (3.98438pt,7.96875pt)

result ِّٰلِله [+TRT] U+F03E6:لله U+650:ِ U+F0174:ّٰ U+650:ِ
Another arabic example (after all, fonts that support arabic have lots of nice features) is

the following. First we define a bunch of feature collections

\definefontfeature
[salt-n]
[analyze=yes,mode=node,
language=dflt,script=arab,
init=yes,medi=yes,fina=yes,isol=yes,
liga=yes,calt=yes,ccmp=yes,
kern=yes,curs=yes,mark=yes,mkmk=yes]

\definefontfeature[salt-y][salt-n][salt=yes]
\definefontfeature[salt-1][salt-n][salt=1]
\definefontfeature[salt-2][salt-n][salt=2]
\definefontfeature[salt-3][salt-n][salt=3]
\definefontfeature[salt-r][salt-n][salt=random]

Next we show a few traced examples. Watch the reported alternatives.

\showotfcomposition{scheherazaderegot*salt-n at 36pt}{-1}{\char"6DD}
\showotfcomposition{scheherazaderegot*salt-y at 36pt}{-1}{\char"6DD}
\showotfcomposition{scheherazaderegot*salt-1 at 36pt}{-1}{\char"6DD}

255 255

255 255

254 Tracking

\showotfcomposition{scheherazaderegot*salt-2 at 36pt}{-1}{\char"6DD}
\showotfcomposition{scheherazaderegot*salt-3 at 36pt}{-1}{\char"6DD}
\showotfcomposition{scheherazaderegot*salt-r at 36pt}{-1}{\char"6DD}
\showotfcomposition{scheherazaderegot*salt-r at 36pt}{-1}{\char"6DD}
\showotfcomposition{scheherazaderegot*salt-r at 36pt}{-1}{\char"6DD}

font 1: lt55485.pfb @ 12.0pt

features autolanguage=position, autoscript=position,
compose=yes, curs=yes, dummies=yes, kern=yes,
liga=yes, mark=yes, mkmk=yes, mode=node, script=auto,
tlig=yes, trep=yes

result [+TRT] U+6DD:

font 1: lt55485.pfb @ 12.0pt

features autolanguage=position, autoscript=position,
compose=yes, curs=yes, dummies=yes, kern=yes,
liga=yes, mark=yes, mkmk=yes, mode=node, script=auto,
tlig=yes, trep=yes

result [+TRT] U+6DD:

font 1: lt55485.pfb @ 12.0pt

features autolanguage=position, autoscript=position,
compose=yes, curs=yes, dummies=yes, kern=yes,
liga=yes, mark=yes, mkmk=yes, mode=node, script=auto,
tlig=yes, trep=yes

result [+TRT] U+6DD:

font 1: lt55485.pfb @ 12.0pt

features autolanguage=position, autoscript=position,
compose=yes, curs=yes, dummies=yes, kern=yes,
liga=yes, mark=yes, mkmk=yes, mode=node, script=auto,
tlig=yes, trep=yes

result [+TRT] U+6DD:

font 1: lt55485.pfb @ 12.0pt

features autolanguage=position, autoscript=position,
compose=yes, curs=yes, dummies=yes, kern=yes,
liga=yes, mark=yes, mkmk=yes, mode=node, script=auto,
tlig=yes, trep=yes

256 256

256 256

Tracking 255

result [+TRT] U+6DD:

font 1: lt55485.pfb @ 12.0pt

features autolanguage=position, autoscript=position,
compose=yes, curs=yes, dummies=yes, kern=yes,
liga=yes, mark=yes, mkmk=yes, mode=node, script=auto,
tlig=yes, trep=yes

result [+TRT] U+6DD:

font 1: lt55485.pfb @ 12.0pt

features autolanguage=position, autoscript=position,
compose=yes, curs=yes, dummies=yes, kern=yes,
liga=yes, mark=yes, mkmk=yes, mode=node, script=auto,
tlig=yes, trep=yes

result [+TRT] U+6DD:

font 1: lt55485.pfb @ 12.0pt

features autolanguage=position, autoscript=position,
compose=yes, curs=yes, dummies=yes, kern=yes,
liga=yes, mark=yes, mkmk=yes, mode=node, script=auto,
tlig=yes, trep=yes

result [+TRT] U+6DD:

The font that we use here can be downloaded from the website of Sil International.

For a Zapfino example we use the following feature set:

\definefontfeature
[zapfino-default]
[mode=node,language=dflt,script=latn,
calt=yes,clig=yes,rlig=yes,tlig=yes,
kern=yes,curs=yes]

\showotfcomposition
{zapfinoextraltpro*zapfino-default at 48pt}
{0}
{Prof. Dr. Donald E. Knuth}

font 164: zapfinoextraltpro.otf @ 48.0pt

257 257

257 257

256 Tracking

features analyze=yes, calt=yes, clig=yes, curs=yes,
devanagari=yes, dummies=yes, extensions=yes,
extrafeatures=yes, kern=yes, language=dflt,
mathkerns=yes, mode=node, rlig=yes, script=latn,
spacekern=yes, tlig=yes

step 1 Prof. Dr. Donald E. Knuth

U+50:P U+72:r U+6F:o U+66:f U+2E:. [glue] U+44:D
U+72:r U+2E:. [glue] U+44:D U+6F:o U+6E:n U+61:a
U+6C:l U+64:d [glue] U+45:E U+2E:. [glue] U+4B:K
U+6E:n U+75:u U+74:t U+68:h
feature 'clig', type 'gsub_ligature', lookup 's_s_22',
replacing U+00044 (D) upto U+0002E (period) by
ligature U+0E366 (D_r_period) case 2

step 2 Prof. Dr. Donald E. Knuth

U+50:P U+72:r U+6F:o U+66:f U+2E:. [glue]

U+E366:Dr. [glue] U+44:D U+6F:o U+6E:n U+61:a
U+6C:l U+64:d [glue] U+45:E U+2E:. [glue] U+4B:K
U+6E:n U+75:u U+74:t U+68:h
feature 'calt', type 'gsub_contextchain', chain lookup
's_s_32', index 0, replacing single U+00066 (f) by

258 258

258 258

Tracking 257

U+0E1AC (f.3)

feature 'calt', type 'gsub_contextchain', chain lookup
's_s_32', index 0, replacing single U+00061 (a) by
U+0E190 (a.3)

step 3 Prof. Dr. Donald E. Knuth
U+50:P U+72:r U+6F:o U+E1AC:f U+2E:. [glue]

U+E366:Dr. [glue] U+44:D U+6F:o U+6E:n
U+E190:a U+6C:l U+64:d [glue] U+45:E U+2E:. [glue]

U+4B:K U+6E:n U+75:u U+74:t U+68:h
feature 'calt', type 'gsub_contextchain', chain lookup
's_s_34', index 0, replacing single U+0006E (n) by
U+0E1C8 (n.2)

step 4 Prof. Dr. Donald E. Knuth
U+50:P U+72:r U+6F:o U+E1AC:f U+2E:. [glue]

U+E366:Dr. [glue] U+44:D U+6F:o U+E1C8:n
U+E190:a U+6C:l U+64:d [glue] U+45:E U+2E:. [glue]

U+4B:K U+6E:n U+75:u U+74:t U+68:h
feature 'calt', type 'gsub_contextchain', chain lookup
's_s_36', index 0, replacing single U+00072 (r) by
U+0E1D8 (r.2)

259 259

259 259

258 Tracking

step 5 Prof. Dr. Donald E. Knuth
U+50:P U+E1D8:r U+6F:o U+E1AC:f U+2E:. [glue]

U+E366:Dr. [glue] U+44:D U+6F:o U+E1C8:n
U+E190:a U+6C:l U+64:d [glue] U+45:E U+2E:. [glue]

U+4B:K U+6E:n U+75:u U+74:t U+68:h
feature 'calt', type 'gsub_contextchain', chain lookup
's_s_61', index 0, replacing single U+00050 (P) by
U+0E03D (P.3)

feature 'calt', type 'gsub_contextchain', chain lookup
's_s_61', index 0, replacing single U+00044 (D) by
U+0E019 (D.3)

feature 'calt', type 'gsub_contextchain', chain lookup
's_s_61', index 0, replacing single U+0004B (K) by
U+0E02D (K.2)

result Prof. Dr. Donald E. Knuth
U+E03D:P U+E1D8:r U+6F:o U+E1AC:f U+2E:. [glue]

U+E366:Dr. [glue] U+E019:D U+6F:o U+E1C8:n
U+E190:a U+6C:l U+64:d [glue] U+45:E U+2E:. [glue]

U+E02D:K U+6E:n U+75:u U+74:t U+68:h
When dealing with features, we may run into problems due to characters that are in the

input stream but have no associated glyph in the font. Although we test for this a user

might want to intercept side effect.

260 260

260 260

Tracking 259

\checkcharactersinfont
\removemissingcharacters

The first command only checks and reports missing characters, while the second one also

removes them.

261 261

261 261

260 Tracking

262 262

262 262

The order of things 261

XXX The order of things

Normally the text that makes up a paragraph comes directly from the input stream or

macro expansions (think of labels). When TEX has collected enough content to make a

paragraph, for instance because a \par token signals it TEX will try to create one. The

raw material available for making such a paragraph is linked in a list nodes: references to

glyphs in a font, kerns (fixed spacing), glue (flexible spacing), penalties (consider them to

be directives), whatsits (can be anything, e.g. pdf literals or hyperlinks). The result is a list

of horizontal boxes (wrappers with lists that represent ‘lines’) and this is either wrapped

in vertical box of added to the main vertical list that keeps the page stream.

The treatment consists of four activities:

• construction of ligatures (an f plus an i can become fi)

• hyphenation of words that cross a line boundary

• kerning of characters based on information in the font

• breaking the list in lines in the most optimal way

The process of breaking into lines is also influenced by protrusion (like hanging punc-

tuation) and expansion (hz-optimization) but here we will not take these processes into

account. There are numerous variables that control the process and the quality.

These activities are rather interwoven and optimized. For instance, in order to hyphen-

ate, ligatures are to be decomposed and/or constructed. Hyphenation happens when

needed. Decisions about optimal breakpoints in lines can be influenced by penalties

(like: not to many hyphenated words in a row) and permitting extra stretch between

words. Because a paragraph can be boxed and unboxed, decomposed and fed into the

machinery again, information is kept around. Just imagine the following: you want to

measure the width of a word and therefore you box it. In order to get the right dimen-

sions, TEX has to construct the ligatures and add kerns. However, when we unbox that

word and feed it into the paragraph builder, potential hyphenation points have to be

consulted and at such a point might lay between the characters that resulted in the liga-

ture. You can imagine that adding (and removing) inter-character kerns complicates the

process even more.

At the cost of some extra runtime and memory usage, in LuaTEX these steps are more

isolated. There is a function that builts ligatures, one that kerns characters, and another

one that hyphenates all words in a list, not just the ones that are candidate for break-

ing. The potential breakpoints (called discretionaries) can contain ligature information

as well. The linebreak process is also a separate function.

263 263

263 263

262 The order of things

The order in which this happens now is:

• hyphenation of words

• building of ligatures from sequences of glyphs

• kerning of glyphs

• breaking all this into lines

One can discuss endless about the terminology here: are we dealing with characters or

with glyphs. When a glyph node is made, it contains a reference to a slot in a font. Be-

cause in traditional TEX the number of slots is limited to 256 the relationship between

characters in the input and the shape in the font, called glyph, is kind of indirect (the in-

put encoding versus font encoding issue) while in LuaTEX we can keep the font in Unicode

encoding if we want. In traditional TEX, hyphenation is based on the font encoding and

therefore glyphs, and although in LuaTEX this is still the case, there we can more safely

talk of characters till we start mapping then to shapes that have no Unicode point. This

is of course macro package dependent but in ConTEXt MkIV we normalize all input to

Unicode exclusively.

The last step is now really isolated and for that reason we can best talk in terms of prepa-

ration of the to-be paragraph when we refer to the first three activities. In LuaTEX these

three are available as functions that operate on a node list. They each have their own call-

back so we can disable them by replacing the default functions by dummies. Then we can

hook in a new function in the two places that matter: hpack_filterandpre_linebreak_filter
and move the preparation to there.

A simple overload is shown below. Because the first node is always a whatsit that holds

directional information (and at some point in the future maybe even more paragraph re-

lated state info), we can safely assume thatheaddoes not change. Of course this situation

might change when you start adding your own functionality.

local function my_preparation(head)
local tail = node.slide(head) -- also add prev pointers
tail = lang.hyphenate(head,tail)
tail = node.ligaturing(head,tail)
tail = node.kerning(head,tail)
return head

end

callback.register("pre_linebreak_filter", my_preparation)
callback.register("hpack_filter", my_preparation)

local dummy = function(head,tail) return tail end

callback.register("hyphenate", dummy)

264 264

264 264

The order of things 263

callback.register("ligaturing", dummy)
callback.register("kerning", dummy)

It might be clear that the order of actions matter. It might also be clear that you are re-

sponsible for that order yourself. There is no pre--cooked mechanism for guarding your

actions and there are several reasons for this:

• Each macro package does things its own way so any hard-coded mechanism would

be replaced and overloaded anyway. Compare this to the usage of catcodes, font

systems, auxiliary files, user interfaces, handling of inserts etc. The combination of

callbacks, the three mentioned functions and the availability of Lua makes it possible

to implement any system you like.

• Macro packages might want to provide hooks for specialized node list processing,

and since there are many places where code can be hooked in, some kind of oversight

is needed (real people who keep track of interference of user supplied features, no

program can do that).

• User functions can mess up the node list and successive actions then might make

the wrong assumptions. In order to guard this, macro packages might add tracing

options and again there are too many ways to communicate with users. Debugging

and tracing has to be embedded in the bigger system in a natural way.

In ConTEXt MkIV there are already a few places where users can hook code into the task

list, but so far we haven’t really encouraged that. The interfaces are simply not stable

enough yet. On the other hand, there are already quite some node list manipulators at

work. The most prominent one is the OpenType feature handler. That one replaces the

ligature and kerning functions (at least for some fonts). It also means that we need to

keep an eye on possible interferences between ConTEXt MkIV mechanisms and those

provided by LuaTEX.

For fonts, that is actually quite simple: the LuaTEX functions use ligature and kerning in-

formation stored in the tfm table, and for OpenType fonts we simply don’t provide that

information when we define a font, so in that case LuaTEX will not ligature and kern. Users

can influence this process to some extend by setting the mode for a specific instance of a

font to base or node. Because Type1 fonts have no features like OpenType such fonts are

(at least currently) always are processed in base mode.

Deep down in ConTEXt we call a sequence of actions a ‘task’. One such task is ‘proces-

sors’ and the actions discussed so far are in this category. Within this category we have

subcategories:

subcategory intended usage

before experimental (or module) plugins

265 265

265 265

264 The order of things

normalizers cleanup and preparation handlers

characters operations on individual characters

words operations on words

fonts font related manipulations

lists manipulations on the list as a whole

after experimental (or module) plugins

Here ‘plugins’ are experimental handlers or specialized ones provided in modules that

are not part of the kernel. The categories are not that distinctive and only provide a con-

venient way to group actions.

Examples of normalizers are: checking for missing characters and replacing character ref-

erences by fallbacks. Character processors are for instance directional analysers (for right

to left typesetting), case swapping, and specialized character triggered hyphenation (like

compound words). Word processors deal with hyphenation (here we use the default

function provided by LuaTEX) and spell checking. The font processors deal with OpenType

as well as the ligature building and kerning of other font types. Finally, the list processors

are responsible for tasks like special spacing (french punctuation) and kerning (additional

inter--character kerning). Of course, this all is rather ConTEXt specific and we expect to

add quite some more less trivial handlers the upcoming years.

Many of these handlers are triggered by attributes. Nodes can have many attributes and

each can have many values. Traditionally TEX had only a few attributes: language and

font, where the first is not even a real attribute and the second is only bound to glyph

nodes. In LuaTEX language is also a glyph property. The nice thing about attributes is that

they can be set at the TEX end and obey grouping. This makes them for instance perfect

for implementing color mechanims. Because attributes are part of the nodes, and not

nodes themselves, they don’t influence or interfere processing unless one explicitly tests

for them and acts accordingly.

In addition to the mentioned task ‘processors’ we also have a task ‘shipouts’ and there

will be more tasks in future versions of ConTEXt. Again we have subcategories, currently:

subcategory intended usage

before experimental (or module) plugins

normalizers cleanup and preparation handlers

finishers manipulations on the list as a whole

after experimental (or module) plugins

An example of a normalizer is cleanup of the ‘to be shipped out’ list. Finishers deal with

color, transparency, overprint, negated content (sometimes used in page imposition),

special effects effect (like outline fonts) and viewer layers (something pdf). Quite pos-

sible hyperlink support will also be handled there but not before the backend code is

rewritten.

266 266

266 266

The order of things 265

The previous description is far from complete. For instance, not all handlers use the same

interface: some work head onwards, some need a tail pointer too. Some report back

success or failure. So the task handler needs to normalize their usage. Also, some effort

goes into optimizing the task in such a way that processing the document is still reason-

able fast. Keep in mind that each construction of a box invokes a callback, and there

are many boxes used for constructing a page. Even a nilled callback is one, so for a sim-

ple one word paragraph four callbacks are triggered: the (nilled) hyphenate, ligature and

kern callbacks as well as the one called pre_linebreak_filter. The task handler that

we plug in the filter callbacks calls many functions and each of them does one of more

passes over the node list, and in turn might do many call to functions. You can imagine

that we’re quite happy that TEX as well as Lua is so efficient.

As I already mentioned, implementing a task handler as well as deciding what actions

within tasks to perform in what order is specific for the way a macro package is set up.

The following code can serve as a starting point

filters = { } -- global namespace

local list = { }

function filters.add(fnc,n)
if not n or n > #list + 1 then

table.insert(list,#list+1)
elseif n < 0 then

table.insert(list,1)
else

table.insert(list,n)
end

end

function filters.remove(fnc,n)
if n and n > 0 and n <= #list then

table.remove(list,n)
end

end

local function run_filters(head,...)
local tail = node.slide(head)
for _, fnc in ipairs(list) do

head, tail = fnc(head,tail,...)
end
return head

end

267 267

267 267

266 The order of things

local function hyphenation(head,tail)
return head, tail, lang.hyphenate(head,tail) -- returns done

end
local function ligaturing(head,tail)

return node.ligaturing(head,tail) -- returns head,tail,done
end
local function kerning(head,tail)

return node.kerning(head,tail) -- returns head,tail,done
end

filters.add(hyphenation)
filters.add(ligaturing)
filters.add(kerning)

callback.register("pre_linebreak_filter", run_filters)
callback.register("hpack_filter", run_filters)

Although one can inject extra filters by using the add function it may be clear that this

can be dangerous due to interference. Therefore a slightly more secure variant is the

following, where main is reserved for macro package actions and the others can be used

by add--ons.

filters = { } -- global namespace

local list = {
pre = { }, main = { }, post = { },

}

local order = {
"pre", "main", "post"

}

local function somewhere(where)
if not where then

texio.write_nl("error: invalid filter category")
elseif not list[where] then

texio.write_nl(string.format("error: invalid filter category
'%s'",where))

else
return list[where]

end
return false

end

268 268

268 268

The order of things 267

function filters.add(where,fnc,n)
local list = somewhere(where)
if not list then

-- error
elseif not n or n > #list + 1 then

table.insert(list,#list+1)
elseif n < 0 then

table.insert(list,1)
else

table.insert(list,n)
end

end

function filters.remove(where,fnc,n)
local list = somewhere(where)
if list and n and n > 0 and n <= #list then

table.remove(list,n)
end

end

local function run_filters(head,...)
local tail = node.slide(head)
for _, lst in pairs(order) do

for _, fnc in ipairs(list[lst]) do
head, tail = fnc(head,tail,...)

end
end
return head

end

filters.add("main",hyphenation)
filters.add("main",ligaturing)
filters.add("main",kerning)

callback.register("pre_linebreak_filter", run_filters)
callback.register("hpack_filter", run_filters)

Of course, ConTEXt users who try to use this code will be punished by loosing much of

the functionality already present, simply because we use yet another variant of the above

code.

269 269

269 269

268 The order of things

270 270

270 270

Unicode math 269

XXXI Unicode math

I assume that the reader is somewhat familiar with math in TEX. Although in ConTEXt we try to

support the concepts and symbols used in the TEX community we have our own way of imple-

menting math. The fact that ConTEXt is not used extensively for conventional math journals

permits us to rigourously re-implement mechanisms. Of course the user interfaces mostly re-

main the same.

introduction

The LuaTEX project entered a new stage when end of 2008 and beginning of 2009 math

got opened up. Although TEX can handle math pretty good we had a few wishes that we

hoped to fulfill in the process. That TEX’s math machinery is a rather independent subsys-

tem is reflected in the fact that after parsing there is an intermediate list of so called noads

(math elements), which then gets converted into a node list (glyphs, kerns, penalties, glue

and more). This conversion can be intercepted by a callback and a macro package can

do whatever it likes with the list of noads as long as it returns a proper list.

Of course ConTEXt does support math and that is visible in its code base:

• Due to the fact that we need to be able to switch to alternative styles the font system

is quite complex and in ConTEXt MkII math font definitions (and changes) are good

for 50% of the time involved. In MkIV we can use a more efficient model.

• Because some usage of ConTEXt demands the mix of several completely different en-

coded math fonts there is a dedicated math encoding subsystem in MkII. In MkIV we

will use Unicode exclusively.

• Some constructs (and symbols) are implemented in a way that we find suboptimal.

In the perspective of Unicode in MkIV we aim at all symbols being real characters.

This is possible because all important constructs (like roots, accents and delimiters)

are supported by the engine.

• In order to fit vertical spacing around math (think for instance of typesetting on a grid)

in MkII we have ended up with rather messy and suboptimal code.6 The expectation

is that we can improve that.

In the following sections I will discuss a few of the implementation details of the font

related issues in MkIV. Of course a few years from now the actual solutions we imple-

mented might look different but the principles remain the same. Also, as with other

6 This is because spacing before and after formulas has to cooperate with spacing of structural components

that surround it.

271 271

271 271

270 Unicode math

components of LuaTEX Taco and I worked in parallel on the code and its usage, which

made both our tasks easier.

transition

In TEX, math typesetting uses a special concept called families. Each math component

(number, letter, symbol, etc) is member of a family. Because we have three sizes (text,

script and scriptscript) this results in a family--size matrix of defined fonts. Because the

number of glyphs in a font was limited to 256, in practice it meant that we had quite

some font definitions. The minimum number of families was 4 (roman, italic, symbol,

and extension) but in practice several more could be active (sans, bold, mono-spaced,

more symbols, etc.) for specific alphabets or extra symbols (for instance ams set A and

B). The total number of families in traditional TEX is limited to 16, and one easily hits this

maximum. In that case, some 16 times 3 fonts are defined for one size of which in practice

only a few are really used in the typesetting.

A potential source of confusion is bold math. Bold in math can either mean having some

bold letters, or having the whole formula in bold. In practice this means that for a com-

plete bold formula one has to define the whole lot using bold fonts. A complication is

that the math symbols (etc) are kind of bound to families and so we end up with either

redefining symbols, or reusing the families (which is easier and faster). In any case there

is a performance issue involved due to the rather massive switch from normal to bold.

In Unicode all alphabets that make sense as well as all math symbols are part of the defi-

nition although unfortunately some alphabets have their letters spread over the Unicode

vector and not in a range (like blackboard). This forces all applications that want to sup-

port math to implement similar hacks to deal with it.

In MkIV we will assume that we have Unicode aware math fonts, like OpenType. The font

that sets the standard is Microsoft Cambria. The upcoming (I’m writing this in January

2009) TEXGyre fonts will be compliant to this standard but they’re not yet there and so

we have a problem. The way out is to define virtual fonts and now that LuaTEX math is

extended to cover all of Unicode as well as provides access to the (intermediate) math

lists this has become feasible. This also permits us to test LuaTEX with both Cambria and

Latin Modern Virtual Math.

The advantage is that we can stick to just one family for all shapes which simplifies the

underlying TEX code enormously. First of all we need to define way less fonts (which is

partially compensated by loading them as part of the virtual font) and all math aspects

can now be dealt with using the character data tables.

One tricky aspect of the new approach is that the Latin Modern fonts have design sizes,

so we have to define several virtual fonts. On the other hand, fonts like Cambria have

alternative script and scriptscript shapes which is controlled by the ssty feature, a gsub

272 272

272 272

Unicode math 271

alternate that provides some alternative sizes for a couple of hundred characters that mat-

ter.

text lmmi12 at 12pt cambria at 12pt with ssty=no
script lmmi8 at 8pt cambria at 8pt with ssty=1
scriptscript lmmi6 at 6pt cambria at 6pt with ssty=2

So Cambria not so much has design sizes but shapes optimized relative to the text variant:

in the following example we see text in red, script in green and scriptscript in blue.

\definefontfeature[math][analyze=false,script=math,language=dflt]

\definefontfeature[text] [math][ssty=no]
\definefontfeature[script] [math][ssty=1]
\definefontfeature[scriptscript][math][ssty=2]

Let us first look at Cambria:

\startoverlay
{\definedfont[name:cambriamath*scriptscript at 150pt]\mkblue X}
{\definedfont[name:cambriamath*script at 150pt]\mkgreen X}
{\definedfont[name:cambriamath*text at 150pt]\mkred X}

\stopoverlay

౔ଡ଼X
When we compare them scaled down as happens in real script and scriptscript we get:

\startoverlay
{\definedfont[name:cambriamath*scriptscript at 120pt]\mkblue X}
{\definedfont[name:cambriamath*script at 80pt]\mkgreen X}
{\definedfont[name:cambriamath*text at 60pt]\mkred X}

\stopoverlay

౔ଡ଼X
273 273

273 273

272 Unicode math

Next we see (scaled) Latin Modern:

\startoverlay
{\definedfont[LMRoman8-Regular at 150pt]\mkblue X}
{\definedfont[LMRoman10-Regular at 150pt]\mkgreen X}
{\definedfont[LMRoman12-Regular at 150pt]\mkred X}

\stopoverlay

XXX
In practice we will see:

\startoverlay
{\definedfont[LMRoman8-Regular at 120pt]\mkblue X}
{\definedfont[LMRoman10-Regular at 80pt]\mkgreen X}
{\definedfont[LMRoman12-Regular at 60pt]\mkred X}

\stopoverlay

XXX
Both methods probably work out well although you need to keep in mind that the OpenType

ssty feature is not so much a design size related feature.

An OpenType font can have a specification for the script and scriptscript size. By default

we listen to this specification instead of the one imposed by the bodyfont environment.

When you turn on tracing

\enabletrackers[otf.math]

you will get messages like:

asked scriptscript size: 458752, used: 471859.2 (102.86 %)
asked script size: 589824, used: 574095.36 (97.33 %)

The differences between the defaults and the font recommendations are not that large

so by default we listen to the font specification.

274 274

274 274

Unicode math 273

∑
௡
௜ୀ଴

∑
௡
௜ୀ଴∫

௡

௜ୀ଴
∫
௡

௜ୀ଴
log

௡

௜ୀ଴
log

௡
௜ୀ଴

cos௡௜ୀ଴cos௡௜ୀ଴∏
௡
௜ୀ଴

∏
௡
௜ୀ଴

In this overlay the white text is scaled according to the specification in the font, while the

red text is scaled according to the bodyfont environment (12/7/5 points).

going virtual

The number of math fonts (used) in the TEX community is relatively small and of those

only Latin Modern (which builds upon Computer Modern) has design sizes. This means

that the amount of Unicode compliant virtual math fonts that we have to make is not

that large. We could have used an already present virtual composition mechanism but

instead we made a handy helper function that does a more efficient job. This means that

a definition looks (a bit simplified) as follows:

mathematics.make_font ("lmroman10-math", {
{ name="lmroman10-regular", features="virtualmath", main=true },
{ name="lmmi10", vector="tex-mi", skewchar=0x7F },
{ name="lmsy10", vector="tex-sy", skewchar=0x30, parameters=true

} ,
{ name="lmex10", vector="tex-ex", extension=true } ,
{ name="msam10", vector="tex-ma" },
{ name="msbm10", vector="tex-mb" },
{ name="lmroman10-bold", "tex-bf" } ,
{ name="lmmib10", vector="tex-bi", skewchar=0x7F } ,
{ name="lmsans10-regular", vector="tex-ss", optional=true },
{ name="lmmono10-regular", vector="tex-tt", optional=true },

})

For the TEXGyre Pagella it looks this way:

mathematics.make_font ("px-math", {
{ name="texgyrepagella-regular", features="virtualmath", main=true

},
{ name="pxr", vector="tex-mr" } ,
{ name="pxmi", vector="tex-mi", skewchar=0x7F },
{ name="pxsy", vector="tex-sy", skewchar=0x30, parameters=true }

,
{ name="pxex", vector="tex-ex", extension=true } ,
{ name="pxsya", vector="tex-ma" },
{ name="pxsyb", vector="tex-mb" },

})

275 275

275 275

274 Unicode math

As you can see, it is possible to add alphabets, given that there is a suitable vector that

maps glyph indices onto Unicodes. It is good to know that this function only defines the

way such a font is constructed. The actual construction is delayed till the font is needed.

Such a virtual font is used in typescripts (the building blocks of typeface definitions in

ConTEXt) as follows:

\starttypescript [math] [palatino] [name]
\definefontsynonym [MathRoman] [pxmath@px-math]
\loadmapfile[original-youngryu-px.map]

\stoptypescript

If you’re familiar with the way fonts are defined in ConTEXt, you will notice that we no

longer need to define MathItalic, MathSymbol and additional symbol fonts. Of course

users don’t have to deal with these issues themselves. The @ triggers the virtual font

builder.

You can imagine that in MkII switching to another font style or size involves initializing

(or at least checking) involves some 30 to 40 font definitions when it comes to math (the

number of used families times 3, the number o fmath sizes.). And even if we take into

account that fonts are loaded only once, this checking and enabling takes time. Keep in

mind that in ConTEXt we can have several math font sets active in one document which

comes at a price.

In MkIV we use one family (at three sizes). Of course we need to load the font (and more

than one in the case of virtual variants) but when switching bodyfont sizes we only need

to enable one (already defined) math font. And that really saves time. This is one of the

areas where we gain back time that we loose elsewhere by extending core functionality

using Lua (like OpenType support).

dimensions

By setting font related dimensions you can control the way TEX positions math elements

relative to each other. Math fonts have a few more dimensions than regular text fonts. But

OpenType math fonts like Cambria have quite some more. There is a nice booklet pub-

lished by Microsoft, ‘Mathematical Typesetting’, where dealing with math is discussed

in the perspective of their word processor and TEX. In the booklet some of the parame-

ters are discussed and since many of them are rather special it makes no sense (yet) to

elaborate on them here.7 Figuring out their meaning was quite a challenge.

I am the first to admit that the current code in MkIV that deals with math parameters is

somewhat messy. There are several reasons for this:

7 Googling on ‘Ulrich Vieth’, ‘TeX’ and ‘conferences’ might give you some hits on articles on these matters.

276 276

276 276

Unicode math 275

• We can pass parameters as MathConstants table in the tfm table that we pass to the

core engine.

• We can use some named parameters, likex_heightand pass those in theparameters
table.

• We can use the traditional font dimension numbers in the parameters table, but

since they overlap for symbol and extensible fonts, that is asking for troubles.

Because in MkIV we create virtual fonts at run-time and use just one family, we fill the

MathConstants table for traditional fonts as well. Future versions may use the upcom-

ing mechanisms of font parameter sets at the macro level. These can be defined for each

of the sizes (display, text, script and scriptscript, and the last three in cramped form as

well) but since a font only carries one set, we currently use a compromise.

tracing

One of the nice aspects of the opened up math machinery is that it permits us to get a

more detailed look at what happens. It also fits nicely in the way we always want to visu-

alize things in ConTEXt using color, although most users are probably unaware of many

such features because they don’t need them as I do.

\enabletrackers[math.analyzing]
\ruledhbox{$a = \sqrt{b^2 + \sin{c} - {1 \over \gamma}}$}
\disabletrackers[math.analyzing]

𝑎 = √𝑏2 + sin 𝑐 − 1𝛾

This tracker option colors characters depending on their nature and the fact that they

are remapped. The tracker also was handy during development of LuaTEX especially for

checking if attributes migrated right in constructed symbols.

For over a year I had been using a partial Unicode math implementation in some projects

but for serious math the vectors needed to be completed. In order to help the ‘math

department’ of the ConTEXt development team (Aditya Mahajan, Mojca Miklavec, Taco

Hoekwater and myself) we have some extra tracing options, like

\showmathfontcharacters[list=0x0007B]

U+0007B: { { left curly bracket
width: 393216, height: 589824, depth: 196608, italic: 0
mathclass: open, mathname: lbrace
next: U+F0647 { => U+F065D { => U+F0673 { => U+F0689 { =>

U+F069F { => U+F06B5 { => U+F06D1 {

277 277

277 277

276 Unicode math

variants: U+023A7 ⎧ => U+F06D3 { => U+023A8 ⎨ => U+F06D3 { =>
U+023A9 ⎩

The simple variant with no arguments would have extended this document with many

pages of such descriptions.

Another handy command (defined in module fnt-25) is the following:

\ShowCompleteFont{name:cambria}{9pt}{1}
\ShowCompleteFont{dummy@lmroman10-math}{10pt}{1}

This will for instance for Cambria generate between 50 and 100 pages of character tables.

If you look at the following samples you can imagine how coloring the characters and

replacements helped figuring out the alphabets We use the following input (stored in a

buffer):

$abc \bf abc \bi abc$
$\mathscript abcdefghijklmnopqrstuvwxyz %

1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$
$\mathfraktur abcdefghijklmnopqrstuvwxyz %

1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$
$\mathblackboard abcdefghijklmnopqrstuvwxyz %

1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$
$\mathscript abc IRZ \mathfraktur abc IRZ %

\mathblackboard abc IRZ \ss abc IRZ 123$

For testing Cambria we say:

\usetypescript[cambria]
\switchtobodyfont[cambria,11pt]
\enabletrackers[math.analyzing]
\getbuffer[mathtest] % the input shown before
\disabletrackers[math.analyzing]

And we get:

𝑎𝑏𝑐𝐚𝐛𝐜𝒂𝒃𝒄

𝒶𝒷𝒸𝒹ℯ𝒻ℊ𝒽𝒾𝒿𝓀𝓁𝓂𝓃ℴ𝓅𝓆𝓇𝓈𝓉𝓊𝓋𝓌𝓍𝓎𝓏1234567890𝒜ℬ𝒞𝒟ℰℱ𝒢ℋℐ𝒥𝒦ℒℳ𝒩𝒪𝒫𝒬ℛ𝒮𝒯𝒰𝒱𝒲𝒳𝒴𝒵

𝔞𝔟𝔠𝔡𝔢𝔣𝔤𝔥𝔦𝔧𝔨𝔩𝔪𝔫𝔬𝔭𝔮𝔯𝔰𝔱𝔲𝔳𝔴𝔵𝔶𝔷1234567890𝔄𝔅ℭ𝔇𝔈𝔉𝔊ℌℑ𝔍𝔎𝔏𝔐𝔑𝔒𝔓𝔔ℜ𝔖𝔗𝔘𝔙𝔚𝔛𝔜ℨ

𝕒𝕓𝕔𝕕𝕖𝕗𝕘𝕙𝕚𝕛𝕜𝕝𝕞𝕟𝕠𝕡𝕢𝕣𝕤𝕥𝕦𝕧𝕨𝕩𝕪𝕫𝟙𝟚𝟛𝟜𝟝𝟞𝟟𝟠𝟡𝟘𝔸𝔹ℂ𝔻𝔼𝔽𝔾ℍ𝕀𝕁𝕂𝕃𝕄ℕ𝕆ℙℚℝ𝕊𝕋𝕌𝕍𝕎𝕏𝕐ℤ

𝒶𝒷𝒸ℐℛ𝒵𝔞𝔟𝔠ℑℜℨ𝕒𝕓𝕔𝕀ℝℤ𝖺𝖻𝖼𝖨𝖱𝖹𝟣𝟤𝟥

For the virtualized Latin Modern we say:

\usetypescript[modern]

278 278

278 278

Unicode math 277

\switchtobodyfont[modern,11pt]
\enabletrackers[math.analyzing]
\getbuffer[mathtest] % the input shown before
\disabletrackers[math.analyzing]

This gives:

𝑎𝑏𝑐𝐚𝐛𝐜𝒂𝒃𝒄
abcdefghijklmnopqrstuvwxyz1234567890𝒜ℬ𝒞𝒟ℰℱ𝒢ℋℐ𝒥𝒦ℒℳ𝒩𝒪𝒫𝒬ℛ𝒮𝒯𝒰𝒱𝒲𝒳𝒴𝒵
𝔞𝔟𝔠𝔡𝔢𝔣𝔤𝔥𝔦𝔧𝔨𝔩𝔪𝔫𝔬𝔭𝔮𝔯𝔰𝔱𝔲𝔳𝔴𝔵𝔶𝔷1234567890𝔄𝔅ℭ𝔇𝔈𝔉𝔊ℌℑ𝔍𝔎𝔏𝔐𝔑𝔒𝔓𝔔ℜ𝔖𝔗𝔘𝔙𝔚𝔛𝔜ℨ
𝕒𝕓𝕔𝕕𝕖𝕗𝕘𝕙𝕚𝕛𝕜𝕝𝕞𝕟𝕠𝕡𝕢𝕣𝕤𝕥𝕦𝕧𝕨𝕩𝕪𝕫𝟙𝟚𝟛𝟜𝟝𝟞𝟟𝟠𝟡𝟘𝔸𝔹ℂ𝔻𝔼𝔽𝔾ℍ𝕀𝕁𝕂𝕃𝕄ℕ𝕆ℙℚℝ𝕊𝕋𝕌𝕍𝕎𝕏𝕐ℤ
abcℐℛ𝒵𝔞𝔟𝔠ℑℜℨ𝕒𝕓𝕔𝕀ℝℤ𝖺𝖻𝖼𝖨𝖱𝖹𝟣𝟤𝟥

These two samples demonstrate that Cambria has a rather complete repertoire of shapes

which is no surprise because it is a recent font that also serves as a showcase for Unicode

and OpenType driven math.

Commands like\mathscript sets an attribute. When we post-process the noad list and

encounter this attribute, we remap the characters to the desired variant. Of course this

happens selectively. So, a capital A (0x0041) becomes a capital script A (0x1D49C). Of

course this solution is rather ConTEXt specific and there are other ways to achieve the

same goal (like using more families and switching family).

special cases

Because we now are operating in the Unicode domain, we run into problems if we keep

defining some of the math symbols in the traditional TEX way. Even with the ams fonts

available we still end up with some characters that are represented by combining others.

Take for instance ≠ which is composed of two characters. Because in MkIV we want to

have all characters in their pure form we use a virtual replacement for them. In MkIV

speak it looks like this:

local function negate(main,unicode,basecode)
local characters = main.characters
local basechar = characters[basecode]
local ht, wd = basechar.height, basechar.width
characters[unicode] = {

width = wd,
height = ht,
depth = basechar.depth,
italic = basechar.italic,
kerns = basechar.kerns,
commands = {

{ "slot", 1, basecode },

279 279

279 279

278 Unicode math

{ "push" },
{ "down", ht/5},
{ "right", - wd/2},
{ "slot", 1, 0x2215 },
{ "pop" },

}
}

end

In case you’re curious, there are indeed kerns, in this case the kerns with the Greek Delta.

Another thing we need to handle is positioning of accents on top of slanted (italic) shapes.

For this TEX uses a special character in its fonts (set with \skewchar). Any character can

have in its kerning table a kern towards this special character. From this kern we can

calculate thetop_accent variable that we can pass for each character. This variable lives

at the same level as width, height, depth and italic and is calculated as: 𝑤/2+𝑘, so

it defines the horizontal anchor. A nice side effect is that (in the ConTEXt font management

subsystem) this saves us passing information associated with specific fonts such as the

skew character.

A couple of concepts are unique to TEX, like having \hat and \widehat where the wide

one has sizes. In OpenType and Unicode we don’t have this distinction so we need spe-

cial trickery to simulate this. We do so by adding extra code points in a private Unicode

space which in return results in them being defined automatically and the relevant first

size variant being used for \hat. For some users this might still be too wide but at least

it’s better than a wrongly positioned ascii variant. In the future we might use this private

space for similar cases.

Arrows, horizontal extenders and radicals also fall in the category ‘troublesome’ if only

because they use special dimensions to get the desired effect. Fortunately OpenType math

is modeled after TEX, so in LuaTEX we introduce a couple of new constructs to deal with

this. One such simplification at the macro level is in the definition of \root. Here we

use the new \Uroot primitive. The placement related parameters are those used by

traditional TEX, but when they are available the OpenType parameters are applied. The

simplified plain definitions are now:

\def\rootradical{\Uroot 0 "221A }

\def\root#1\of{\rootradical{#1}}

\def\sqrt{\rootradical{}}

The successive sizes of the root will be taken from the font in the same way as traditional

TEX does it. In that sense LuaTEX is no doing anything differently, it only has more parame-

ters to control the process. The definition of \sqrt in ConTEXt permits an optional first

280 280

280 280

Unicode math 279

argument that sets the degree.

U+0221A: √ √ square root

width: 655098, height: 31457, depth: 754975, italic: 0
mathclass: root, mathname: rootradical
mathclass: radical, mathname: surdradical
mathclass: ordinary, mathname: surd

next: U+F078E √ => U+F078F √ => U+F0790 √ => U+F0791 √

variants: U+F078D √ => U+F078C √ => U+023B7 ⎷

Note that we’ve collected all characters in family 0 (simply because that is what TEX de-

faults characters to) and that we use the formal Unicode slots. When we use the Latin

Modern fonts we just remap traditional slots to the right ones.

Another neat trick is used when users choose among the bigger variants of some charac-

ters. The traditional approach is to create a box of a certain size and create a fake delim-

ited variant which is then used.

\definemathcommand [big] {\choosemathbig\plusone }
\definemathcommand [Big] {\choosemathbig\plustwo }
\definemathcommand [bigg] {\choosemathbig\plusthree}
\definemathcommand [Bigg] {\choosemathbig\plusfour }

Of course this can become a primitive operation and we might decide to add such a

primitive later on so we won’t bother you with more details.

Attributes are also used to make live easier for authors who have to enter lots of pairs.

Compare:

\setupmathematics[autopunctuation=no]

$ (a,b) = (1.20,3.40) $

(𝑎, 𝑏) = (1.20, 3.40)

with:

\setupmathematics[autopunctuation=yes]

$ (a,b) = (1.20,3.40) $

(𝑎,𝑏) = (1.20,3.40)

So we don’t need to use this any more:

281 281

281 281

280 Unicode math

$ (a{,}b) = (1{.}20{,}3{.}40) $

Features like this are implemented on top of an experimental math manipulation frame-

work that is part of MkIV. When the math font system is stable we will rework the rest of

math support and implement additional manipulating frameworks.

control

As with all other character related issues, in MkIV everything is driven by a character table

(consider it a database). Quite some effort went into getting that one right and although

by now math is represented well, more data will be added in due time.

In MkIV we no longer have huge lists of TEX definitions for math related symbols. Every-

thing is initialized using the mentioned table: normal symbols, delimiters, radicals, whether

or not with name. Take for instance the square root:

U+0221A: √ √ square root

width: 655098, height: 31457, depth: 754975, italic: 0
mathclass: root, mathname: rootradical
mathclass: radical, mathname: surdradical
mathclass: ordinary, mathname: surd

next: U+F078E √ => U+F078F √ => U+F0790 √ => U+F0791 √

variants: U+F078D √ => U+F078C √ => U+023B7 ⎷

Its entry is:

[0x221A] = {
adobename = "radical",
category = "sm",
cjkwd = "a",
description = "SQUARE ROOT",
direction = "on",
linebreak = "ai",
mathclass = "radical",
mathname = "surd",
unicodeslot = 0x221A,

}

The fraction symbol also comes in sizes. This symbol is not to be confused with the nega-

tion symbol 0x2215, which in TEX is known as \not).

U+02044: ⁄ ⁄ fraction slash

282 282

282 282

Unicode math 281

width: 393216, height: 589824, depth: 196608, italic: 0
mathclass: ordinary, mathname: slash
mathclass: close, mathname: solidus

next: U+F0727 ⁄ => U+F072E ⁄ => U+F0735 ⁄ => U+F073C ⁄ =>

U+F0743 ⁄ => U+F074A ⁄ => U+F0751 ⁄

[0x2044] = {
adobename = "fraction",
category = "sm",
contextname = "textfraction",
description = "FRACTION SLASH",
direction = "cs",
linebreak = "is",
mathspec = {

{ class = "binary", name = "slash" },
{ class = "close", name = "solidus" },

},
unicodeslot = 0x2044,

}

However, since most users don’t have this symbol visualized in their word processor, they

expect the same behaviour from the regular slash. This is why we find a reference to the

real symbol in its definition.

U+0002F: / / solidus
width: 393216, height: 589824, depth: 196608, italic: 0
mathclass: middle, mathname: no name
mathclass: ordinary, mathname: no name

next: U+F0725 / => U+F072C / => U+F0733 / => U+F073A / =>

U+F0741 / => U+F0748 / => U+F074F /

The definition is:

283 283

283 283

282 Unicode math

[0x002F] = {
adobename = "slash",
category = "po",
cjkwd = "na",
contextname = "textslash",
description = "SOLIDUS",
direction = "cs",
linebreak = "sy",
mathsymbol = 0x2044,
unicodeslot = 0x002F,

}

One problem left is that currently we have only one class per character (apart from the

delimiter and radical usage which have their own definitions). Future releases of ConTEXt

will provide support for math dictionaries (as in OpenMath and MathML 3). At that point

we will also have a mathdict entry.

There is another issue with character mappings, one that will seldom reveal itself to the

user, but might confuse macro writers when they see an error message.

In traditional TEX, and therefore also in the Latin Modern fonts, a chain from small to large

character goes in two steps: the normal size is taken from one family and the larger vari-

ants from another. The larger variant then has a pointer to an even larger one and so on,

until there is no larger variant or an extensible recipe is found. The default family is num-

ber 0. It is for this reason that some of the definition primitives expect a small and large

family part.

However, in order to support OpenType in LuaTEX the alternative method no longer as-

sumes this split. After all, we no longer have a situation where the 256 limit forces us to

take the smaller variant from one font and the larger sequence from another (so we need

two family--slot pairs where each family eventually resolves to a font).

It is for that reason that the new \U... primitives expect only one family specification:

the small symbol, which then has a pointer to a larger variant when applicable. However

deep down in the engine, there is still support for the multiple family solution (after all,

we don’t want to drop compatibility). As a result, in error messages you can still find

references (defaulting to 0) to large specifications, even if you don’t use them. In that

case you can simply ignore the large symbol (0,0), since it is not used when the small

symbol provides a link.

extensibles

In TEX fences can be told to become larger automatically. In traditional TEX a character

can have a linked list of next larger shapes ending in a description of how to compose

284 284

284 284

Unicode math 283

even larger variants.

A parenthesis in Cambria has the following list:

U+00028: ((left parenthesis

width: 272000, height: 462400, depth: 144640, italic: 0

mathclass: open, mathname: lparent

next: U+F0571 ൫ => U+F0988 ቀ => U+F0572 ൬ => U+F098E ቆ => U+F0573 ൭ => U+F0994 ቌ =>

U+F0574 ൮

variants: U+0239B ⎛ => U+0239C ⎜ => U+0239D ⎝

In Latin Modern we have:

U+00028: ((left parenthesis
width: 254935, height: 490209, depth: 162529, italic: 0
mathclass: open, mathname: lparent

next: U+F0643 (=> U+F0659 (=> U+F066F (=> U+F0685 (=> U+F069B (=> U+F06B1 (

=> U+F06C7 (

variants: U+0239B ⎛ => U+0239C ⎜ => U+0239D ⎝

Of course LuaTEX is downward compatible with respect to this feature, but the internal

representation is now closer to what OpenType math provides (which is not that far from

how TEX works simply because it’s inspired by TEX). Because Cambria has different para-

meters we get slightly different results. In the following list of pairs, you see Cambria on

the left and Latin Modern on the right. Both start with stepwise larger shapes, followed

by a more gradual growth. The thresholds for a next step are driven by parameters set in

the OpenType font or by TEX’s default.

{ }{ } { }{ } ቄ ቅ{ } ൜ ൠ{ } ቊ ቋ{ } ൝ ൡ{ } ቐ ቑ
⎧{
⎨{⎩

⎫}
⎬}⎭

ቐ ቑ

⎧{
⎨{⎩

⎫}
⎬}⎭

൞ ൢ

⎧{
⎨{⎩

⎫}
⎬}⎭

⎧

⎨
⎩

⎫

⎬
⎭

⎧{{
⎨{{⎩

⎫}}
⎬}}⎭

⎧
⎪

⎨
⎪
⎩

⎫
⎪

⎬
⎪
⎭

⎧{{
⎨{{⎩

⎫}}
⎬}}⎭

⎧
⎪

⎨
⎪
⎩

⎫
⎪

⎬
⎪
⎭

⎧{{
⎨{{
⎩

⎫}}
⎬}}
⎭

⎧
⎪

⎨
⎪
⎩

⎫
⎪

⎬
⎪
⎭

⎧{{{
⎨{{{⎩

⎫}}}
⎬}}}⎭

⎧
⎪

⎨
⎪
⎩

⎫
⎪

⎬
⎪
⎭

⎧{{{
⎨{{{⎩

⎫}}}
⎬}}}⎭

⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎫
⎪
⎪

⎬
⎪
⎪
⎭

⎧
{{{
⎨
{{{
⎩

⎫
}}}
⎬
}}}
⎭

⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎫
⎪
⎪

⎬
⎪
⎪
⎭

⎧{{{{
⎨{{{{⎩

⎫}}}}
⎬}}}}⎭

⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎫
⎪
⎪

⎬
⎪
⎪
⎭

⎧{{{{
⎨{{{{⎩

⎫}}}}
⎬}}}}⎭

⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎫
⎪
⎪

⎬
⎪
⎪
⎭

⎧
{
{
{
{
⎨
{
{
{
{
⎩

⎫
}
}
}
}
⎬
}
}
}
}
⎭

⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎫
⎪
⎪

⎬
⎪
⎪
⎭

⎧{{{{{
⎨{{{{{⎩

⎫}}}}}
⎬}}}}}⎭

285 285

285 285

284 Unicode math

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭

⎧
{{{{{
⎨
{{{{{
⎩

⎫
}}}}}
⎬
}}}}}
⎭

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭

⎧
{
{
{
{
{
⎨
{
{
{
{
{
⎩

⎫
}
}
}
}
}
⎬
}
}
}
}
}
⎭

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭

⎧{{{{{{
⎨{{{{{{⎩

⎫}}}}}}
⎬}}}}}}⎭

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭

⎧
{{{{{{
⎨
{{{{{{
⎩

⎫
}}}}}}
⎬
}}}}}}
⎭

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎭

⎧
{
{
{
{
{
{
⎨
{
{
{
{
{
{
⎩

⎫
}
}
}
}
}
}
⎬
}
}
}
}
}
}
⎭

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎭

⎧
{{{{{{{
⎨
{{{{{{{
⎩

⎫
}}}}}}}
⎬
}}}}}}}
⎭

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎭

⎧
{{{{{{{
⎨
{{{{{{{
⎩

⎫
}}}}}}}
⎬
}}}}}}}
⎭

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎭

⎧
{
{
{
{
{
{
{
⎨
{
{
{
{
{
{
{
⎩

⎫
}
}
}
}
}
}
}
⎬
}
}
}
}
}
}
}
⎭

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪

⎭

⎧
{{{{{{{{
⎨
{{{{{{{{
⎩

⎫
}}}}}}}}
⎬
}}}}}}}}
⎭

In traditional TEX horizontal extensibles are not really present. Accents are chosen from

a linked list of variants and don’t have an extensible specification. This is because most

such accents grow in two dimensions and the only extensible like accents are rules and

braces. However, in Unicode we have a few more and also because of symmetry we

decided to add horizontal extensibles too. Take:

$ \overbrace {a+1} \underbrace {b+2} \doublebrace {c+3} $ \par
$ \overparent{a+1} \underparent{b+2} \doubleparent{c+3} $ \par

This gives:

𝑎 + 1⏞ 𝑏 + 2⏟ 𝑐 + 3⏟⏞

𝑎 + 1⏜ 𝑏 + 2⏝ 𝑐 + 3⏝⏜

Contrary to Cambria, Latin Modern Math, which is just like Computer Modern Math, has

no ready overbrace glyphs. Keep in mind that in that we’re dealing with fonts that have

only 256 slots and that the traditional font mechanism has the same limitation. For this

reason, the (extensible) braces are traditionally made from snippets as is demonstrated

below.

\hbox\bgroup
\ruledhbox{\getglyph{lmex10}{\char"7A}}
\ruledhbox{\getglyph{lmex10}{\char"7B}}
\ruledhbox{\getglyph{lmex10}{\char"7C}}
\ruledhbox{\getglyph{lmex10}{\char"7D}}
\ruledhbox{\getglyph{lmex10}{\char"7A\char"7D\char"7C\char"7B}}
\ruledhbox{\getglyph{name:cambriamath}{\char"23DE}}
\ruledhbox{\getglyph{lmex10}{\char"7C\char"7B\char"7A\char"7D}}
\ruledhbox{\getglyph{name:cambriamath}{\char"23DF}}

\egroup

This gives:

286 286

286 286

Unicode math 285

⏞ ⏟

The four snippets have the height and depth of the rule that will connect them. Since

we want a single interface for all fonts we no longer will use macro based solutions. First

of all fonts like Cambria don’t have the snippets, and using active character trickery (so

that we can adapt the meaning to the font) has no preference either. This leaves virtual

glyphs.

It took us a bit of experimenting to get the right virtual definition because it is a multi--

step process:

• The right Unicode character (0x23DE) points to a character that has no glyph itself but

only horizontal extensibles.

• The snippets that make up the extensible don’t have the right dimensions (as they

define the size of the connecting rule), so we need to make them virtual themselves

and give them a size that matches LuaTEX’s expectations.

• Each virtual snippet contains a reference to the physical snippet and moves it up or

down as well as fixes its size.

• The second and fifth snippet are actually not real glyphs but rules. The dimensions

are derived from the snippets and it is shifted up or down too.

You might wonder if this is worth the trouble. Well, it is if you take into account that all

upcoming math fonts will be organized like Cambria.

math kerning

While reading Microsofts orange booklet, it became clear that OpenType provides ad-

vanced kerning possibilities and we decided to put it on the agenda for LuaTEX.

It is possible to define a ladder--like boundary for each corner of a character where the

ladder more or less follows the shape of a character. In theory this means that when we

attach a superscript to a base character we can use two such ladders to determine the

optimal spacing between them.

Let’s have a look at a few characters, the upright f and its italic cousin.

ftopright

(-30,680)

(250,0) 𝑓
bottomleft

(100,0)(0,0) bottomright

(-400,420)

(-320,720)

(0,0)

topright

(0,620)

(65,0)

U+00066 0x1D453

287 287

287 287

286 Unicode math

The ladders on the right can be used to position a super or subscript, that is, they are po-

sitioned in the normal way but the ladder, as well as the boundingbox and/or left ladders

of the scripts can be used to fine tune the positioning.

Should we use this information? I made this visualizer for checking some Arabic fonts

anchoring and cursive features and then it made sense to add some of the information

related to math as well.8 The orange booklet shows quite advanced ladders, and when

looking at the 3500 shapes in Cambria, it quickly becomes clear that in practice there is

not that much detail in the specification. Nevertheless, because without this feature the

result is not acceptable LuaTEX gracefully supports it.

𝑉 𝑎
𝑎 𝑉 𝑎𝑉𝑎𝑉 1

2 𝑉 1𝑉2𝑓𝑎𝑓𝑎𝑓𝑎
𝑎

𝑉 𝑓
𝑓 𝑉 𝑓𝑉𝑓𝑉 1

2 𝑉 1𝑉2𝑓𝑓𝑓𝑓𝑓𝑓
𝑓

𝑇 𝑎
𝑎 𝑇 𝑎𝑇𝑎𝑇 1

2 𝑇 1𝑇2𝑓𝑎𝑓𝑓𝑓𝑎
𝑓

𝑇 𝑓
𝑓 𝑇 𝑓𝑇𝑓𝑇 1

2 𝑇 1𝑇2𝑓𝑓𝑓𝑎𝑓𝑓
𝑎

𝑉௔௔𝑉
௔𝑉௔𝑉

ଵ
ଶ𝑉

ଵ𝑉ଶ𝑓
௔𝑓௔𝑓

௔
௔

𝑉
௙
௙𝑉

௙𝑉௙𝑉
ଵ
ଶ𝑉

ଵ𝑉ଶ𝑓
௙𝑓௙𝑓

௙
௙

𝑇௔௔𝑇
௔𝑇௔𝑇

ଵ
ଶ𝑇

ଵ𝑇ଶ𝑓
௔𝑓௙𝑓

௔
௙

𝑇
௙
௙𝑇

௙𝑇௙𝑇
ଵ
ଶ𝑇

ଵ𝑇ଶ𝑓
௙𝑓௔𝑓

௙
௔

𝑉௔௔ 𝑉
௔𝑉௔𝑉

ଵ
ଶ 𝑉

ଵ𝑉ଶ𝑓
௔𝑓௔𝑓

௔
௔

𝑉
௙
௙ 𝑉

௙𝑉௙𝑉
ଵ
ଶ 𝑉

ଵ𝑉ଶ𝑓
௙𝑓௙𝑓

௙
௙

𝑇௔௔ 𝑇
௔𝑇௔𝑇

ଵ
ଶ 𝑇

ଵ𝑇ଶ𝑓
௔𝑓௙𝑓

௔
௙

𝑇
௙
௙𝑇

௙𝑇௙𝑇
ଵ
ଶ 𝑇

ଵ𝑇ଶ𝑓
௙𝑓௔𝑓

௙
௔

latin modern cambria

without kerning

cambria with kerning

faking glyphs

A previous section already discussed virtual shapes. In the process of replacing all shapes

that lack in Latin Modern and are composed from snippets instead we ran into the dots.

As they are a nice demonstration of something that, although somewhat of a hack, sur-

vived 30 years without problems we show the definition used in ConTEXt MkII:

\def\PLAINldots{\ldotp\ldotp\ldotp}
\def\PLAINcdots{\cdotp\cdotp\cdotp}

\def\PLAINvdots
{\vbox{\forgetall\baselineskip.4\bodyfontsize\lineskiplimit\zeropoint\kern.6\bodyfontsize\hbox{.}\hbox{.}\hbox{.}}}

\def\PLAINddots
{\mkern1mu%
\raise.7\bodyfontsize\ruledvbox{\kern.7\bodyfontsize\hbox{.}}%
\mkern2mu%
\raise.4\bodyfontsize\relax\ruledhbox{.}%
\mkern2mu%
\raise.1\bodyfontsize\ruledhbox{.}%
\mkern1mu}

This permitted us to say:

8 Taco extended the visualizer for his presentation at Bachotek 2009 so you might run into variants.

288 288

288 288

Unicode math 287

\definemathcommand [ldots] [inner] {\PLAINldots}
\definemathcommand [cdots] [inner] {\PLAINcdots}
\definemathcommand [vdots] [nothing] {\PLAINvdots}
\definemathcommand [ddots] [inner] {\PLAINddots}

However, in MkIV we use virtual shapes instead.

The following lines show the virtual shapes in red. In each triplet we see the original, the

virtual and the overlaid character.

. . .…. . .… ⋅ ⋅ ⋅⋯⋅ ⋅ ⋅⋯
...⋮
...⋮

. . .⋱
. . .⋱ . . .⋰

. . .⋰

As you can see here, the virtual variants are rather close to the originals. At 12pt there

are no real differences but (somehow) at other sizes we get slightly different results but it

is hardly visible. Watch the special spacing above the shapes. It is probably needed for

getting the spacing right in matrices (where they are used).

289 289

289 289

288 Unicode math

290 290

290 290

User code 289

XXXII User code

Previous versions of LuaTEX had multiple Lua instances but in practice this was not that

useful and therefore we decided to remove that feature and stick to one instance. One

reason is that all activities take place in the zero instance anyway and other instance could

not access variables defined there. Another reason was that every \directlua call is in

fact a function call (and as such a closure) and LuaTEX catches errors nicely.

The formal \directlua primitive originally can be called in two ways:

\directlua <instance> {lua code}
\directlua name {some text} <instance> {lua code}

The optional text is then part of the error message when one is issued. The new approach

is that the number is used for the error message in case no name is specified. The exact

string is set in Lua. This means that in principle the command is backward compatible.

Old usage will basically ignore the number and use the one and only instance, while new

usage will use the number for an eventual message:

\directlua <message id> {lua code}
\directlua name {some text} <message id> {lua code}

In the second case the id is ignored. The advantage of the first call is that it saves tokens at

the TEX end and can be configured at the Lua end. In ConTEXt MkIV we have adapted the

code that invokes multiple instances by compatible code that provides a modest form

of isolation. We don’t want to enforce too many constraints, first of all because users will

often use high level interfaces anyway, and also because we assume that users have no

bad intentions.

The main Lua instance in ConTEXt is accessible by:9

\startluacode
global.tex.print("lua")
\stopluacode

This gives: ‘lua’.

However, sometimes you don’t want user code to interfere too much with the main code

but still provide access to useful data. This is why we also provide:

\startusercode
global.tex.print("user 1")

9 Note 2016: you can of course also use context("lua") here.

291 291

291 291

290 User code

global.tex.print("user 2")
if characters then

global.tex.print("access")
else

global.tex.print("no access")
end
global.tex.print(global.characters.data[0xA9].contextname)
\stopusercode

This gives: ‘global.tex.print("user 1")global.tex.print("user 2")if characters then global.tex.print("ac-

cess")else global.tex.print("no access")endglobal.tex.print(global.characters.data[0xA9].con-

textname)’.

If you’re writing a module, you might want to reserve a private namespace. This is done

with:

\definenamedlua[mymodule][my interesting module]

Now we can say:

\startmymodulecode
help = { "help" }
global.tex.print(help[1])
\stopmymodulecode

This gives: ‘help’. The information is remembered:

\startmymodulecode
global.tex.print(help[1])
\stopmymodulecode

Indeed we get: ‘help’.

Just to check the isolation we try:

\startusercode
global.tex.print(help and help[1] or "no help")
\stopusercode

As expected this gives: ‘global.tex.print(help and help[1] or "no help")’ but when we do

the following we will get an error message:

\startusercode
global.tex.print(help[1])
\stopusercode

292 292

292 292

User code 291

! LuaTeX error <private user instance>:2: attempt to index global
'help' (a nil value)
stack traceback:

<private user instance>:2: in main chunk.
<inserted text> ...userdata")
global.tex.print(help[1])
}

An even more isolated variant is:

\startisolatedcode
help = { "help" }
global.tex.print(help and help[1] or "no help")
\stopisolatedcode

We get: ‘help = { "help" }global.tex.print(help and help[1] or "no help")’, while

\startisolatedcode
global.tex.print(help and help[1] or "no help")
\stopisolatedcode

gives: ‘global.tex.print(help and help[1] or "no help")’.

You can get access to the global data of other named code blocks by using the global
prefix. At that level you have also access to the instances, but this time we append data,

so user has a table userdata:

For convenience we have made tex as well as some Lua tables directly accessible within

an instance. However, we recommend not to extend these yourself (even if we do it in

the core of MkIV).

293 293

293 293

292 User code

294 294

294 294

Just plain 293

XXXIII Just plain

running

For testing basic LuaTEX functionality it makes sense to have a minimal system, and tra-

ditionally plain TEX has been the most natural candidate. It is for this reason that it had

been on the agenda for a while to provide basic OpenType font support for plain TEX as

well. Although the MkIV node mode subsystem is not yet perfect, the time was right to

start experimenting with a subset of the MkIV code.

Using plain roughly comes down to the following. First you need to generate a format:

luatex --ini --fmt=luatex.fmt luatex-plain.tex

This format has to be moved to a place where it can be found by the kpse library. Since this

can differ per distribution there is no clear recipe for it, but for TEXLive some path ending

in web2c/luatex is probably the right spot. After that you can run

luatex luatex-test.tex

This file lives under generic/context. When it is run it is quite likely that you will get

an error message because the font name database cannot be found. You can generate

one with the following command (which assumes that you have ConTEXt installed):

mtxrun --usekpse --script fonts --names

The resulting file luatex-fonts-names.lua has to be placed somewhere in your TEX

tree so that it can be found anytime. Beware: the --usekpse flag is only used outside

ConTEXt and provides very limited functionality, just enough for this task. Again this is a

distribution specific issue so we will not dwell upon it here.

The way fonts are defined is modelled after X ETEX, as it makes no sense to support the

somewhat more fancy ConTEXt way of doing things. Keep in mind that although ConTEXt

MkIV does support the X ETEX syntax too, the preferred way there is to use a more symbolic

feature definition approach.

As this is an experimental setup, it might not always work out as expected. Around LuaTEX

version 0.50 we expect the code to be more or less okay.

implementation

The luatex-fonts.lua file is the first in a series of basic functionality enhancements

for LuaTEX derived from the ConTEXt MkIV code base. Please don’t pollute theluatex-*

295 295

295 295

294 Just plain

namespace with code not coming from the ConTEXt development team as we may add

more files.

This file implements a basic font system for a bare LuaTEX system. By default LuaTEX only

knows about the classic tfm fonts but it can read other font formats and pass them to Lua.

With some glue code one can then construct a suitable tfm representation that LuaTEX

can work with. For more advanced font support a bit more code is needed that needs to

be hooked into the callback mechanism.

This file is currently rather simple: it just loads the Lua file with the same name. An exam-

ple of a luatex.tex file that is just the plain TEX format:

\catcode`\{=1 % left brace is begin-group character
\catcode`\}=2 % right brace is end-group character

\input plain

\everyjob\expandafter{\the\everyjob\input luatex-fonts\relax}

\dump

We could load the Lua file in \everyjob but maybe some day we will need more here.

When defining a font, in addition to the X ETEX way, you can use two prefixes. Afile:pre-

fix forces a file search, while a name: prefix will result in consulting the names database.

The font definitions shown in figure 1 are all valid.

\font\testa=file:lmroman10-regular at 12pt
\font\testb=file:lmroman12-regular:+liga; at 24pt
\font\testc=file:lmroman12-regular:mode=node;+liga; at 24pt
\font\testd=name:lmroman10bold at 12pt
\font\testh=cmr10
\font\testi=ptmr8t
\font\teste=[lmroman12-regular]:+liga at 30pt
\font\testf=[lmroman12-regular] at 40pt
\font\testj=adobesongstd-light % cid font
\font\testk=cambria(math) {\mathtest 123}
\font\testl=file:IranNastaliq.ttf:mode=node;script=arab;\

language=dflt;+calt;+ccmp;+init;+isol;+medi;+fina;+liga;\
+rlig;+kern;+mark;+mkmk at 14pt

You can load maths fonts but as Plain TEX is set up for Computer Modern (and as we don’t

adapt Plain TEX) loading Cambria does not give you support for its math features auto-

matically.

296 296

296 296

Just plain 295

If you want access by name you need to generate a font database, using:

mtxrun --script font --names

and put the resulting file in a spot where LuaTEX can find it.

remarks

The code loaded in luatex-fonts.lua does not come out of thin air, but is mostly

shared with ConTEXt; however, in that macro package we go beyond what is provided in

the plain variant. When using this code you need to keep a few things in mind:

• This subsystem will be extended, improved etc. at about the same pace as ConTEXt

MkIV. However, because ConTEXt provides a rather high level of integration not all

features will be supported in the same quality. Use ConTEXt if you want more goodies.

• There is no official api yet, which means that using functions implemented here is at

your own risk, in the sense that names and namespaces might change. There will be

a minimal api defined once LuaTEX version 1.0 is out. Instead of patching the files it’s

better to overload functions if needed.

• The modules are not stripped too much, which makes it possible to benefit from im-

provements in the code that take place in the perspective of ConTEXt development.

They might be split a bit more in due time so the baseline might become smaller.

• The code is maintained and tested by the ConTEXt development team. As such it

might be better suited for this macro package and integration in other systems might

demand some additional wrapping. The plain version discussed here is the bench-

mark and should be treated as a kind of black box.

• Problems can be reported to the team but as we use ConTEXt MkIV as our baseline,

you’d better check if the problem is a general ConTEXt problem too.

• The more high level support for features that is provided in ConTEXt is not part of the

code loaded here as it makes no sense elsewhere. Some experimental features are

not part of this code either but some might show up later.

• Math font support will be added but only in its basic form once the Latin Modern and

TEX Gyre math fonts are available. Currently traditional and OpenType math fonts can

be loaded.

• At this moment the more nifty speedups are not enabled because they work in tan-

dem with the alternative file handling that ConTEXt uses. Maybe around LuaTEX 1.0

we will bring some speedup into this code too (if it pays off at all).

297 297

297 297

296 Just plain

• The code defines a few global tables. If this code is used in a larger perspective then

you can best make sure that no conflicts occur. The ConTEXt package expects users to

work in their own namespace (userdata, thirddata, moduledata or document).

We give ourselves the freedom to use any table at the global level but will not use

tables that are named after macro packages. Later, ConTEXt might operate in a more

controlled namespace but it has a low priority.

• There is some tracing code present but this is not enabled and not supported as it

integrates quite tightly into ConTEXt. In case of problems you can use ConTEXt for

tracking down problems.

• Patching the original code in distributions is dangerous as it might fix your problem

but introduce new ones for ConTEXt. So, best keep the original code as it is and over-

load functions and callbacks when needed. This is trivial in Lua.

• Attributes are (automatically) taken from the range 127--255 so you’d best not use these

yourself. Don’t count on an attribute number staying the same and don’t mess with

these attributes.

If this all sounds a bit strict, keep in mind that it makes no sense for us to maintain multiple

code bases and we happen to use ConTEXt.

advanced features

The latest versions now also support font extending, slanting, protrusion and expansion.

Here are a few examples:

\pdfprotrudechars2 \pdfadjustspacing2

\font\testa=file:lmroman12-regular:+liga;extend=1.5 at 12pt
\font\testb=file:lmroman12-regular:+liga;slant=0.8 at 12pt
\font\testc=file:lmroman12-regular:+liga;protrusion=default at 12pt
\font\testd=file:lmroman12-regular:+liga;expansion=default at 12pt

The extend and slant options are similar to those used in map files. The extend is limited

to 10 and the slant to 1.

In the protrusion and expansion specification the keyword default is an entry in a def-

inition table. You can find an example at the end of font-dum.lua.

A setup for expansion looks as follows:

fonts.expansions.setups['default'] = {
stretch = 2, shrink = 2, step = .5, factor = 1,

298 298

298 298

Just plain 297

[byte('A')] = 0.5, [byte('B')] = 0.7,
...........
[byte('8')] = 0.7, [byte('9')] = 0.7,

}

The stretch, shrink and steps become font properties and characters gets a value as-

signed. In pseudo code it looks like:

chr(A).expansion_factor = 0.5 * factor

The protrusion table has left and right protrusion factors for each relevant character.

fonts.protrusions.setups['default'] = {
factor = 1, left = 1, right = 1,

[0x002C] = { 0, 1 }, -- comma
[0x002E] = { 0, 1 }, -- period
[0x003A] = { 0, 1 }, -- colon
........
[0x061B] = { 0, 1 }, -- arabic semicolon
[0x06D4] = { 0, 1 }, -- arabic full stop

}

So, the comma will stick out in the right margin:

chr(comma).right_protruding = right * 1 * factor

As we prefer measures relative to the width (precentages) we actualy use:

chr(comma).right_protruding = right * 1 * factor * (width/quad)

You can add additional tables and access them by keyword in the font specification.

The model used in the plain variant is a simplification of the ConTEXt model so ConTEXt

users should not take this as starting point.

299 299

299 299

298 Just plain

300 300

300 300

Halfway 299

XXXIV Halfway

introduction

We are about halfway into the LuaTEX project now. At the time of writing this document

we are only a few days away from version 0.40 (the BachoTEX cq. TEXLive version) and

around euroTEX 2009 we will release version 0.50. Starting with version 0.30 (which we

released around the conference of the Korean TEX User group meeting) all one-decimal

releases are supported and usable for (controlled) production work. We have always

stated that all interfaces may change until they are documented to be stable, and we

expect to document the first stable parts in version 0.50. Currently we plan to release

version 1.00 sometime in 2012, 30 years after TEX82, with 0.60 and 0.70 in 2010, 0.80

and 0.90 in 2011. But of course it might turn out different.

In this update we assume that the reader knows what LuaTEX is and what it does.

design principles

We started this project because we wanted an extensible engine. We chose Lua as the

glue language. We do not regret this choice as it permitted us to open up TEX’s internals

reasonably well. There have been a few extensions to TEX itself, and there will be a few

more, but none of them are fundamental in the sense that they influence

typesetting. Extending TEX in that area is up to the macro package writer, who can use the

Lua language combined with TEX macros. In a similar fashion we made some decisions

about Lua libraries that are included. What we have now is what you will get. Future

versions of LuaTEX will have the ability to load additional libraries but these will not be

part of the core distribution. There is simply too much choice and we do not want to

enter endless discussions about what is best. More flexibility would also add a burden

on maintenance that we do not want. Portability has always been a virtue of TEX and we

want to keep it that way.

lua scripting

Before 0.40 there could be multiple instances of the Lua interpreter active at the same

time, but we have now decided to limit the number of instances to just one. The reason is

simple: sharing all functionality among multiple Lua interpreter instances does more bad

than good and Lua has enough possibilities to create namespaces anyway. The new limit

also simplifies the internal source code, which is a good thing. While the \directlua
command is now sort of frozen, we might extend the functionality of \latelua, espe-

cially in relation to what is possible in the backend. Both commands still accept a number

301 301

301 301

300 Halfway

but this now refers to an index in a user--definable name table that will be shown when

an error occurs.

input and output

The current LuaTEX release permits multiple instances of kpse which can be handy if you

mix, for instance, a macro package and mplib, as both have their own ‘progname’ (and

engine) namespace. However, right from the start it has been possible to bring most input

under Lua control and one can overload the usual kpse mechanisms. This is what we do

in ConTEXt (and probably only there).

Logging, etc., is also under Lua control. There is no support for writing to TEX’s opened

output channels except for the log and the terminal. We are investigating limited write

control to numbered channels but this has a very low priority.

Reading from zip files and sockets has been available for a while now.

Among the first things that have been implemented is a mechanism for managing cate-

gory codes (\catcode) although this is not really needed for practical usage as we aim

at full compatibility. It just makes printing back to TEX from Lua a bit more comfortable.

interface to tex

Registers can always be accessed from Lua by number and (when defined at the TEX end)

also by name. When writing to a register grouping is honored. Most internal registers can

be accessed (mostly read-only). Box registers can be manipulated but users need to be

aware of potential memory management issues.

There will be provisions to use the primitives related to setting codes (lowercase codes

and such). Some of this functionality will be available in version 0.50.

fonts

The internal font model has been extended to the full Unicode range. There are read-

ers for OpenType, Type1, and traditional TEX fonts. Users can create virtual fonts on the fly

and have complete control over what goes into TEX. Font specific features can either be

mapped onto the traditional ligature and kerning mechanisms or be implemented in Lua.

We use code from FontForge that has been stripped to get a smaller code base. Using

the FontForge code has the advantage that we get a similar view on the fonts in LuaTEX

as in this editor which makes debugging easier and developing fonts more convenient.

The interface is already rather stable but some of the keys in loaded tables might change.

Almost all of the font interface will be stable in version 0.50.

302 302

302 302

Halfway 301

tokens

It is possible to intercept tokenization. Once intercepted, a token table can be manipu-

lated before being piped back into LuaTEX. We still support Omega’s translation processes

but that might become obsolete at some point.

Future versions of LuaTEX might use Lua’s so-called ‘user data’ concept but the interface

will mostly be the same. Therefore this subsystem will not be frozen yet in version 0.50.

nodes

Users have access to the node lists in various stages. This interface has already been quite

stable for some time but some cleanup might still take place. Currently the node memory

maintenance is still explicit, but eventually we will make releasing unused nodes auto-

matic.

We have plans for keeping more extensive information within a paragraph (initial whatsit)

so that one can build alternative paragraph builders in Lua. There will be a vertical packer

(in addition to the horizontal packer) and we will open up the page builder (inserts etc.).

The basic interface will be stable in version 0.50.

attributes

This new kid on the block is now available for most subsystems but we might change

some of its default behaviour. As of 0.40 you can also use negative values for attributes.

The original idea of using negative values for special purposes has been abandoned as

we consider a secondary (faster and more efficient) limited variant. The basic principles

will be stable around version 0.50, but we reserve the freedom to change some aspects

of attributes until we reach version 1.00.

hyphenation

In LuaTEX we have clearly separated hyphenation, ligature building and kerning. Manag-

ing patterns as well as hyphenation is reimplemented from scratch but uses the same

principles as traditional TEX. Patterns can be loaded at run time and exceptions are quite

efficient now. There are a few extensions, like embedded discretionaries in exceptions

and pre- as well as posthyphens.

On the agenda is fixing some ‘hyphenchar’ related issues and future releases might deal

with compound words as well. There are some known limitations that we hope to have

solved in version 0.50.

303 303

303 303

302 Halfway

images

Image handling is part of the backend. This part of the pdfTEX code has been rewritten

and can now be controlled from Lua. There are already a few more options than in pdfTEX

(simple transformations). The image code will also be integrated in the virtual font han-

dler.

paragraph building

The paragraph builder has been rewritten in C (soon to be converted back to cweb). There

is a callback related to the builder so it is possible to overload the default line breaker by

one written in Lua.

There are no further short-term revisions on the agenda, apart from writing an advanced

(third order) Arabic routine for the Oriental TEX project.

Future releases may provide a bit more control over\parshapes and multiple paragraph

shapes.

metapost

The closely related mplib project has resulted in a MetaPost library that is included in

LuaTEX. There can be multiple instances active at the same time and MetaPost processing

is very fast. Conversion to pdf is to be done with Lua.

On the to-do list is a bit more interoperability (pre- and postscript tables) and this will

make it into release 0.50 (maybe even in version 0.40 already).

mathematics

Version 0.50 will have a stable version of Unicode math support. Math is backward com-

patible but provides solutions for dealing with OpenType math fonts. We provide math

lists in their intermediate form (noads) so that it is possible to manipulate math in great

detail.

The relevant math parameters are reorganized according to what OpenType math pro-

vides (we use the Cambria font as our reference). Parameters are grouped by style. Future

versions of LuaTEX will build upon this base to provide a simple mechanism for switching

style sets and font families in-formula.

There are new primitives for placing accents (top and bottom variants and extensible

characters), creating radicals, and making delimiters. Math characters are permitted in

text mode.

304 304

304 304

Halfway 303

There will be an additional alignment mechanism analogous to what MathML provides.

Expect more.

page building

Not much work has been done on opening up the page builder although we do have

access to the intermediate lists. This is unlikely to happen before 0.50.

going cweb

After releasing version 0.50 around EuroTEX 2009 there will be a period of relative silence.

Apart from bug fixes and (private) experiments there will be no release for a while. At the

time of the 0.50 release the LuaTEX source code will probably be in plain C completely.

After that is done, we will concentrate hard on consolidating and upgrading the code

base back into cweb.

cleanup

Cleanup of code is a continuous process. Cleanup is needed because we deal with a

merge of traditional TEX, 𝜀-TEX extensions, pdfTEX functionality and some Omega (Aleph)

code.

Compatibility is a prerequisite, with the exception of logging and rather special ligature

reconstruction code.

We also use the opportunity to slowly move away from all the global variables that are

used in the Pascal version.

alignments

We do have some ideas about opening up alignments, but it has a low priority and it will

not happen before the 0.50 release.

error handling

Once all code is converted to cweb, we will look into error handling and recovery. It has

no high priority as it is easier to deal with after the conversion to cweb.

backend

The backend code will be rewritten stepwise. The image related code has already been

redone, and currently everything related to positioning and directions is redesigned and

305 305

305 305

304 Halfway

made more consistent. Some bugs in the Aleph code (inherited from Omega) have been

removed and we are trying to come up with a consistent way of dealing with directions.

Conceptually this is somewhat messy because much directionality is delegated to the

backend.

We are experimenting with positioning (preroll) and better literal injection. Currently we

still use the somewhat fuzzy pdfTEX methods that evolved over time (direct, page and

normal injection) but we will come up with a clearer model.

Accuracy of the output (pdf) will be improved and character extension (hz) will be done

more efficiently. Experimental code seems to work okay. This will become available from

release 0.40 and onwards and further cleanup will take place when the cweb code is

there, as much of the pdf backend code is already C.

context mkiv

When we started with LuaTEX we decided to use a branch of ConTEXt for testing as it

involves quite drastic changes, many rewrites, a tight connection with binary versions,

etc.

As a result for some time we now have two versions of ConTEXt: MkII and MkIV, where

the former targets pdfTEX and X ETEX, and the latter exclusively uses LuaTEX. Although the

user interface is downward compatible the code base starts to diverge more and more.

Therefore at the last ConTEXt meeting it was decided to freeze the current version of MkII

and only apply bug fixes and an occasional simple extension.

This policy change opened the road to rather drastic splitting of the code, also because

full compatibility between MkII and MkIV is not required. Around LuaTEX version 0.40

the new, currently still experimental, document structure related code will be merged

into the regular MkIV version. This might have some impact as it opens up new possibil-

ities.

the future

In the future, MkIV will try to create (more) clearly separated layers of functionality so that

it will become possible to make subsets of ConTEXt for special purposes. This is done

under the name MetaTEX. Think of layering like:

• io, catcodes, callback management, helpers

• input regimes, characters, filtering

• nodes, attributes and noads

• user interface

• languages, scripts, fonts and math

306 306

306 306

Halfway 305

• spacing, par building and page construction

• xml, graphics, MetaPost, job management, and structure (huge impact)

• modules, styles, specific features

• tools

fonts

At this moment MkIV is already quite capable of dealing with OpenType fonts. The driving

force behind this is the Oriental TEX project which brings along some very complex and

feature rich Arabic font technology. Much time has gone into reverse engineering the

specification and behaviour of how these fonts behave in Uniscribe (which we use as

our reference for Arabic).

Dealing with the huge cjk fonts is less a font issue and more a matter of node list process-

ing. Around the annual meeting of the Korean User Group we got much of the machinery

working, thanks to discussions on the spot and on the mailing list.

math

Between LuaTEX versions 0.30 and 0.40 the math machinery was opened up (stage one).

In order to test this new functionality, MkIV’s math subsystem (that was then already par-

tially Unicode aware) had to be adapted.

First of all Unicode permits us to use only one math family and so MkIV now does that.

The implementation uses Microsoft’s Cambria Math font as a benchmark. It creates vir-

tual fonts from the other (old and new) math fonts so they appear to match up to Cambria

Math. Because the TEX Gyre math project is not yet up to speed MkIV currently uses vir-

tual variants of these fonts that are created at run time. The missing pieces in for instance

Latin Modern and friends are compensated for by means of virtual characters.

Because it is now possible to parse the intermediate noad lists MkIV can do some manip-

ulations before the formula is typeset. This is for instance used for alphabet remapping,

forcing sizes, and spacing around punctuation.

Although MkIV already supports most of the math that users expect there is still room

for improvement once there is even more control over the machinery. This is possible

because MkIV is not bound to downward compatibility.

As with all other LuaTEX related MkIV code, it is expected that we will have to rewrite

most of the current code a few times as we proceed, so MkIV math support is not yet

stable either. We can take such drastic measures because MkIV is still experimental and

because users are willing to do frequent synchronous updating of macros and engine. In

307 307

307 307

306 Halfway

the process we hope to get away from all ad--hoc boxing and kerning and whatever so-

lutions for creating constructs, by using the new accent, delimiter, and radical primitives.

tracing and testing

Whenever possible we add tracing and visualization features to ConTEXt because the

progress reports and articles need them. Recent extensions concerned tracing math and

tracing OpenType processing.

The OpenType tracing options are a great help in stepwise reaching the goals of the Orien-

tal TEX project. This project gave the LuaTEX project its initial boost and aims at high quality

right-to-left typesetting. In the process complex (test) fonts are made which, combined

with the tracing mentioned, help us to reveal the secrets of OpenType.

308 308

308 308

Where do we stand 307

XXXV Where do we stand

In the previous chapter we discussed the state of LuaTEX in the beginning of 2009, the

prelude to version 0.50. We consider the release of the 0.50 version to be a really im-

portant, both for LuaTEX and for MkIV so here I will reflect on the state around this release.

I will do this from the perspective of processing documents because useability is an im-

portant measure.

There are several reasons why LuaTEX 0.50 is an important release, both for LuaTEX and

for MkIV. Let’s start with LuaTEX.

• Apart from a couple of bug fixes, the current version is pretty usable and stable. De-

tails of what we’ve reached so far have been presented previously.

• The code base has been converted from Pascal to C, and as a result the source tree

has become simpler (being cweb compliant happens around 0.60). This transition

also opens up the possibility to start looking into some of the more tricky internals,

like page building.

• Most of the front end has been opened up and the new backend code is getting into

shape. As the backend was partly already done in C the moment has come to do

a real cleanup. Keep in mind that we started with pdfTEX and that much of its extra

functionality is rather interwoven with traditional TEX code.

If we look at ConTEXt, we’ve also reached a crucial point in the upgrade.

• The code base is now divided into MkII and MkIV. This permits us not only to reim-

plement bits and pieces (something that was already in progress) but also to clean up

the code (only MkIV).

• If you kept up with the development you already know the kind of tasks we can (and

do) delegate to Lua. Just to mention a few: file handling, font loading and OpenType

processing, casing and some spacing issues, everything related to graphics and Me-

taPost, language support, color and other attributes, input regimes, xml, multi-pass

data, etc.

• Recently all backend related code was moved to Lua and the code dealing with hy-

perlinks, widgets and alike is now mostly moved away from TEX. The related cleanup

was possible because we no longer have to deal with a mix of dvi drivers too.

• Everything related to structure (which includes numbering and multi-pass data like

tables of contents and registers) is now delegated to Lua. We move around way more

information and will extend these mechanisms in the near future.

309 309

309 309

308 Where do we stand

Tracing on Taco’s machine has shown that when processing the LuaTEX reference manual

the engine spends about 10% of the time on getting tokens, 15% on macro expansion, and

some 50% on Lua (callback interfacing included). Especially the time spent by Lua differs

per document and garbage collections seems to be a bottleneck here. So, let’s wrap up

how LuaTEX performs around the time of 0.50.

We use three documents for testing (intermediate) LuaTEX binaries: the reference man-

ual, the history document ‘mk’, and the revised metafun manual. The reference manual

has a MetaPost graphic on each page which is positioned using the ConTEXt background

layering mechanism. This mechanism is active only when backgrounds are defined and

has some performance consequences for the page builder. However, most time is spent

on constructing the tables (tabulate) and because these can contain paragraphs that can

run over multiple pages, constructing a table takes a few analysis passes per table plus

some so-called vsplitting. We load some fonts (including narrow variants) but for the rest

this document is not that complex. Of course colors are used as well as hyperlinks.

The report at the end of the runs looks as follows:

input load time - 0.109 seconds
stored bytecode data - 184 modules, 45 tables, 229 chunks
node list callback tasks - 4 unique tasks, 4 created, 20980 calls
cleaned up reserved nodes - 29 nodes, 10 lists of 1427
node memory usage - 19 glue_spec, 2 dir
h-node processing time - 0.312 seconds including kernel
attribute processing time - 1.154 seconds
used backend - pdf (backend for directly generating pdf output)
loaded patterns - en:us:pat:exc:2
jobdata time - 0.078 seconds saving, 0.047 seconds loading
callbacks - direct: 86692, indirect: 13364, total: 100056
interactive elements - 178 references, 356 destinations
v-node processing time - 0.062 seconds
loaded fonts - 43 files:
fonts load time - 1.030 seconds
metapost processing time - 0.281 seconds, loading: 0.016 seconds,

execution: 0.156 seconds, n: 161
result saved in file - luatexref-t.pdf
luatex banner - this is luatex, version beta-0.42.0
control sequences - 31880 of 147189
current memory usage - 106 MB (ctx: 108 MB)
runtime - 12.433 seconds, 164 processed pages,

164 shipped pages, 13.191 pages/second

The runtime is influenced by the fact that some startup time and font loading takes place.

The more pages your document has, the less the runtime is influenced by this.

More demanding is the ‘mk’ document (figure ??fig.mk). Here we have many fonts, in-

cluding some really huge cjk and Arabic ones (and these are loaded at several sizes and

with different features). The reported font load time is large but this is partly due to the

310 310

310 310

Where do we stand 309

fact that on my machine for some reason passing the tables to TEX involved a lot of page-

faults (we think that the cpu cache is the culprit). Older versions of LuaTEX didn’t have

that performance penalty, so probably half of the reported font loading time is kind of

wasted.

The hnode processing time refers mostly to OpenType font processing and attribute pro-

cessing time has to do with backend issues (like injecting color directives). The more

features you enable, the larger these numbers get. The MetaPost font loading refers to

the punk font instances.

input load time - 0.125 seconds
stored bytecode data - 184 modules, 45 tables, 229 chunks
node list callback tasks - 4 unique tasks, 4 created, 24295 calls
cleaned up reserved nodes - 116 nodes, 29 lists of 1411
node memory usage - 21 attribute, 23 glue_spec, 7 attribute_list,

7 local_par, 2 dir
h-node processing time - 1.763 seconds including kernel
attribute processing time - 2.231 seconds
used backend - pdf (backend for directly generating pdf output)
loaded patterns - en:us:pat:exc:2 en-gb:gb:pat:exc:3 nl:nl:pat:exc:4
language load time - 0.094 seconds, n=4
jobdata time - 0.062 seconds saving, 0.031 seconds loading
callbacks - direct: 98199, indirect: 20257, total: 118456
xml load time - 0.000 seconds, lpath calls: 46, cached calls: 31
v-node processing time - 0.234 seconds
loaded fonts - 69 files:
fonts load time - 28.205 seconds
metapost processing time - 0.421 seconds, loading: 0.016 seconds,

execution: 0.203 seconds, n: 65
graphics processing time - 0.125 seconds including tex, n=7
result saved in file - mk.pdf
metapost font generation - 0 glyphs, 0.000 seconds runtime
metapost font loading - 0.187 seconds, 40 instances,

213.904 instances/second
luatex banner - this is luatex, version beta-0.42.0
control sequences - 34449 of 147189
current memory usage - 454 MB (ctx: 465 MB)
runtime - 50.326 seconds, 316 processed pages,

316 shipped pages, 6.279 pages/second

Looking at the Metafun manual one might expect that one needs even more time per

page but this is not true. We use OpenType fonts in base mode as we don’t use fancy

font features (base mode uses traditional TEX methods). Most interesting here is the time

involved in processing MetaPost graphics. There are a lot of them (1772) and in addition

we have 7 calls to independent ConTEXt runs that take one third of the total runtime.

About half of the runtime involves graphics.

input load time - 0.109 seconds
stored bytecode data - 184 modules, 45 tables, 229 chunks

311 311

311 311

310 Where do we stand

node list callback tasks - 4 unique tasks, 4 created, 33510 calls
cleaned up reserved nodes - 39 nodes, 93 lists of 1432
node memory usage - 249 attribute, 19 glue_spec, 82 attribute_list,

85 local_par, 2 dir
h-node processing time - 0.562 seconds including kernel
attribute processing time - 2.512 seconds
used backend - pdf (backend for directly generating pdf output)
loaded patterns - en:us:pat:exc:2
jobdata time - 0.094 seconds saving, 0.031 seconds loading
callbacks - direct: 143950, indirect: 28492, total: 172442
interactive elements - 214 references, 371 destinations
v-node processing time - 0.250 seconds
loaded fonts - 45 files: l.....
fonts load time - 1.794 seconds
metapost processing time - 5.585 seconds, loading: 0.047 seconds,

execution: 2.371 seconds, n: 1772,
external: 15.475 seconds (7 calls)

mps conversion time - 0.000 seconds, 1 conversions
graphics processing time - 0.499 seconds including tex, n=74
result saved in file - metafun.pdf
luatex banner - this is luatex, version beta-0.42.0
control sequences - 32587 of 147189
current memory usage - 113 MB (ctx: 115 MB)
runtime - 43.368 seconds, 362 processed pages,

362 shipped pages, 8.347 pages/second

By now it will be clear that processing a document takes a bit of time. However, keep in

mind that these documents are a bit atypical. Although . . . thee average ConTEXt doc-

ument probably uses color (including color spaces that involve resource management),

and has multiple layers, which involves some testing of the about 30 areas that make up

the page. And there is the user interface that comes with a price.

It might be good to say a bit more about fonts. In ConTEXt we use symbolic names and

often a chain of them, so the abstract SerifBold resolves to MyNiceFontSerif-Bold
which in turn resolves to mnfs-bold.otf. As X ETEX introduced lookup by internal (or

system) fontname instead of filename, MkII also provides that method but MkIV adds

some heuristics to it. Users can specify font sizes in traditional TEX units but also relative

to the body font. All this involves a bit of expansion (resolving the chain) and parsing

(of the specification). At each of the levels of name abstraction we can have associated

parameters, like features, fallbacks and more. Although these mechanisms are quite op-

timized this still comes at a performance price.

Also, in the default MkIV font setup we use a couple more font variants (as they are avail-

able in Latin Modern). We’ve kept definitions sort of dynamic so you can change them

and combine them in many ways. Definitions are collected in typescripts which are fil-

tered. We support multiple mixed font sets which takes a bit of time to define but switch-

ing is generally fast. Compared to MkII the model lacks the (font) encoding and case han-

dling code (here we gain speed) but it now offers fallback fonts (replaced ranges within

312 312

312 312

Where do we stand 311

fonts) and dynamic OpenType font feature switching. When used we might lose a bit of

processing speed although fewer definitions are needed which gets us some back. The

font subsystem is anyway a factor in the performance, if only because more complex

scripts or font features demand extensive node list parsing.

Processing the TEXbook with LuaTEX on Taco’s machine takes some 3.5 seconds in pdfTEX

and 5.5 seconds in LuaTEX. This is because LuaTEX internally is Unicode and has a larger

memory space. The few seconds more runtime are consistent with this. One of the rea-

sons that The TEX Book processes fast is that the font system is not that complex and has

hardly any overhead, and an efficient output routine is used. The format file is small and

the macro set is optimal for the task. The coding is rather low level so to say (no layers

of interfacing). Anyway, 100 pages per second is not bad at all and we don’t come close

with ConTEXt and the kind of documents that we produce there.

This made me curious as to how fast really dumb documents could be processed. It

does not make sense to compare plain TEX and ConTEXt because they do different things.

Instead I decided to look at differences in engines and compare runs with different num-

bers of pages. That way we get an idea of how startup time influences overall perfor-

mance. We look at pdfTEX, which is basically an 8-bit system, X ETEX, which uses external

libraries and is Unicode, and LuaTEX which is also Unicode, but stays closer to traditional

TEX but has to check for callbacks.

In our measurement we use a really simple test document as we only want to see how

the baseline performs. As not much content is processed, we focus on loading (startup),

the output routine and page building, and some basic pdf generation. After all, it’s often

a quick and dirty test that gives users their first impression. When looking at the times

you need to keep in mind that X ETEX pipes to dvipdfmx and can benefit from multiple cpu

cores. All systems have different memory management and garbage collection might

influence performance (as demonstrated in an earlier chapter of the ‘mk’ document we

can trace in detail how the runtime is distributed). As terminal output is a significant slow-

down for TEX we run in batchmode. The test is as follows:

\starttext
\dorecurse{2000}{test\page}

\stoptext

On my laptop (Dell M90 with 2.3Ghz T76000 Core 2 and 4MB memory running Vista) I

get the following results. The test script ran each test set 5 times and we show the fastest

run so we kind of avoid interference with other processes that take time. In practice run-

time differs quite a bit for similar runs, depending on the system load. The time is in

seconds and between parentheses the number of pages per seconds is mentioned.

engine 30 300 2000 10000

xetex 1.81 (16) 2.45 (122) 6.97 (286) 29.20 (342)

313 313

313 313

312 Where do we stand

pdftex 1.28 (23) 2.07 (144) 6.96 (287) 30.94 (323)

luatex 1.48 (20) 2.36 (127) 7.85 (254) 34.34 (291)

The next table shows the same test but this time on a 2.5Ghz E5420 quad core server with

16GB memory running Linux, but with 6 virtual machines idling in the background. All

binaries are 64 bit.

engine 30 300 2000 10000

xetex 0.92 (32) 1.89 (158) 8.74 (228) 42.19 (237)

pdftex 0.49 (61) 1.14 (262) 5.23 (382) 24.66 (405)

luatex 1.07 (27) 1.99 (150) 8.32 (240) 38.22 (261)

A test demonstrated that for LuaTEX the 30 and 300 page runs take 70% more runtime

with 32 bit binaries (recent binaries for these engines are available on the ConTEXt wiki

contextgarden.net).

When you compare both tables it will be clear that it is non-trivial to come to conclusions

about performances. But one thing is clear: LuaTEX with ConTEXt MkIV is not perform-

ing that badly compared to its cousins. The Unicode engines perform about the same

and pdfTEX beats them significantly. Okay, I have to admit that in the meantime some

cleanup of code in MkIV has happened and the LuaTEX runs benefit from this, but on the

other hand, the other engines are not hindered by callbacks. As I expect to use MkII less

frequently optimizing the older code makes no sense.

There is not much chance of LuaTEX itself becoming faster, although a few days before

writing this Taco managed to speed up font inclusion in the backend code significantly

(we’re talking about half a second to a second for the three documents used here). On the

contrary, when we open up more mechanisms and have upgraded backend code it might

actually be a bit slower. On the other hand, I expect to be able to clean up some more

ConTEXt code, although we already got rid of some subsystems (like the rather flexible

(mixed) font encoding, where each language could have multiple hyphenation patters,

etc.). Also, although initial loading of math fonts might take a bit more time (as long as we

use virtual Latin Modern math), font switching is more efficient now due to fewer families.

But speedups in the ConTEXt code might be compensated for by more advanced mech-

anisms that call out to Lua. You will be surprised by how much speed can be improved

by proper document encoding and proper styles. I can try to gain a couple more pages

per second by more efficient code, but a user’s style that does an inefficient massive font

switch for some 10 words per page easily compensates for that.

When processing this 10 page chapter in an editor (Scite) it takes some 2.7 seconds be-

tween hitting the processing key and the result showing up in Acrobat. I can live with

that, especially when I keep in mind that my next computer will be faster.

314 314

314 314

Where do we stand 313

This is where we stand now. The three reports shown before give you an impression

of the impact of LuaTEX on ConTEXt. To what extent is this reflected in the code base?

We end this chapter with showing four tables. The first table shows the number of files

that make up the core of ConTEXt (modules are excluded). The second table shows the

accumulated size of these files (comments and spacing stripped). The third and fourth

table show the same information in a different way, just to give you a better impression

of the relative number of files and sizes. The four character tags represent the file groups,

so the files have names like node-ini.mkiv, font-otf.lua and supp-box.tex.

Eventually most MkII files (with the mkii suffix) and MkIV files (with suffix mkiv) will differ

and the number of files with the tex suffix will be fewer. Because they are and will be

mostly downward compatible, styles and modules will be shared as much as possible.

315 315

315 315

314 Where do we stand

Ju
ly

19
,

20
09

-
Th

e
nu

mb
er

of
fi

le
s

us
ed

in
Co

nT
eX

t
(m

od
ul

es
an

d
st

yl
es

ar
e

ex
cl

ud
ed

).

ca
te

go
ry

18
7

te
x

30
3

mk
ii

20
6

mk
iv

21
2

lu
a

ii
iv

an
ch

4
4

1
iv

at
tr

1
1

iv
ba

ck
3

2
iv

bi
bl

1
2

ii
iv

bu
ff

2
2

1
ii

iv
ca

tc
4

1
1

1
iv

ch
ar

4
7

iv
ch

em
2

2
ii

iv
co

lo
7

3
3

1
ii

iv
co

nt
20

3
3

1
ii

iv
co

re
18

16
7

da
ta

19
ii

iv
en

co
43

1
ii

fi
lt

2
ii

iv
fo

nt
12

6
31

ii
iv

gr
ph

3
3

2
ii

iv
ha

nd
2

1
ii

iv
ja

va
9

1
1

1
ii

iv
la

ng
16

11
7

3
iv

lp
df

1
10

iv
lu

at
5

18
iv

lx
ml

1
7

ii
iv

ma
th

14
12

7
ii

iv
me

ta
11

5
7

3
iv

ml
ib

3
5

ii
iv

mu
lt

22
2

3
5

iv
no

de
7

20
ii

iv
no

rm
7

ii
iv

pa
ck

4
5

2
ii

iv
pa

ge
24

23
1

pd
fr

3
pr

et
3

ii
iv

pr
op

3
3

ii
iv

re
gi

1
17

1
10

ii
iv

sc
rn

4
7

1
iv

sc
rp

1
2

ii
iv

so
rt

3
1

2
sp

ac
1

ii
sp

ec
21

ii
iv

st
rc

16
25

17
ii

iv
su

pp
11

14
3

2
ii

iv
sy

mb
10

2
2

ii
iv

sy
st

2
8

6
2

ii
iv

ta
bl

8
9

iv
ta

sk
1

1
ii

iv
th

rd
2

2
iv

to
ks

1
1

ii
iv

tr
ac

1
4

6
ii

iv
ty

pe
22

7
7

ii
iv

ty
po

1
7

5
ii

iv
un

ic
20

1
ii

ve
rb

15
ii

xe
tx

4
ii

iv
xt

ag
43

316 316

316 316

Where do we stand 315

Ju
ly

19
,

20
09

-
Th

e
si

ze
of

(c
or

e)
fi

le
s

us
ed

in
Co

nT
eX

t
(-

in
di

ca
te

s
ex

cl
us

io
n

of
la

rg
e

da
ta

fi
le

s;
+

in
di

ca
te

s
in

cl
us

io
n

of
la

rg
e

da
ta

fi
le

s;
co

mm
en

t
an

d
sp

ac
es

re
mo

ve
d.

)

ca
te

go
ry

86
55

14
te

x
15

63
87

5
+

28
87

44
6

mk
ii

16
70

58
7

mk
iv

11
39

97
6

lu
a

37
88

39
3

+

ii
iv

an
ch

51
07

0
50

13
2

29
60

iv
at

tr
32

05
95

18
iv

ba
ck

77
40

13
76

8
iv

bi
bl

70
5

46
18

ii
iv

bu
ff

26
85

4
23

88
1

81
25

ii
iv

ca
tc

94
21

56
33

56
30

60
6

iv
ch

ar
28

77
-

41
35

7
iv

ch
em

14
22

6
14

34
1

ii
iv

co
lo

47
51

0
40

91
8

17
06

7
96

57
ii

iv
co

nt
28

94
1

12
0

27
96

ii
iv

co
re

20
58

62
19

15
60

35
90

1
da

ta
71

51
5

ii
iv

en
co

25
85

45
11

06
0

ii
fi

lt
26

12
ii

iv
fo

nt
10

24
61

69
47

2
24

04
12

ii
iv

gr
ph

54
75

4
32

26
9

18
25

5
ii

iv
ha

nd
21

94
4

10
17

ii
iv

ja
va

17
50

5
79

76
13

77
24

45
ii

iv
la

ng
79

11
7

55
02

0
35

61
1

16
08

8
iv

lp
df

57
20

69
01

6
iv

lu
at

92
60

28
76

0
iv

lx
ml

10
54

4
61

97
9

ii
iv

ma
th

10
45

14
57

22
4

10
75

29
ii

iv
me

ta
25

03
2

57
21

4
29

85
0

26
34

4
iv

ml
ib

21
07

38
87

5
ii

iv
mu

lt
-

19
85

1
88

55
85

88
-

41
86

8
iv

no
de

19
86

5
67

29
0

ii
iv

no
rm

24
25

0
ii

iv
pa

ck
80

78
5

84
04

7
20

71
ii

iv
pa

ge
27

68
70

27
83

89
38

95
pd

fr
32

61
0

pr
et

14
62

4
ii

iv
pr

op
90

42
70

00
ii

iv
re

gi
15

00
10

54
38

55
5

18
02

9
ii

iv
sc

rn
84

19
0

60
64

4
25

01
iv

sc
rp

15
45

22
49

9
ii

iv
so

rt
20

14
6

13
9

77
91

sp
ac

21
90

ii
sp

ec
13

78
76

ii
iv

st
rc

34
54

32
29

50
08

80
72

1
ii

iv
su

pp
72

77
0

10
83

10
75

01
25

62
ii

iv
sy

mb
80

49
4

37
93

37
93

ii
iv

sy
st

16
54

0
10

68
02

86
26

5
28

75
ii

iv
ta

bl
11

81
24

12
09

96
iv

ta
sk

11
9

22
05

ii
iv

th
rd

70
28

7
42

14
iv

to
ks

11
32

54
25

ii
iv

tr
ac

13
44

6
14

43
6

20
85

3
ii

iv
ty

pe
14

64
42

16
55

27
81

99
0

ii
iv

ty
po

14
7

10
58

7
22

69
8

ii
iv

un
ic

56
43

4
46

8
ii

ve
rb

87
61

8
ii

xe
tx

12
62

90
ii

iv
xt

ag
22

58
54

317 317

317 317

316 Where do we stand

Ju
ly

19
,

20
09

-
Th

e
re

la
ti

ve
nu

mb
er

of
fi

le
s

us
ed

in
Co

nT
eX

t
(t

ex
,

mk
ii

,
mk

iv
,

lu
a)

.

an
ch

at
tr

ba
ck

bi
bl

bu
ff

ca
tc

ch
ar

ch
em

co
lo

co
nt

co
re

da
ta

en
co

fi
lt

fo
nt

gr
ph

ha
nd

ja
va

la
ng

lp
df

lu
at

lx
ml

ma
th

me
ta

ml
ib

mu
lt

no
de

no
rm

pa
ck

pa
ge

pd
fr

pr
et

pr
op

re
gi

sc
rn

sc
rp

so
rt

sp
ac

sp
ec

st
rc

su
pp

sy
mb

sy
st

ta
bl

ta
sk

th
rd

to
ks

tr
ac

ty
pe

ty
po

un
ic

ve
rb

xe
tx

xt
ag

318 318

318 318

Where do we stand 317

Ju
ly

19
,

20
09

-
Th

e
re

la
ti

ve
si

ze
of

fi
le

s
us

ed
in

Co
nT

eX
t

(t
ex

,
mk

ii
,

mk
iv

,
lu

a)
.

an
ch

at
tr

ba
ck

bi
bl

bu
ff

ca
tc

ch
ar

ch
em

co
lo

co
nt

co
re

da
ta

en
co

fi
lt

fo
nt

gr
ph

ha
nd

ja
va

la
ng

lp
df

lu
at

lx
ml

ma
th

me
ta

ml
ib

mu
lt

no
de

no
rm

pa
ck

pa
ge

pd
fr

pr
et

pr
op

re
gi

sc
rn

sc
rp

so
rt

sp
ac

sp
ec

st
rc

su
pp

sy
mb

sy
st

ta
bl

ta
sk

th
rd

to
ks

tr
ac

ty
pe

ty
po

un
ic

ve
rb

xe
tx

xt
ag

319 319

319 319

318 Where do we stand

320 320

320 320

