
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

security



1

Preamble

Contents

1 Preamble 1

2 Flags 1

3 Complications 4

4 Introspection 5

1 Preamble

Here I will discuss a moderate security subsystem of LuaMetaTEX and therefore Con­

TEXt LMTX. This is not about security in the sense of the typesetting machinery doing

harm to your environment, but more about making sure that a user doesn't change

the behavior of the macro package in ways that introduce interference and thereby

unwanted side effect. It's all about protecting macros.

This is all very experimental and we need to adapt the ConTEXt source code to this.

Actually that will happen a few times because experiments trigger that. It might take

a few years before the security model is finalized and all files are updated accordingly.

There are lots of files and macros involved. In the process the underlying features in

the engine might evolve.

2 Flags

Before we go into the security levels we see what flags can be set. The TEX language

has a couple of so called prefixes that can be used when setting values and defining

macros. Any engine that has traditional TEX with 𝜀-TEX extensions can do this:

\def\foo{foo}

\global \def\foo{foo}

\global\protected\def\foo{foo}

And LuaMetaTEX adds another one:

\tolerant \def\foo{foo}

\global\tolerant \def\foo{foo}

\global\tolerant\protected\def\foo{foo}

What these prefixes do is discussed elsewhere. For now is is enough to know that

the two optional prefixes \protected and \tolerant make for four distinctive cases of

macro calls.



2

Flags

But there are more prefixes:

frozen a macro that has to be redefined in a managed way

permanent a macro that had better not be redefined

primitive a primitive that normally will not be adapted

immutable a macro or quantity that cannot be changed, it is a constant

mutable a macro that can be changed no matter how well protected it is

instance a macro marked as (for instance) be generated by an interface

noaligned the macro becomes acceptable as \noalign alias

overloaded when permitted the flags will be adapted

enforced all is permitted (but only in zero mode or ini mode)

aliased the macro gets the same flags as the original

These prefixed set flags to the command at hand which can be a macro but basically

any control sequence.

To what extent the engine will complain when a property is changed in a way that

violates the above depends on the parameter \overloadmode. When this parameter is

set to zero no checking takes place. More interesting are values larger than zero. If

that is the case, when a control sequence is flagged as mutable, it is always permitted to

change. When it is set to immutable one can never change it. The other flags determine

the kind of checking done. Currently the following overload values are used:

immutable permanent primitive frozen instance

1 warning ⋆ ⋆ ⋆
2 error ⋆ ⋆ ⋆
3 warning ⋆ ⋆ ⋆ ⋆
4 error ⋆ ⋆ ⋆ ⋆
5 warning ⋆ ⋆ ⋆ ⋆ ⋆
6 error ⋆ ⋆ ⋆ ⋆ ⋆

The even values (except zero) will abort the run. In ConTEXt we plug in a callback that

deals with the messages. A value of 255 will freeze this parameter. At level five and

above the instance flag is also checked but no drastic action takes place. We use this

to signal to the user that a specific instance is redefined (of course the definition macros

can check for that too).

So, how does it work. The following is okay:

\def\MacroA{A}

\def\MacroB{B}



3

Flags

\let\MyMacro\MacroA

\let\MyMacro\MacroB

The first two macros are ordinary ones, and the last two lines just create an alias. Such

an alias shares the definition, but when for instance \MacroA is redefined, its newmean­

ing will not be reflected in the alias.

\permanent\protected\def\MacroA{A}

\permanent\protected\def\MacroB{B}

\let\MyMacro\MacroA

\let\MyMacro\MacroB

This also works, because the \let will create an alias with the protected property but

it will not take the permanent propery along. For that we need to say:

\permanent\protected\def\MacroA{A}

\permanent\protected\def\MacroB{B}

\permanent\let\MyMacro\MacroA

\permanent\let\MyMacro\MacroB

or, when we want to copy all properties:

\permanent\protected\def\MacroA{A}

\permanent\protected\def\MacroB{B}

\aliased\let\MyMacro\MacroA

\aliased\let\MyMacro\MacroB

However, in ConTEXt we have commands that we like to protect against overloading but

at the same time have a different meaning depending on the use case. An example is

the \NC (next column) command that has a different implementation in each of the table

mechanisms.

\permanent\protected\def\NC_in_table {...}

\permanent\protected\def\NC_in_tabulate{...}

\aliased\let\NC\NC_in_table

\aliased\let\NC\NC_in_tabulate

Here the second aliasing of \NC fails (assuming of course that we enabled overload

checking). One can argue that grouping can be used but often no grouping takes place

when we redefine on the fly. Because frozen is less restrictive than primitive or

permanent, and of course immutable, the next variant works:

\frozen\protected\def\NC_in_table {...}



4

Complications

\frozen\protected\def\NC_in_tabulate{...}

\overloaded\let\NC\NC_in_table

\overloaded\let\NC\NC_in_tabulate

However, in practice, as we want to keep the overload checking, we have to do:

\frozen\protected\def\NC_in_table {...}

\frozen\protected\def\NC_in_tabulate{...}

\overloaded\frozen\let\NC\NC_in_table

\overloaded\frozen\let\NC\NC_in_tabulate

or use \aliased, but there might be conflicting permissions. This is not that nice, so

there is a kind of dirty trick possible. Consider this:

\frozen\protected\def\NC_in_table {...}

\frozen\protected\def\NC_in_tabulate{...}

\def\setNCintable {\enforced\let\frozen\let\NC\NC_in_table}

\def\setNCintabulate{\enforced\let\frozen\let\NC\NC_in_tabulate}

When we're in so called initexmode or when the overload mode is zero, the \enforced

prefix is internalized in a way that signals that the follow up is not limited by the overload

mode and permissions. This definition time binding mechanism makes it possible to use

permanentmacros that users cannot redefine, but existing macros can, unless of course

they tweak the mode parameter.

Now keep in mind that users can always cheat but that is intentional. If you really want

to avoid that you can set the overload mode to 255 after which it cannot be set any

more. However, it can be useful to set the mode to zero (or some warning level) when

foreign macro packages are used.

3 Complications

One side effect of all this is that all those prefixes can lead to more code. On the other

hand we save some due to the extended macro argument handling features. When you

take the size of the format file as reference, in the end we get a somewhat smaller file.

Every token that you add of remove gives a 8 bytes difference. The extra overhead that

got added to the engine is compensated by the fact that some macro implementations

can be more efficient. In the end, in spite of these new features and the more extensive

testing of flags performance is about the same.1

1 And if you wonder about memory, by compacting the used (often scattered) token memory before dumping

I manages to save some 512K on the format file, so often the loss and gain are somewhere else.



5

Introspection

4 Introspection

In case you want to get some details about the properties of a macro, you can check its

meaning. The full variant shows all of them.

% a macro with two optional arguments with optional spacing in between:

\permanent\tolerant\protected\def\MyFoo[#1]#*[#2]{(#1)(#2)}

\meaningless\MyFoo\par

\meaning \MyFoo\par

\meaningfull\MyFoo\par

[#1]#*[#2]->(#1)(#2)

tolerant protected macro:[#1]#*[#2]->(#1)(#2)

permanent tolerant protected macro:[#1]#*[#2]->(#1)(#2)

4 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net


