
Fo
n
ts
ou
t
of
C
on
TE
X
t

ex
p
la
in
in
g
lu
at
ex
an
d
m
ki
v

H
an
s
H
ag
en

P
R
A
G
M
A
A
D
E

1

Contents

Contents

Introduction

1 Font formats

1.1 Introduction 7

1.2 Glyphs 7

1.3 The basic process 9

1.4 TEX metrics 10

1.5 Type1 12

1.6 OpenType 13

1.7 Lua 15

1.8 Files 15

1.9 Text 17

1.10 Math 19

1.11 Caching 20

2 Modes

2.1 Introduction 21

2.2 The font table 21

2.3 Base mode 30

2.4 Node mode 35

2.5 Auto mode 41

2.6 None mode 42

2.7 Dynamics 43

2.8 Discretionaries 44

2.9 Efficiency 45

3 Lookups

3.1 Introduction 49

3.2 Specifications 50

3.3 File 51

3.4 Name 52

3.5 Spec 53

4 Methods

4.1 Introduction 55

4.2 : (direct features) 55

4.3 * (symbolic features) 55

4.4 @ (virtual features) 57

4.5 Lua fonts 58

4.6 Old fuzzy fonts 60

5 Features

5.1 Introduction 63

2

Contents

5.2 Regulars 63

5.3 Extras 89

5.4 Goodies 89

5.5 Analyzers 116

5.6 Processors 118

5.7 Optimizing 118

5.8 Tracing 118

5.9 Discretionaries 120

5.10 Some remarks 121

6 Scripts

6.1 Introduction 123

7 Math

7.1 Introduction 125

7.2 Unicode math 125

7.3 Bold math 131

7.4 Bidirectional math 140

7.5 Styles 142

7.6 Supported fonts 146

7.7 Stylistic alternates 148

7.8 Italics and limits 149

8 Extensions

8.1 Introduction 151

8.2 Italics 151

8.3 Bounding boxes 154

8.4 Slanting 154

8.5 Extending 154

8.6 Fixing 155

8.7 Unicoding 157

8.8 Protrusion 158

8.9 Expansion 162

8.10 Composing 166

8.11 Kerning 169

8.12 Extra font kerns 171

8.13 Ligatures 172

8.14 New features 175

8.15 Spacing 188

8.16 Collections 189

9 Hooks

9.1 Introduction 191

9.2 Safe hooks 191

9.3 Loading 192

9.4 The tables 196

3

Contents

9.5 Goodies 206

A Appendix

A.1 The tfm file 211

A.2 The vf file 212

A.3 The map file 214

A.4 The enc file 215

A.5 The afm file 215

A.6 The otf file 219

A.7 The lfg file 219

A.8 Used fonts 219

4

Contents

5

Introduction

Introduction

You sit in a cave and wonder how to keep track of your winter stock. While playing with

some burned wood you end up with vertical strokes on the wall representing how much

you have in store.

You walk through the woods and wonder how to find your way back. Suddenly it strikes

you that you can put markers on trees. Years from that moment the whole forest is

marked with routes. Different symbols carry different meanings.

The next thing you want to do is to carry around information and pass it onto following

generations. So, you turn those symbols into shapes that make up the scripts that can

be used to express your languages in.

For ages scripts have evolved and the rendering of them on stone or wood and later paper

has resulted in a multitude of coherent collections of so called glyphs. Manual labour

turned into (semi) automated mass production and once that took off, developments

went fast. But the quality was still somewhat dubious, especially when for instance

specialized scripts like math had to be dealt with.

Some 30 years ago Don Knuth wrote a book, and in the process invented the TEX type-

setting system, the graphical language METAFONT and a bunch of fonts. He made it open

and free of charge. He was well aware that the new ideas were built on older ones that

had evolved from common sense: how to keep track of things on paper.

It is no surprise that an active community formed around these goodies. First of all

the system has no strings attached: the licence is generous and there are no patents

involved. There is also a network of user groups that takes care of coordinated updates

to the whole machinery. Of course it helps that it all relates to Don Knuth.

Since TEX showed up several open and closed source typesetting systems have surfaced

and only some of them survived. Also regular word processing has become more clever

and still become better. The TEX typesetting system also moved on. Some of its ideas

have been used in other programs and some of the ideas of other programs made their

way into TEX. However, its main property is still there: you can tweak and tune it to your

needs and are not hampered by too many limitations.

Don Knuth had this chicken or egg problem: once you can typeset a source you need

fonts but you can only make fonts if you can use them in a typesetting program. As a

result TEX came with its own fonts and it has special ways to deal with them. Given the

limitations of that time TEX puts some limitations on fonts and also expects them to have

certain properties, something that is most noticeable in math fonts.

Rather soon from the start it has been possible to use third party fonts in TEX, for instance

Type1. As TEX only needs some information about the shapes, it was the backend that

integrated the font resources in the final document. One of its descendants, pdfTEX, had

6

Introduction

this backend built in and could do some more clever things with fonts in the typesetting

process, like protrusion and expansion. The integration of front- and backend made live

much easier. Another descendant, XƎTEX made it possible to move on to the often large

OpenType fonts. On the one hand this made live even more easy but at the other end it

introduced users to the characteristics of such fonts and making the right choices, i.e.

not fall in the trap of too fancy font usage.

In this manual we will look at fonts from the perspective of yet another descendant,

LuaTEX. It inherits the font technology from traditional TEX, but also extends it so that we

can deal with modern font technologies. Of course it offers much more, but in practice

much relates to fonts one way or the other.

Of course this exploration will be from the perspective of the ConTEXt macro package

but this is not a manual about how to use fonts in ConTEXt as we have another manual

for that. Much of what we say here applies to the generic font code as well, although

some more advanced control is ConTEXt specific. There is nothing real new here, and it

all evolved from common sense and dealing with TEX for many years. The perspective is

mostly that of being a user myself so don’t complain too loudly if things look complicated

and unclear.

There is some overlap between the chapters. This is because each chapter is written

from another perspective and this document quite certainly will not be read as a whole

but more by looking at examples.

This document will probably have an ‘still under construction’ state for a long time. The

functionality discussed here will stay and more might show up. Of course there are

errors, and they’re all mine.

Hans Hagen

PRAGMA ADE, Hasselt NL

Summer 2011 – Spring 2016

7

Font formats

1 Font formats

1.1 Introduction

In this chapter the font formats as we know them will be introduced. The descriptions

will be rather general but more details can be found in the appendix. Although in MkIV

we do support all these types eventually the focus will be on OpenType fonts but it does

not hurt to see where we are coming from.

1.2 Glyphs

A typeset text is mostly a sequence of characters turned into glyphs. We talk of char-

acters when you input the text, but the visualization involves glyphs. When you copy a

part of the screen in an open pdf document or html page back to your editor you end up

with characters again. In case you wonder why we make this distinction between these

two states we give an example.

affiliation affiliation
upright italic

Figure 1.1 From characters to glyphs.

We see here that the shape of the a is different for an upright serif and an italic. We

also see that in ffi there is no dot on the i. The first case is just a stylistic one but the

second one, called a ligature, is actually one shape. The 11 characters are converted

into 9 glyphs. Hopefully the final document format carries some extra information about

this transformation so that a cut and paste will work out well. In pdf files this is normally

the case. In this document we will not be too picky about the distinction as in most cases

the glyph is rather related to the character as one knows it.

So, a font contains glyphs and it also carries some information about replacements. In

addition to that there needs to be at least some information about the dimensions of

them. Actually, a typesetting engine does not have to know anything about the actual

shape at all.

a b g l q . ; ? ffi
Figure 1.2 The boundingbox

of some normal glyphs.

8

Font formats

a b g l q . ; ? ffi
Figure 1.3 The boundingbox

of some italic glyphs.

The rectangles around the shapes figure 1.2 and figure 1.3 are called boundingbox. The

dashed line reflects the baseline where they eventually are aligned onto next to each

other. The amount above the baseline is called height, and below is called depth. The

piece of the shape above the baseline is the ascender and the bit below the descender.

The width of the bounding box is not by definition the width of the glyph. In Type1 and

OpenType fonts each shape has a so called advance width and that is the one that will

be used.

V
-0.747

ery often glyphs get v
-0.252

ery small spaces inserted horizontally
-0.747

.

V
-0.61523

ery oft
-0.0791

en g
-0.06152

l
-0.18018

yphs get v
-0.17578

ery small spaces insert
-0.0791

ed horizontall
-0.18018

y
-0.74707

.

V
-0.81

er
0.135

y often gl
-0.225

yphs g
-0.18

et v
-0.36

er
0.135

y small spaces inserted horizontall
-0.225

y
-0.81

.

V
-0.74355

ery often glyphs get very small spaces inserted horizontally
-1.07578

.

Figure 1.4 Kerning in Latin Roman, Cambria, Pagella and Dejavu.

Another traditional property of a font is kerning. In figure 1.4 you see this in action.

These examples demonstrate that not all fonts need (or provide) the same kerns (in

points).

So, as a start, we have now met a couple of properties of a font. They can be summarized

as follows:

mapping to glyphs : characters are represented by a shapes that have recognizable

properties so that readers know what they mean

ligature building : a sequence of characters gets mapped onto one glyph

dimensions : each glyph has a width, height and depth

inter-glyph kerning : optionally a bit of positive or negative space has to be inserted

between glyphs

Regular font kerning is hardly noticeable and improves the overall look of the page.

Typesetting applications sometimes are capable of inserting additional spaces between

shapes. This more excessive kerning is not that much related to the font and is used for

special purposes, like making a snippet of text stand out. In ConTEXt this kind of kerning

is available but it is a font independent feature. Keep in mind that when applying that

kind of rather visible kerning you’d better not have ligatures and fancy replacements

enabled as ConTEXt already tries to deal with that as good as possible.

9

Font formats

1.3 The basic process

In TEX a font is an abstraction: the engine only needs to know about the mapping from

characters to glyphs, what the width, height and depth is, what sequences need to be

translated into ligatures and when kerning has to be applied. If for the moment we

forget about math, these are all the properties that matter and this is what the TEX font

metric files that we see in the next section provide.

Because one of the principles behind LuaTEX is that the core engine (the binary) stays

small and that new functionality is provided in Lua code, the font subsystem largely

looks like it always has been. As users will normally use a macro package most of the

loading will be hidden from the user. It is however good to give a quick overview of how

for instance pdfTEX deals with fonts using traditional metric files.

input characters glyphs subset

Figure 1.5 Several translation steps in a traditonal TEX flow.

The input (bytes) gets translated into characters by the input parser. Normally this is a

one-to-one translation but there are examples of some translation taking place. You can

for instance make characters active and give them a meaning. So, the eight bit repre-

sention of an editors code page ë can become something else internally, for instance a

regular e with an ¨ overlayed. It can also become another character, which in the code

page would be shown as á but the user will not know this as by then this byte is already

tokenized. Another example is multibyte translation, for instance utf sequences can get

remapped to something that is known internally as being a character of some kind. The

LuaTEX engine expects utf so a macro package has to make sure that translation to this

encoding happens beforehand, for instance using a callback that intercepts the input

from file.1

So, the input character (sequence) becomes tokens representing a character. From

these tokens TEX will start building a (linked) node list where each character becomes

a node. In this node there is a reference to the current font. If you know TEX you will

understand that a list can have more than characters: there can be skips, kerns, rules,

references to images, boxes, etc.

At some point TEX will handle this list over to a routine that will turn them into something

that resembles a paragraph or otherwise snippet of text. In that stage hyphenation kicks

in, ligatures get built and kerning is added. Character references become glyph indices.

This list can finally be broken into lines.

It is no secret that TEX can box and unbox material and that after unboxing some new

formatting has to happen. The traditional engine has some optimizations that demand

1 In ConTEXt we talk of input regimes and these can be mixed, although in practice most users will stick to utf and

never use regimes.

10

Font formats

a partial reconstruction of the original list but in LuaTEX we removed this kind of opti-

mization so there the process is somewhat simpler. We will see more of that later.

When TEX ships out a page, the backend will load the real font data and merge that into

the final output. It will now take the glyph index and build the right data structures and

references to the real font. As a font gets subset only the used glyphs end up in the final

output.

There is one tricky aspect involved here: re-encoding. In so called map files one can

map a specific metric filename onto a real font name. One can also specify an encoding

vector that tells what a given index really refers to. This makes it possible to use fonts

that have more than 256 glyphs and refer to any of them. This is also the trick that

makes it possible to use TrueType fonts in pdfTEX: the backend code filters the right

glyphs from the font, remapping TEX’s glyph indices onto real entries in the font happens

via the encoding vector. In figure 1.6 we show a possible route for input byte 68.

bytes (68) bytes (31) index (31) index (88)

Figure 1.6 From bytes to indices.

As LuaTEX carries much of the bagage of older engines, you can still do it this way but in

ConTEXt MkIV we have made our live much simpler: we use unicode as much as possible.

This means that we effectively have removed two steps (see figure 1.7).

input glyphs

Figure 1.7 Simplified

mapping in LuaTEX.

There is of course still some work to do for the backend, like subsetting, but the nasty

dependency on the input encoding, font encoding (that itself relates to hyphenation) and

backend re-encoding is gone. But keep in mind that the internal data structure of the

font is still quite traditional.

Before we move on to font formats I like to point out that there is no space in TEX. Spaces

in the input are converted into glue, either or not with some stretch and/or shrink. This

also means that accessing character 32 in traditional TEX will not end up as space in the

output.

1.4 TEX metrics

A.1

A.2

Traditional font metrics are packaged in a binary format. Due to the limitations of that

time a font has at most 256 characters. In books dedicated to TEX you will often find

tables that show what glyphs are in a font, so we will not repeat that here as after all

we got rid of that limitation in LuaTEX.

11

Font formats

Because 256 is not that much, especially when you mix many scripts and need lots of

symbols from the same font, there are quite some encodings used in traditional TEX, like

texnansi, ec and qx. When you use LuaTEX exclusively you can do with way less font

files. This is easier for users, especially because most of those files were never used

anyway. It’s interesting to notice that some of the encodings contain symbols that are

never used or used only once in a document, like the copyright or registered symbols.

They are often accessed by symbolic names and therefore easily could have been omitted

and collected in a dedicated symbol font thereby freeing slots for more useful characters

anyway. The lack of coverage is probably one of the reasons why new encodings kept

popping up. In the next table you see how many files are involved in Latin Modern which

comes in a couple of design sizes.2

font format type # files size in bytes ConTEXt

type 1 tfm 380 3.841.708

afm 25 2.697.583

pfb 92 9.193.082

enc 15 37.605

map 9 42.040

521 15.812.018 mkii

opentype otf 73 8.224.100 mkiv

A tfm file can contain so called italic corrections. This is an additional kern that can

be added after a character in order to get better spacing between an italic shape and

an upright one. As this is manual work, it’s a not that advanced mechanism, but in

addition to width, height, depth, kerns and ligatures it is nevertheless a useful piece of

information. But, it’s a rather TEX specific quantity.

Since TEX showed up many fonts have been added. In addition support for commercial

fonts was provided. In fact, for that to happen, one only needs accompanying metric

files for TEX itself and map files and encoding vectors for the backend. Because a metric

file also has some general information, like spacing (including stretch and shrink), the

ex-height and em-width, this means that sometimes guesses must be made when the

original font does not come with such parameters.

At some point virtual fonts were introduced. In a virtual font a tfm file has an accom-

panying vf file. In that file each glyph has a specification that tells where to find the

real glyph. It is even possible to construct glyphs from other glyphs. In traditional TEX

this only concerns the backend, which in pdfTEX is built in. In LuaTEX this mechanism

is integrated into the frontend which means that users can construct such virtual fonts

themselves. We will see more of that later, but for now it’s enough to know that when

we talk about the representation of font (the tfm table) in LuaTEX, this includes virtual

functionality.

2 The original Computer Modern fonts have METAFONT source files and (runtime) generated bitmap files in whatever

resolutions are needed for previewing and printing. The Type1 follow-up came in several sets, organized by

language support. The Latin Modern fonts have a few more weights and variants than Computer Modern.

12

Font formats

An important limitation of tfm files cq. traditional TEX is that the number of depths and

heights is limited to 16 each. Although this results in somewhat inaccurate dimensions

in practice this gets unnoticed, if only because many designs have some consistency in

this. On the other hand, it is a limitation when we start thinking of accents or even

multiple accents which lead to many more distinctive heights and depths.

Concerning ligatures we can remark that there are quite some substitutions possible

although in practice only the multiple to one replacement has been used.

Some fonts that are used in TEX started out as bitmaps but rather soon Type1 outline

fonts became the fashion. These are supported using the map files that we will discuss

later. First we look into Type1 fonts.

1.5 Type1

A.5

A.4

A.3

For a long time Type1 fonts have dominated the scene. These are PostScript fonts that

can have more that 256 glyphs in the file that defines the shapes, but only 256 of them

can be used at one time. Of course there can be multiple subsets active in one document.

In traditional TEX a Type1 font is used by making a tfm file from a so called Adobe metric

file (afm) that come with such a font. There are several tool chains for doing this and

ConTEXt MkII ships with one that can be of help when you need to support commercial

fonts. Projects like the Latin Modern Fonts and TEX Gyre have normalized a whole lot

of fonts that came in several more or less complete encodings into a consistent package

of Type1 fonts. This already simplified live a lot but still users had to choose a suitable

input and font encoding for their language and/or script. As TEX only cares about metrics

and not about the rendering, it doesn’t consider Type1 fonts as something special. Also,

as TEX and PostScript were developed about the same time support for Type1 fonts is

rather present in TEX distributions.

You can still follow this route but for ConTEXt MkIV this is no longer the recommended

way because there we have changed the whole subsystem to use Unicode. As a result

we no longer use tfm files derived from afm files, but directly interpret the afm data.

This not only removes the 256 limitation, but also brings more resolution in height and

depth as we no longer have at most 16 alternatives. There can also be more kerns. Of

course we need some heuristics to determine for instance the spacing but that is not

different from former times.

Because most TEX users don’t use commercial fonts, they will not notice that ConTEXt

MkIV treats Type1 fonts this way. One reason is that the free fonts also come as wide

fonts in OpenType format and whenever possible ConTEXt prefers OpenType over Type1

over tfm.

In the beginning LuaTEX only could load a tfm file, which is why loading afm files is

implemented in Lua. Later, when the OpenType loaded was added, loading pfb and afm

files also became possible but it’s slower and we see no reason to rewrite the current

13

Font formats

code in ConTEXt. We also do a couple of extra things when loading such a file. As more

Type1 fonts move on to OpenType we don’t expect that much usage anyway.

1.6 OpenType

A.6When an engine can deal with Unicode directly it also means that internally it uses pretty

large numbers for storing characters and glyph indices. The first TEX descendent that

went wide was Omega, later replaced by Aleph. However, this engine never took off

and still used its own extended tfm format: ofm. In fact, as LuaTEX uses some of the

Aleph code, it can also use these extended metric files but I don’t think that there are

any useful fonts around so we can forget about this.

We use the term OpenType for a couple of font formats that share the same principles:

OpenType (otf), TrueType (ttf) and TrueType containers (ttc). The LuaTEX font reader

presents them in a similar format. In the case of a TrueType container, one does not

load the whole font but selects an instance from it. Internally an OpenType font can

have the glyphs organized in subfonts.

The first TEX descendent to really go wide from front to back is XƎTEX. This engine can

use OpenType fonts directly and for a whole category of users this opened up a new

world. Hoever, it is still mostly a traditional engine. The transition from characters to

glyphs is accomplished by external libraries, while in LuaTEX we code in Lua. This has

the disadvantage that it is slower (although that depends on the job) but the advantage

is that we have much more control and can extend the font handler as we like.

An OpenType font is much more complex than a Type1 one. Unless it is a quick and

dirty converted existing font, it will have more glyphs to start with. Quite likely it will

have kerns and ligatures too and of course there are dimensions. However, there is no

concept of a depth and height. These need to be deduced from the bounding box instead.

There is an advance width. This means that we can start right away using such fonts if

we map those properties onto the tfm table that LuaTEX expects.

But there is more, take ligatures. In a traditional font the sequence ffi always becomes

a ligature, given that the font has such a glyph. In LuaTEX there is a way to disable

this mechanism, which is sometimes handy when dealing with mono-spaced fonts in

verbatim. It’s pretty hard to disable that. For instance one option is to insert kerns

manually. In an OpenType font ligatures are collected in a so called feature. There

can be many such features and even kerning is a feature. Other examples are old style

numerals, fractions, superiors, inferiors, historic ligatures and stylistic alternates.

14

Font formats

onum -1 1234567890 ¢ $
tnum -1 1234567890 ¢ $
pnum -1 1234567890 ¢ $
To this all you need to add that features operate in two dimensions: languages and

scripts. This means that when ligatures are enabled for Dutch the ij sequence becomes

a single glyph but for German it gets mapped onto two glyphs. And, to make it even more

complex, a substitution can depend on circumstances, which means that for Dutch fijn

becomes f ij n but fiets becomes fi ets. It will be no surprise that not all OpenType

fonts come with a complete and rich repertoire of rules. To make things worse, there

can be rules that turn 1/2 into one glyph, or transfer the numbers into superior and

inferior alternatives, but leaves us with an unacceptable rendered 1/a, given that the

frac features is enabled. It looks like features like this are to be applied to a manually

selected range of characters.

The fact that an OpenType font can contain many features and rules to apply them makes

it possible to typeset scripts like Arabic. And this is where it gets vague. A generic

OpenType sub-engine can do clever things using these rules, but if you read the spec-

ification for some scripts additional intelligence has to be provided by the typesetting

engine.

While users no longer have to care about encodings, map files and back-end issues, they

do have to carry knowledge about the possibilities and limitations of features. Even

worse, he or she needs to be aware that fonts can have bugs. Also, as font vendors have

no tradition of providing updates this is something that we might need to take care of

ourselves by tweaking the engine.

One of the problems with the transition from Type1 to OpenType is that font designers

can take an existing design and start from that basic repertoire of shapes. If such a

design had oldstyle figures only, there is a good chance that this will be the case in the

OpenType variant too. However, such a default interferes with the fact that the onum

feature is one that we explicitly have to enable. This means that writing a generic style

where a font is later plugged in becomes somewhat messy if it assumes that features

need to be turned on.

TEX users expect more control, which means that in practice just an OpenType engine is

not enough, but for the average font the TEX model using the traditional approach still is

quite acceptable. After all, not all users use complex scripts or need advanced features.

And, in practice most readers don’t notice the difference anyway.

15

Font formats

1.7 Lua

A.7As mentioned support for virtual fonts is built into LuaTEX and loading the so called vf

files happens when needed. However, that concerns traditional fonts that we already

covered. In ConTEXt we do use the virtual font mechanism for creating missing glyphs

out of existing ones or add fallbacks when this is not possible. But this is not related to

some kind of font format.

In 2010 and 2011 the first public OpenType math fonts showed up that replace their

Type1 originals. In ConTEXt we already went forward and created virtual Unicode fonts

out of traditional fonts. Of course eventually the defaults will change to the OpenType

alternatives. The specification for such a virtual font is given in Lua tables and therefore

you can consider Lua to be a font format as well. In ConTEXt such fonts can be defined

in so called goodies files. As we use these files for much more tuning, we come back to

that in a later chapter. In a virtual font you can mix real Type1 fonts and real OpenType

fonts using whatever metrics suit best.

An extreme example is the virtual Unicode Punk font. This font is defined in the Me-

taPost language (derived from Don Knuths METAFONT sources) where each glyph is one

graphic. Normally we get PostScript, but in LuaTEX we can also get output in a compa-

rable Lua table. That output is converted to pdf literals that become part of the virtual

font definitions and these eventually end up in the pdf page stream. So, at the TEX end

we have regular (virtual) characters and all TEX needs is their dimensions, but in the pdf

each glyph is shown using drawing operations. Of course the now available OpenType

variant is more efficient, but it demonstrates the possibilities.

1.8 Files

We summarize these formats in the following table where we explain what the file suf-

fixes stand for:

tfm This is the traditional TEX font metric file format and it reflects the internal quan-

tities that TEX uses. The internal data structures (in LuaTEX) are an extension of

the tfm format.

vf This file contains information about how to construct and where to find virtual

glyphs and is meant for the backend. With LuaTEX this format gets more known.

pk This is the bitmap format used for the first generation of TEX fonts but the typeset-

ter never deals with them. Bitmap files are more or less obselete.

ofm This is the Omega variant of the tfm files that caters for larger fonts.

ovf This is the Omega variant of the vf.

pfb In this file we find the glyph data (outlines) and some basic information about

the font, like name-to-index mappings. A differently byte-encoded variant of this

format is pfa.

16

Font formats

afm This file accompanies the pfb file and provides additional metrics, kerns and infor-

mation about ligatures. A binary variant of this is the pfa format. For MS Windows

there is a variant that has the pfm suffix.

map The backend will consult this file for mapping metric file names onto real font

names.

enc The backend will include (and use) this encoding vector to map internal indices to

font indices using glyph names, if needed.

otf This binary format describes not only the font in terms of metrics, features and

properties but also contains the shapes.

ttf This is the Microsoft variant of OpenType.

ttc This is the Microsoft container format that combines multiple fonts in one.

fea A (FontForge) feature definition file. Such a file can be loaded and applied to a

font. This is no longer supported in ConTEXt as we have other means to achieve

the same goals.

cid A glyph index (name) to Unicode mapping file that is referenced from an OpenType

font and is shared between fonts.

lfg These are ConTEXt specific Lua font goodie files providing additional information.

If you look at how files are organized in a TEX distribution, you will notice that these

files all get their own place. Therefore adding a Type1 font to the distribution is not that

trivial if you want to avoid clashes. Also, files are simply not found when they are not in

the right spot. Just to mention a few paths:

<root>/fonts/tfm/vendor/typeface

<root>/fonts/vf/vendor/typeface

<root>/fonts/type1/vendor/typeface

<root>/fonts/truetype/vendor/typeface

<root>/fonts/opentype/vendor/typeface

<root>/fonts/fea

<root>/fonts/cid

<root>/fonts/dvips/enc

<root>/fonts/dvips/map

There can be multiple roots and the right locations are specified in a configuration file.

Currently all engines can use the dvips encoding and map files, so luckily we don’t

need to duplicate this. For some reason TrueType and OpenType fonts have different

locations and you need to be aware of the fact that some fonts come in both formats

(just to confuse users) so you might end up with conflicts.

In ConTEXt we try to make live somewhat easier by also supporting a simple path struc-

ture:

<root>/fonts/data/vendor/typeface

17

Font formats

This way files are kept together and installing commercial fonts is less complex and error

prone. Also, in practice we only have one set of files now: one of the other OpenType

formats.

If you want to see the difference between a traditional (pdfTEX or XƎTEX plus ConTEXt

MkII) setup or a modern one (LuaTEX with ConTEXt MkIV) you can install the ConTEXt

suite (formerly known as minimals). If you explicitly choose for a LuaTEX only setup,

you will notice that far less files get installed.

1.9 Text

This is not an in-depth explanation of how to define and load fonts in ConTEXt. First of all

this is covered in other manuals, but more important is that we assume that the reader

is already familiar with the way ConTEXt deals with fonts. Therefore we limit ourselves

to some remarks and expand on this a bit in later chapters.

The font subsystem has evolved over years and when you look at the low level code you

will probably find it complex. This is true, although in some aspects it is not as complex

as in MkII where we also had to deal with encodings due to the eight bit limitations. In

fact, setting up fonts is easier due the fact that we have less files to deal with.

The main properties of a (modern) font subsystem for typesetting text are the following:

1. We need to be able to switch the look and feel efficiently and consistently, for instance

going from regular to bold or italic. So, when we load a font family we not only

load one file, but often at least four: regular, bold, italic (oblique) and bolditalic

(boldoblique).

2. When we change the size we also need to make sure that these related sets are

changed accordingly. You really want the bold shapes to scale along with the regular

ones.

3. Shapes are organized in serif, sans serif, mono spaced and math and for proper work-

ing of a typesetter that has math all over you need always need the math. Again, when

you change size, all these shapes need to scale in sync.

4. In one document several families can be combined so the subsystem should make it

possible to switch from one to the other without too much overhead.

5. Because section heads and other structural elements have their own sizes there has to

be a consistent way to deal with that. It should also be possible to specify exceptions

for them.

In the next chapters we will cover some details, for instance font features. You can

actually control these when setting up a body font, simply by redefining the default

feature set, but not all features are dealt with this way. So let’s continue the demands

put on a font subsystem.

18

Font formats

6. Sometimes inter-character kerning is needed. In ConTEXt this is not a property of a

font because glyphs can be mixed with basically anything. This kind of features is

applied independent of a font.

7. The same is true for casing (like uppercasing and such) which is not related to a font

but applied to a selected (or marked) piece of the input stream.

8. Using so called “small caps” or “old style” numerals or . . . can be dealt with by setting

the default features but often these are applied selectively. As these are applied using

the information in a font they do belong to the font subsystem but in practice they

can be seen as independent (assuming that the font supports them at all).

9. Protrusion (into margins) and expansion (to improve whitespace) are applied to the

font at load time because the engine needs to know about them. But they two can

selectively be turned on and off. They are more related to line break handling than

font defining.

10.Slanting (to fake oblique) and expanding (to fake bold) are regular features but are

applied to the font because the engine needs to know about them. They permanently

influence the shape.

We will discuss these in this manual too. What we will not discuss in depth is spacing,

even when it depends on the (main body) font size. These use properties of fonts (like

the ex-height or em-width and maybe the width of the space, but normally they are

controlled by the spacing subsystem. We will however mention some rather specific

possibilities:

11.The ConTEXt font subsystem provides ways to combine multiple fonts into one.

12.You can construct artificial fonts, using existing fonts or MetaPost graphics.

13.Fonts can be fixed (dimensions) and completed (for instance accented characters)

when loading/

14.There are extensive tracing options, not only for applied features but also for loading,

checking etc. There is a set of styles that can be used to study fonts.

Sometimes users ask for very special trickery and it no surprise then that some of that

is now widely know (or even discussed in detail). When we get notice of that we can

mention it in this manual.

So how does this all relate to font formats? We mentioned that when loading we basically

load some four files per family (and more if we use specific fonts for titling). These files

just provide the data: metric information, shapes and ways to remap characters (or

sequences) into glyphs, either of not positioned relative to each other. In traditional

TEX only dimensions, kerns and ligatures mattered, but in nowadays we also deal with

specific OpenType features. But still, as you can deduce from the above, this is only part

of the story. You need a complete and properly integrated system. It is no big deal to

19

Font formats

set up some environment that uses font files to achieve some typesetting goal, but to

provide users with some consistent and extensible system is a bit more work.

There are basically three font formats: good old bitmaps, Type1 and OpenType. All

need to be supported and expectations are that we also support their features. But is

should be noticed that whatever font you use, the quality of the outcome depends on

what information the font can provide. We can improve processing but are often stuck

with the font. There are many thousands of fonts out there and we need to be able to

use them all.

1.10 Math

In the previous section we already mentioned math fonts. The fonts are just one aspect

of typesetting math and math fonts are special in the sense that they have to provide

the relevant information. For instance a parenthesis comes in several sizes and at some

point turns in a symbol made out of pieces (like a top curve, middle lines and bottom

curve) that overlap. The user never sees such details. In fact, there are ot that many

math fonts and these are already set up so there is not much to mess up here. Never-

theless we mention:

1. Math fonts are loaded in three sizes: text, script and scriptscript. The optimal relative

sizes ar defined in the font.

2. There are direction aware math fonts and we support this in ConTEXt.

3. Bold math is in fact a bolder version of a regular math font (that can have bold symbols

too). Again this is supported.

The way math is dealt with in ConTEXt is different from the way it is done traditionally.

Already when we started with MkIV we moved to Unicode and the setup at the font level

is kept simple by delegating some of the work to the Lua end. We will see some of the

mentioned aspects in more detail later.

Because of it’s complexity and because in a math text there can be many times activation

of math fonts (and related settings) quite some effort has been put in making it efficient.

But you need to keep in mind that when we discuss math related topics later on, this is

hardly of concern. Math fonts are loaded only once so manipulating them a bit has no

penalty. And using them later on is hardly related to the font subsystem.

Concerning formats we can notice that traditional TEX comes with math fonts that have

properties that the engine can use. Because there were not many math fonts, this was

no problem. The OpenType math fonts however are also used in other applications and

therefore are a bit more generic.3 For this we not only had to adapt the math engine in

LuaTEX (although we kept that to the minimum) but we also had to think different about

loading them. In later chapters we will see that in the transition to Unicode math fonts

3 Their internals are now defined in the OpenType specification.

20

Font formats

we implemented a mechanism for combining Type1 fonts into virtual Unicode fonts. We

did that because it made no sense to keep an old and new loader alongside.

There will not be thousands of math fonts flying around. A few dozen is already a lot and

the developers of macro packages can set them up for the users. So, in practice there

is not much that a user needs to know about math font formats.

1.11 Caching

Because fonts can be large and because we use Lua tables to describe them a bit of effort

has been put into managing them efficiently. Once converted to the representation that

we need they get cached. You can peek into the cache which is someplace on your

system (depending on the setup):

fonts/afm type one fonts, converted from afm and pfb files

fonts/data font name databases

fonts/mp fonts created using MetaPost

fonts/otf open type fonts, converted from ttf, otf, ttc and ttx files loaded using

the FontForge loader

fonts/otl open type fonts, converted from ttf, otf, ttc and ttx files loaded using

the ConTEXt Lua loader

fonts/shapes outlines of fonts (for instance for use in MetaFun)

There can be three types of files there. The tma files are just Lua tables and they can be

large. These files can be compiled to bytecode where tmc is for stock LuaTEX and tmb

for LuajitTEX. The tma files are optimized for space and memory (aka: packed) but you

can expand them with mtxrun --script font.

Fonts in the cache are automatically updated when you install new versions of a font or

when the ConTEXt font loader has been updated.

21

Modes

2 Modes

2.1 Introduction

We use the term modes for classifying the several ways characters are turned into

glyphs. When a font is defined, a set of features can be associated and one of them

is the mode.

none Characters are just mapped onto glyphs and no substitution or positioning takes

place.

base The routines built into the engine are used. For many Latin fonts this is a rather

useable and efficient method.

node Here alternative routines written in Lua are used. This mode is needed for more

complex scripts as well as more advanced features that demand some analysis.

auto This mode will determine the most suitable mode for the given feature set.

When we talk about features, we refer to more than only features provided by fonts as

ConTEXt adds some of its own. In the following section each of these modes is discussed.

Before we do so a short introduction to font tables that we use is given.

2.2 The font table

The internal representation of a font in ConTEXt is such that we can conveniently access

data that is needed in the mentioned modes. When a font is used for the first time, or

when it has changed, it is read in its most raw form. After some cleanup and normaliza-

tion the font gets cached when it is a Type1 or OpenType font. This is done in a rather

efficient way. A next time the cached copy is used.

The normalized table is shared among instances of a font. This means that when a font

is used at a different scale, or when a different feature set is used, the font gets loaded

only once and its data is shared when possible. In figure 2.1 we have visualized the

process. Say that you ask for font whatever at 12pt using featureset smallcaps. In low

level code this boils down to:

\font\MySmallCaps=whatever*smallcaps at 12pt

In ConTEXt we have overloaded the font loader so Lua code takes care of the loading.

Basically there is a function hooked into LuaTEX’s font definer (the \font primitive) that

returns a table and from that on LuaTEX will create its internal representation that is

identified by a number, the so called font id. So, in fact the \Whatever command is a

reference to a font id, a positive number. When this font is already loaded, ConTEXt will

reuse the id and pas that one.

22

Modes

normalized

otf

raw otf

normalized

afm

raw afm

normalized

tfm

raw tfm

cached otf

cached afm

featured

otf

featured

otf

featured

afm

featured

afm

featured

tfm

scaled otf

scaled otf

scaled otf

scaled afm

scaled afm

scaled afm

scaled tfm

scaled tfm

scaled tfm

engine tfm

Figure 2.1 Defining a font.

The first step is loading the font (or using the cached copy). From that a copy is made

that has some additional data concerning the features set and from that a scaled copy is

constructed. These copies share as much data as possible to keep the memory footprint

as small as possible. The table that is passed to LuaTEX gets cleaned up afterwards. In

practice the tfm loader only kicks in for creating virtual math fonts. The afm reader is

used for Type1 fonts and as there is no free upgrade path from Type1 to OpenType for

commercial fonts, that one will get used for older fonts. Of course most loading is done

by the otf reader(s).

?? The data in the final tfm table is organized in subtables. The biggest ones are the

characters and descriptions tables that have information about each glyph. Later

we will see more of that. There are a few additional tables of which we show two:

properties and parameters. For the current font the first one has the following en-

tries:

autoitalicamount <unset>

cidinfo <unset>

embedding subset

23

Modes

encodingbytes 2

filename c:/data/develop/tex-context/tex/texmf/fonts/truetype/public/dejavu/DejaVuSerif.ttf

finalized true

fontname DejaVuSerif

format truetype

fullname DejaVu Serif

hasitalics <unset>

hasmath <unset>

mathitalics <unset>

mode node

name DejaVuSerif

noglyphnames true

nostackmath <unset>

psname DejaVuSerif

textitalics <unset>

virtualized <unset>

The parameters table has variables that have been (re)assigned in the process. A period

in the key indicates that we are dealing with a subtable, for instance expansion.

ascender 448128

descender 141696

designsize 655360

expansion.auto <unset>

expansion.shrink 0

expansion.step 0

expansion.stretch 0

extendfactor 1000

factor 288

hfactor 288

mathsize 0

protrusion.auto <unset>

quad 589824

scaledpoints 589824

scriptpercentage <unset>

scriptscriptpercentage <unset>

size 589824

slantfactor 0

slantperpoint 0

spacing.extra 62496

spacing.shrink 62496

spacing.stretch 93744

spacing.width 187488

units 2048

24

Modes

vfactor 288

xheight 306144

To give you an impression of what we are dealing with, the positional features are shown

next:

The substitution features of the current font are as follows:

aalt cyrl dflt абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt cyrl mkd абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt cyrl srb абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt dflt dflt abcdefghijklmnopqrstuvwxyz

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt grek dflt 1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn aze abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn crt abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn dflt abcdefghijklmnopqrstuvwxyz

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn gag abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn ism abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn kaz abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn krk abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn ksm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn lsm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn mol abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

25

Modes

aalt latn nsm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn rom abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn sks abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn ssm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn tat abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

aalt latn trk abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp cyrl dflt абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp cyrl mkd абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp cyrl srb абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp dflt dflt abcdefghijklmnopqrstuvwxyz

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp grek dflt 1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn aze abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn crt abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn dflt abcdefghijklmnopqrstuvwxyz

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn gag abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn ism abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn kaz abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn krk abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

26

Modes

ccmp latn ksm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn lsm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn mol abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn nsm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn rom abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn sks abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn ssm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn tat abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

ccmp latn trk abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

char-ligatures * * abcdefghijklmnopqrstuvwxyz

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

compat-ligatures * * abcdefghijklmnopqrstuvwxyz

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig cyrl dflt абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig cyrl mkd абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig cyrl srb абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig dflt dflt abcdefghijklmnopqrstuvwxyz

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig grek dflt 1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn aze abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

27

Modes

dlig latn crt abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn dflt abcdefghijklmnopqrstuvwxyz

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn gag abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn ism abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn kaz abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn krk abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn ksm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn lsm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn mol abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn nsm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn rom abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn sks abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn ssm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn tat abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

dlig latn trk abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga cyrl dflt абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga cyrl mkd абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga cyrl srb абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

28

Modes

liga dflt dflt abcdefghijklmnopqrstuvwxyz

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga grek dflt 1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn aze abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn crt abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn dflt abcdefghijklmnopqrstuvwxyz

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn gag abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn ism abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn kaz abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn krk abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn ksm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn lsm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn mol abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn nsm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn rom abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn sks abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn ssm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn tat abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

liga latn trk abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

locl cyrl mkd авгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

locl cyrl srb авгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

29

Modes

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

locl latn ism abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

locl latn ksm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

locl latn lsm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

locl latn nsm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

locl latn sks abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

locl latn ssm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt cyrl dflt абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt cyrl mkd абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt cyrl srb абвгдежзиійклмнопрстуфхцчшщъыьѣэюяѳ

АБВГДЕЖЗИІЙКЛМНОПРСТУФХЦЧШЩЪЫЬѢЭЮЯѲ

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt dflt dflt abcdefghijklmnopqrstuvwxyz

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt grek dflt 1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn aze abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn crt abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn dflt abcdefghijklmnopqrstuvwxyz

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn gag abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn ism abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn kaz abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

30

Modes

salt latn krk abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn ksm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn lsm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn mol abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn nsm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn rom abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn sks abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn ssm abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn tat abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

salt latn trk abcdefghijklmnopqrstuvwxyz

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

tlig * * abcdefghijklmnopqrstuvwxyz

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

trep * * abcdefghijklmnopqrstuvwxyz

1234567890 1/2

. , : ; ? ! ‹ › « » @ # $ % & * () [] {} <> + - = / |

This is clearly an OpenType font. Normally there are a default script and default lan-

guage supported. If this is not the case you need to provide them as part of the feature-

set, otherwise there will be no features applied.

2.3 Base mode

We talk of base mode processing when the font machinery is used that is built in LuaTEX.

So what does this traditional mechanism provide?

Before we discuss this, a somewhat simplified model of how TEX works has to be given.

Say that we have the following input:

\def\bla{BLA}

test \bla test

This input gets translated into tokens and those tokens are either processed later or

they become something else directly. Take the first line. Characters in the input have a

so called catcode property that determines how the parser tokenized them. Effectively

we therefore get something like this:

31

Modes

<command def>

<command bla>

<begingroup>

<character B>

<character L>

<character A>

<endgroup>

and finally in the hash table there will be an entry for bla that has the meaning BLA

expressed in three characters.

The second line refers to \bla and in the process this macro gets expanded, so we get:

<character t>

<character e>

<character s>

<character t>

<space>

<character B>

<character L>

<character A>

<character t>

<character e>

<character s>

<character t>

Because the parser gobbles spaces after a macro name, there is no space before the

second test. In practice there will be no intermediate list like this, because as soon

as possible TEX will add something to a so called node list. When the moment is there,

this list will be passed to the typesetting routine that constructs a horizontal list. Later

this list can be converted into a horizontal box or broken into lines when it concerns a

paragraph.

In traditional TEX characters are stored into char nodes and the builder turns them into

glyph nodes. In LuaTEX they start out as glyph nodes and the subtype number will flag

them as glyphs. Any value larger than 255 is a signal that the list has been processed.

The previous example leads to the list shown in figure 2.2.

Here we have turned off inter-character kerning and hyphenation. When we turn that

on, we get a slightly more complex list, as shown in figure 2.3. Hyphenation points are

represented by discretionary nodes and these have pointers to a pre break, post break

and replacement text.

In addition to hyphenation and kerning we can have ligatures. The list in figure 2.4

shows that we get a reference to a ligature in the glyph node but that the components

are still known. This figure also demonstrates that the ligature is build in steps.

32

Modes

glyph 256

font 39: U+00074: t

glyph 256

font 39: U+00073: s

glyph 256

font 39: U+00065: e

glyph 256

font 39: U+00074: t

glyph 256

font 39: U+00041: A

glyph 256

font 39: U+0004C: L

glyph 256

font 39: U+00042: B

spaceskip

1.9072 - 0.9536 + 0.6357

glyph 256

font 39: U+00074: t

glyph 256

font 39: U+00073: s

glyph 256

font 39: U+00065: e

glyph 512

font 39: U+00074: t

Figure 2.2 The text ‘test BLAtest’

converted to nodes.

If we insert an explicit \discretionary command, we see in figure 2.5 that we get three

variants. In figure 2.6 we render some Dutch words and these have quite some ligatures.

So, we have hyphenation, ligature building and kerning and to some extent these mech-

anisms hook into each other. This process is driven by information stored in the font

and rules related to the language. The hyphenation happens first, so the builder just

sees discretionary nodes and needs to act properly on them. Although languages play

an important role in formatting the text, for the moment we can forget about that. This

leaves the font.

As we already mentioned in a previous chapter, in ConTEXt we use Unicode internally.

This also means that fonts are organized this way. By default the glyph representation

of a Unicode character sits in the same slot in the glyph table. All additional glyphs, like

ligatures or alternates are pushed in the private unicode space. This is why in the lists

shown in the figures the ligatures have a private Unicode number.

The basic mode of operation in the builder in LuaTEX is as follows:

33

Modes

glyph 256

font 32: U+00074: t

glyph 256

font 32: U+00073: s

glyph 256

font 32: U+00065: e

glyph 256

font 32: U+00074: t

userkern

-0.1055

glyph 256

font 32: U+00041: A

glyph 256

font 32: U+0004C: L

glyph 256

font 32: U+00042: B

spaceskip

1.9072 - 0.9536 + 0.6357

glyph 256

font 32: U+00074: t

glyph 256

font 32: U+00073: s

glyph 256

font 32: U+00065: e

glyph 256

font 32: U+00074: t

Figure 2.3 The text ‘test BLAtest’

converted to nodes, hyphenated

and kerned.

• hyphenate the node list

• build ligatures

• inject kerns

• optionally break into lines

In traditional TEX the first step is not that independent. There hyphenation takes place

when the text is broken into lines, and only in places that are candidate for such a break.

In LuaTEX the whole text is hyphenated. This has the advantage that the steps are clearly

separated and that no complex reconstruction and re-hyphenation has to take place. The

speed penalty can be neglected and the extra memory overhead is small compared to

what is needed anyway.

In base mode the raw font data is read in and from that only basic information is used to

34

Modes

glyph 256

font 32: U+0006E: n

glyph 256

font 32: U+0006F: o

glyph 256

font 32: U+00069: i

glyph 256

font 32: U+00074: t

disc

glyph 256

font 32: U+00061: a

disc

glyph 256

font 32: U+00069: i

disc

glyph 256

font 32: U+0006C: l

glyph 256

font 32: U+00069: i

disc

glyph 256

font 32: U+00061: a

prebreak : glyph 1

font 32: U+0002D: -

prebreak : glyph 1

font 32: U+0002D: -

prebreak : glyph 1

font 32: U+0002D: -

prebreak : glyph 1

font 32: U+0002D: -

userkern

-0.2139

prebreak : glyph 1

font 32: U+00066: f

postbreak : glyph 1

font 32: U+00066: f

replacement : glyph 2

font 32: U+0FB00: ff

Figure 2.4 The rendering of the word ‘affiliation’.

construct the tfm table: dimensions, ligatures and kerns. In a node list, all glyph ranges

that refer to such a font get the standard ligature and kern routines applied, but only if

the subtype is still less than 256. This check on subtype prevents duplicate processing

that might happen as a side effect of for instance unboxing some material in a yet to be

typeset text.

Given that the majority of what TEX has to deal with is relatively simple latin script, base

mode processing is rather convenient and efficient. It is also the reference point of other

kinds of processing. The most simple way to force base mode is the following:

\definefontfeature[basemode][mode=base,kern=yes,liga=yes]

\definefont[MyTitleFont][SerifBold*basemode at 12pt]

Here \MyTitleFont will be a bold serif with ligatures and kerns applied. However, as

an OpenType font can have many features, the following definitions are also valid:

35

Modes

glyph 256

font 32: U+00069: i

glyph 256

font 32: U+00068: h

glyph 256

font 32: U+00067: g

disc

glyph 256

font 32: U+00063: c

glyph 256

font 32: U+00062: b

glyph 256

font 32: U+00061: a

prebreak : glyph 1

font 32: U+00064: d

postbreak : glyph 1

font 32: U+00065: e

replacement : glyph 1

font 32: U+00066: f

Figure 2.5 The rendering of the bogus word ‘abcghi’ with an explicit discretionary

added.

\definefontfeature[basemode-o][mode=base,kern=yes,onum=yes,liga=yes]

\definefontfeature[basemode-s][mode=base,kern=yes,smcp=yes]

The tfm constructor will filter the right information from the font data and construct a

proper table based on these specifications. But you need to keep in mind that when for

instance old style numerals or small caps are activated, that their rendering (the glyph)

will always be used. So, for instance 3 and A keep their Unicode points but as part of

their specification they will get an index pointing to the oldstyle or small caps variant

and the dimensions of that shape will be used.

2.4 Node mode

Node mode is by far the most interesting of the modes. When enabled we only pass

a few properties of glyphs to the engine: the width, height and depth and optionally

protrusion, expansion factors as well as some extra ConTEXt specific quantities. So there

is no kerning and no ligature building done by the engine. Instead we do this in Lua by

walking over the node list and checking if some action is needed.

??The default feature set enables kerning and ligature building for default and/or Latin

scripts and the default language. Being a relative simple feature, ligatures don’t take

much action. Next we show a trace of a ligature replacement.

font 43: DejaVuSerif.ttf @ 24.0pt

36

Modes

glyph 256

font 32: U+0006E: n

glyph 256

font 32: U+00065: e

glyph 256

font 32: U+00073: s

disc

glyph 256

font 32: U+00074: t

glyph 256

font 32: U+00065: e

glyph 258

font 32: U+0FB01: fi

spaceskip

1.9072 - 0.9536 + 0.6357

glyph 256

font 32: U+0006E: n

glyph 256

font 32: U+0006A: j

glyph 258

font 32: U+0FB01: fi

spaceskip

1.9072 - 0.9536 + 0.6357

glyph 256

font 32: U+00065: e

disc

glyph 256

font 32: U+00065: e

prebreak : glyph 1

font 32: U+0002D: -

prebreak : glyph 1

font 32: U+0002D: -

userkern

-0.2139

prebreak : glyph 1

font 32: U+00066: f

component : glyph 1

font 32: U+00069: i

component : glyph 1

font 32: U+00066: f

component : glyph 1

font 32: U+00069: i

component : glyph 1

font 32: U+00066: f

postbreak : glyph 1

font 32: U+00066: f

replacement : glyph 2

font 32: U+0FB00: ff

Figure 2.6 The rendering of the Dutch words ‘ effe fijn fietsen’.

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=dflt, spacekern=yes, tlig=yes, trep=yes

step 1 affiliation [+TLT] U+61:a U+66:f U+66:f U+69:i
U+6C:l U+69:i U+61:a U+74:t U+69:i U+6F:o U+6E:n
feature 'liga', type 'gsub_ligature', lookup 's_s_3', replacing

37

Modes

U+00066 (f) upto U+00066 (f) by ligature U+0FB00 case 2

result affiliation [+TLT] U+61:a U+FB00:ff U+69:i U+6C:l
U+69:i U+61:a U+74:t U+69:i U+6F:o U+6E:n

Be warned that this f f i sequence not always becomes a ligature. Actually this is one

area where tradition is quite visible: for some reason most fonts do have these f-related

ligatures but lack others. These ligatures even have code points in Unicode which is

quite debatable. Just as there are fonts with hardly any kerns (like Lucida) there are

fonts that follow a different route to improve the look and feel of neighbouring glyphs,

like Cambria:

font 45: cambria.ttf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=latn, spacekern=yes, tlig=yes, trep=yes

step 1 affiliation [+TLT] U+61:a U+66:f U+66:f U+69:i U+6C:l
U+69:i U+61:a U+74:t U+69:i U+6F:o U+6E:n
feature 'liga', type 'gsub_contextchain', chain lookup

's_s_17', index 1, replacing single U+00066 by U+F016D

result afϐiliation [+TLT] U+61:a U+66:f U+F016D:ϐ U+69:i
U+6C:l U+69:i U+61:a U+74:t U+69:i U+6F:o U+6E:n

Instead of representing multiple characters by one glyph the designer has decided to

replace the f by a slightly narrower one so that the dot of the i stays loose.

An example where much more is involved is the following. The Husayni font that is used

for typesetting Arabic is built upon a solid but complex OpenType foundation and can

only be dealt with in node mode. When the LuaTEX project started we assumed that

more power in the engine was needed to accomplish this, but so far the results with

standard OpenType functionality are quite good. ConTEXt has an additional paragraph

optimizer that can apply additional features to get even better results but discussing

this falls beyond this chapter. A trace of just one Arabic word is much longer than the

previously shown traces.

font 46: husayni.ttf @ 48.0pt

38

Modes

features analyze=yes, anum=yes, calt=yes, ccmp=yes, checkmarks=yes,

curs=yes, devanagari=yes, dummies=yes, extensions=yes,

extrafeatures=yes, extraprivates=yes, fina=yes, init=yes,

js16=yes, kern=yes, language=dflt, mark=yes, mathkerns=yes,

mathrules=yes, medi=yes, mkmk=yes, mode=node, rlig=yes,

salt=yes, script=arab, spacekern=yes, ss01=yes, ss03=yes,

ss10=yes, ss12=yes, ss15=yes, ss16=yes, ss19=yes, ss24=yes,

ss25=yes, ss26=yes, ss27=yes, ss31=yes, ss34=yes, ss35=yes,

ss36=yes, ss37=yes, ss38=yes, ss41=yes, ss42=yes, ss43=yes,

ss60=yes, tlig=yes

step 1 اَخَف [+TRT] U+641:ف U+64E:َ U+62E:خ U+64E:َ

U+627:ا
feature 'ccmp', type 'gsub_multiple', lookup 's_s_15',

replacing U+00641 (Faa) by multiple U+00641 U+0FBB2 (Faa

Onedotabove)

feature 'ccmp', type 'gsub_multiple', lookup 's_s_15',

replacing U+0062E (Khaa) by multiple U+0062E U+0FBB2 (Khaa

Onedotabove)

step 2 اَخ﮲َف﮲ [+TRT] U+641:ف U+FBB2﮲: U+64E:َ U+62E:خ

U+FBB2﮲: U+64E:َ U+627:ا
feature 'fina', type 'gsub_alternate', lookup 's_s_20',

replacing U+00627 (Alif) by alternative 'U+F0006

(Alif.final)' to value 1, taking 1,

step 3 اَخ﮲َف﮲ [+TRT] U+641:ف U+FBB2﮲: U+64E:َ U+62E:خ

U+FBB2﮲: U+64E:َ U+F0006:ا
feature 'medi', type 'gsub_single', lookup 's_s_21', replacing

U+0062E (Khaa) by single U+F001E (Khaa.medial)

39

Modes

step 4 اَخ﮲َف﮲ [+TRT] U+641:ف U+FBB2﮲: U+64E:َ U+F001E:خ
U+FBB2﮲: U+64E:َ U+F0006:ا
feature 'init', type 'gsub_single', lookup 's_s_22', replacing

U+00641 (Faa) by single U+F003D (Faa.initial)

step 5 اَخ﮲َ﮲ف [+TRT] U+F003D:ف U+FBB2﮲: U+64E:َ U+F001E:خ U+FBB2﮲:

U+64E:َ U+F0006:ا
feature 'ss03', type 'gsub_contextchain', chain lookup

's_s_59', index -1, replacing single U+F003D (Faa.initial) by

U+F029D (Faa.FJ_im)

feature 'ss03', type 'gsub_contextchain', chain lookup

's_s_59', index -1, replacing single U+F001E (Khaa.medial) by

U+F02D8 (Khaa.LJ_im)

step 6 اَخ﮲َ﮲ف [+TRT] U+F029D:ف U+FBB2﮲: U+64E:َ U+F02D8:خ U+FBB2﮲: U+64E:َ

U+F0006:ا
feature 'rlig', type 'gsub_contextchain', chain lookup

's_s_174', replacing U+F02D8 (Khaa.LJ_im) by multiple

characters U+F02D8 U+00640 (Khaa.LJ_im Tatwiil)

step 7 اَـ﮲خَ﮲ف [+TRT] U+F029D:ف U+FBB2﮲: U+64E:َ U+F02D8:خ U+640:ـ U+FBB2﮲:
U+64E:َ U+F0006:ا
feature 'salt', type 'gsub_contextchain', chain lookup

's_s_186', index -1, replacing character U+F02D8 (Khaa.LJ_im)

upto U+00640 (Tatwiil) by ligature U+F051B (Khaa.LJ_im_j1)

case 4

step 8 اَخ﮲َ﮲ف [+TRT] U+F029D:ف U+FBB2﮲: U+64E:َ U+F051B:خ U+FBB2﮲: U+64E:َ

U+F0006:ا

40

Modes

feature 'salt', type 'gsub_contextchain', chain lookup

's_s_225', index -1, replacing single U+F0006 (Alif.final) by

U+F0302 (Alif.alt2_final)

step 9 اَخ﮲َ﮲ف [+TRT] U+F029D:ف U+FBB2﮲: U+64E:َ U+F051B:خ U+FBB2﮲: U+64E:َ

U+F0302:ا
feature 'curs', type 'gpos_cursive', lookup 'p_s_0', moving

U+F029D (Faa.FJ_im) to U+F051B (Khaa.LJ_im_j1) cursive

(0pt,9.84375pt) using anchor and bound 1 in r2l mode

feature 'curs', type 'gpos_cursive', lookup 'p_s_0', moving

U+F051B (Khaa.LJ_im_j1) to U+F0302 (Alif.alt2_final) cursive

(0pt,0pt) using anchor and bound 2 in r2l mode

step 10
اَخ﮲َ﮲ف [+TRT] U+F029D:ف U+FBB2﮲: U+64E:َ U+F051B:خ U+FBB2﮲: U+64E:َ

U+F0302:ا
feature 'ccmp', type 'gpos_mark2base', lookup 'p_s_16', anchor

, bound 1, anchoring mark U+0FBB2 (Onedotabove) to basechar

U+F029D (Faa.FJ_im) => (1.89844pt,1.59375pt)

feature 'ccmp', type 'gpos_mark2base', lookup 'p_s_16', anchor

, bound 2, anchoring mark U+0FBB2 (Onedotabove) to basechar

U+F051B (Khaa.LJ_im_j1) => (5.48438pt,0.11719pt)

step 11
اَخ﮲َف﮲ [+TRT] U+F029D:ف U+FBB2﮲: U+64E:َ U+F051B:خ U+FBB2﮲: U+64E:َ

U+F0302:ا
feature 'mark', type 'gpos_mark2base', lookup 'p_s_16', anchor

, bound 3, anchoring mark U+0FBB2 (Onedotabove) to basechar

U+F029D (Faa.FJ_im) => (1.89844pt,1.59375pt)

feature 'mark', type 'gpos_mark2base', lookup 'p_s_16', anchor

, bound 4, anchoring mark U+0FBB2 (Onedotabove) to basechar

U+F051B (Khaa.LJ_im_j1) => (5.48438pt,0.11719pt)

step 12
اَخ﮲َف﮲ [+TRT] U+F029D:ف U+FBB2﮲: U+64E:َ U+F051B:خ U+FBB2﮲: U+64E:َ

U+F0302:ا

41

Modes

feature 'mark', type 'gpos_mark2base', lookup 'p_s_26', anchor

, bound 5, anchoring mark U+0064E (Fathah) to basechar

U+F029D (Faa.FJ_im) => (5.46094pt,-2.92969pt)

feature 'mark', type 'gpos_mark2base', lookup 'p_s_26', anchor

, bound 6, anchoring mark U+0064E (Fathah) to basechar

U+F051B (Khaa.LJ_im_j1) => (6.39844pt,-4.35938pt)

result
اخَ﮲فَ﮲ [+TRT] U+F029D:ف U+FBB2﮲: U+64E:َ U+F051B:خ U+FBB2﮲: U+64E:َ

U+F0302:ا
What we see here is a stepwise substitution process, sometimes based on a contextual

analysis, followed by positioning. The coloring concerns the outcome of the analysis

which in this case flags initial, final, medial and isolated characters.

The starting point of this Arabic word is visualized in figure 2.7 and as expected we see

no discretionary nodes here. The result as seen in figure 2.8 has (interestingly) no kerns

as all replacements happen via offsets in the glyph node.

glyph 256

font 40: U+00627: ا

glyph 256

font 40: U+0064E: َ

glyph 256

font 40: U+0062E: خ

glyph 256

font 40: U+0064E: َ

glyph 512

font 40: U+00641: ف

dir

+TRT

Figure 2.7 The Arabic input ‘ اَخَف ’

before rendering.

2.5 Auto mode

Base mode is lean and mean and relatively fast while node mode is more powerful and

slower. So how do you know what to choose? The safest bet is to use node mode for

everything. In ConTEXt however, we also have the so called auto mode. In that case there

is some analysis going on that chooses between base mode and node mode depending

on the boundary conditions of script and language and there are specific demands in

terms of feature processing. So, auto mode will resolve to base or node mode.

42

Modes

dir

-TRT

glyph 256

font 47: U+F0302: ا

glyph 256

font 47: U+0064E: َ

glyph 256

font 47: U+0FBB2: ﮲

glyph 258

font 47: U+F051B: خ

glyph 256

font 47: U+0064E: َ

glyph 256

font 47: U+0FBB2: ﮲

glyph 256

font 47: U+F029D: ف

dir

+TRT

Figure 2.8 The Arabic input ‘ اَخَف ’ af-

ter rendering.

2.6 None mode

Sometimes no features have to be applied at all. A good example is verbatim. There

you don’t want ligatures, kerning or fancy substitutions. Contrary to what you might

expect, monospaced fonts can have such features. Some might actually make sense,

like rendering zeros. However, you cannot assume such a feature to be present so this

is an example of where some more knowledge about a particular font is needed. This is

what Latin Modern provides.

none typewriter 1234567890
zero typewriter 1234567890
none regular 1234567890
zero regular 1234567890
Normally using mode none for situations that need to be predictable is quite okay.

43

Modes

2.7 Dynamics

Sometimes you want to enable or disable a specific feature only for a specific span of text.

Defining a font for only this occasion is overkill, especially when for instance features

are used to fine-tune the typography as happens in the Oriental TEX project, which is

related to LuaTEX. Instead of defining yet another font instance we can therefore enable

and disable specific features. For this it is not needed to know the current font and its

size.4

Dynamics are a special case of node mode and you don’t need to set it up when defining

a font. In fact, a font defined in base mode can also be dynamic. We show some simple

examples of applying dynamic features.

Let’s first define some feature sets:

\definefontfeature[f:smallcaps][smcp=yes]

\definefontfeature[f:nocaps] [smcp=no]

\definefontfeature[f:oldstyle] [onum=yes]

\definefontfeature[f:newstyle] [onum=no]

We can add and subtract these features from the current feature set that is bound to the

current font.

\switchtobodyfont[pagella] 123 normal

\addfeature {f:oldstyle} 123 oldstyle

\addfeature {f:smallcaps} 123 olstyle smallcaps

\subtractfeature{f:oldstyle} 123 smallcaps

\subtractfeature{f:smallcaps} 123 normal

Here we choose a font that has oldstyle numerals as well as small caps: pagella.

123 normal 123 oldstyle 123 olstyle smallcaps 123 smallcaps 123 normal

The following does the same, but only uses addition:

\switchtobodyfont[pagella] 123 normal

\addfeature{f:oldstyle} 123 oldstyle

\addfeature{f:smallcaps} 123 olstyle smallcaps

\addfeature{f:newstyle} 123 smallcaps

\addfeature{f:nocaps} 123 normal

You can also completely replace a feature set. Of course the set is only forgotten inside

the current group.

\switchtobodyfont[pagella] 123 normal

4 Dynamics are a ConTEXt specific feature and is not available in the generic version of the font code. There are

several reasons for this: it complicates the code, it assumes the ConTEXt feature definition mechanism to be used,

and it is somewhat slower as some extra analysis has to be done.

44

Modes

\addfeature {f:oldstyle} 123 oldstyle

\addfeature {f:smallcaps} 123 olstyle smallcaps

\replacefeature{f:oldstyle} 123 oldstyle

\replacefeature{f:smallcaps} 123 smallcaps

and now we get:

123 normal 123 oldstyle 123 olstyle smallcaps 123 oldstyle 123 smallcaps

You can exercise some control with \resetfeature:

\switchtobodyfont[pagella] 123 normal

\addfeature [f:oldstyle] 123 oldstyle

\addfeature [f:smallcaps] 123 olstyle smallcaps

\resetfeature 123 reset

\addfeature [f:oldstyle] 123 oldstyle

\addfeature [f:smallcaps] 123 olstyle smallcaps

Watch how we use the [] variant of the commands. The braced and bracketed variants

behave the same.

123 normal 123 oldstyle 123 olstyle smallcaps 123 reset 123 oldstyle 123 olstyle smallcaps

There is also a generic command \feature that takes two arguments. Below we show

all calls, with long and short variants:

\addfeature [f:mine] \feature [more][f:mine] \feature[+][f:mine]

\subtractfeature [f:mine] \feature [less][f:mine] \feature[-][f:mine]

\replacefeature [f:mine] \feature [new][f:mine] \feature[=][f:mine]

\resetandaddfeature[f:mine] \feature[local][f:mine] \feature[!][f:mine]

\revivefeature [f:mine] \feature [old][f:mine] \feature[>][f:mine]

\resetfeature \feature[reset] \feature[<]

Each variant also accepts {} instead of [] so that they can conveniently be used in

square bracket arguments. As a bonus, the following also works:

\switchtobodyfont[pagella]

123 normal

\feature[+][f:smallcaps,f:oldstyle]

123 SmallCaps and OldStyle

Here is the proof:

123 normal 123 SmallCaps and OldStyle

2.8 Discretionaries

One of the complications in supporting more complex features is that we can have discre-

tionary nodes. These are either inserted by the hyphenation engine, or explicitly by the

45

Modes

user (directly or via macros). In most cases we don’t need to bother about this. For in-

stance, more demanding scripts like Arabic don’t hyphenate, languages using the Latin

script seldom want ligatures at hyphenation points (as they can be compound words)

and/or avoid confusing hyphenation points, so what is left are specific user inserted dis-

cretionaries. Add to that, that a proper font has not much kerning between lowercase

characters and it will be clear that we can ignore most of this. Anyway, as we explicitly

deal with user discretionaries, the next works out okay. Watch how we normally only

have something special in the replacements text that shows up when no hyphenation is

needed.

\language[nl]

\definedfont[file:texgyrepagella-regular.otf*default]

\hsize 1mm vereffenen \par

\hsize 1mm effe \par

\hsize 1mm e\discretionary{f-}{f}{ff}e \par

\hsize 20mm e\discretionary{f-}{f}{ff}e \par

\smallcaps

\hsize 1mm vereffenen \par

\hsize 1mm effe \par

\hsize 1mm e\discretionary{f-}{f}{ff}e \par

\hsize 20mm e\discretionary{f-}{f}{ff}e \par

ver-
ef-
fe-
nen

ef-
fe

ef-

fe

effe

ver-
ef-
fe-

nen

ef-
fe

ef-
fe

effe

In base mode such things are handled by the TEX engine itself and it can deal with pretty

complex cases. In node mode we use a simplification which in practice suffices. We will

come back to this in section 5.2.12.

2.9 Efficiency

The efficiency of the mechanisms described here depends on several factors. It will be

clear that the larger the font, the more time it will take to load it. But what is large?

Most cjk fonts are pretty large but also rather simple. A font like Zapfino on the other

hand covers only latin but comes with many alternative shapes and a large set of rules.

The Husayni font focusses on Arabic, which in itself has not that large an alphabet, but

being an advanced script font, it has a lot of features and definitely a lot of rules.

In terms of processing it’s safe to say that Latin is of average complexity. At most you

will get some substitutions, like regular numerals being replaced by oldstyles, or ligature

building, which involves a bit of analysis, and some kerning at the end. In base mode

the substitutions have no overhead, simply because the character table already has ref-

erences to the substituents and the replacement already takes place when defining the

46

Modes

font. There ligature building and kerning are also fast because of the limited amount of

lookups that also are already kept with the characters. In node mode however, the lists

have to be parsed and tables have to be consulted so even Latin processing has some

overhead: each glyph node is consulted and analyzed (either or not in its context), often

multiple times. However, the code is rather optimized and we use caching of already

analyzed data when possible.

A cjk script is somewhat more complex on the one hand, but pretty simple on the other.

Instead of font based kerning, we need to prevent or encourage breaks between certain

characters. This information is not in the font and is processed otherwise but it does

cost some time. The font part however is largely idle as there are no features to be

applied. Even better, because the glyphs are large and the information density is high,

the processing time per page is not much different from Latin. Base mode is good enough

for most cjk.

The Arabic script is another matter. There we definitely go beyond what base mode

offers so we always end up in node mode. Also, because there is some analysis involved,

quite some substitutions and in the end also positioning, these are the least efficient

fonts in terms of processing time. Of course the fact that we mix directions also plays a

role. If in the Husayni font you enable 30 features with an average of 5 rules per feature,

a 300 character paragraph will take 45.000 actions.5 When multiple fonts are combined

in a paragraph there will be more sweeps over the list and of course the replacements

also have to happen.

In a time when the average photo camera produces megabyte pictures it makes no sense

to whine about the size of a font file. On the other hand as each font eventually ends

up in memory as a Lua table, it makes sense to optimize that bit. This is why fonts are

converted into a more efficient intermediate table that is cached on disk. This makes

loading a font quite fast and due to shared tables memory usage rather efficient. Of

course a scaled instance has to be generated too, but that is acceptable. To some extent

loading and defining a font also depends on the way the macro package is set up.

When comparing LuaTEX with for instance pdfTEX or XƎTEX you need to take into account

that in ConTEXt MkIV we tend to use OpenType fonts only so there are less fonts loaded

than in a more traditional setup. In ConTEXt startup time of MkIV is less than MkII

although overall processing time is slower, which is due to Unicode being used and

more functionality being provided. On the other hand, immediate MetaPost processing

and more clever multipass handling wins back time. The impact of fonts on processing

time in a regular document is therefore not that impressive. In practice a MkIV run can

be faster than a MkII run, especially when MetaPost is used.

In ConTEXt processing of node lists with respect to fonts is only one of the many manip-

ulations of such lists and by now fonts are not really the bottleneck. The more not font

5 For a modern machine this amount is no real issue, but as each action involves function calls and possibly some

garbage collection there is some price to pay.

47

Modes

related features users demand and enable, the less the relative impact of font processing

becomes.

Also, there are some advanced typographic extras that LuaTEX offers, like protrusion

(think of hanging punctuation) and hz optimization (glyph scaling) and these slow down

processing quite a lot, and they are not taking place at the Lua end at all, but this might

change in MkIV. And, of course, typesetting involves more than fonts and other aspects

can be way more demanding.

48

Modes

49

Lookups

3 Lookups

3.1 Introduction

In traditional TEX a font is defined by referring to its filename. A definition looks like

this:

\font \MyFontA = lmr10

\font \MyFontB = lmr10 at 20pt

\font \MyFontC = lmr10 scaled 1500

The first definition defines the command MyFontA as a reference to the font stored in the

file lmx10. No scaling takes place so the natural size is taken. This so called designsize

is in no way standardized. Just look at these three specimen:

Design Size (Dejavu)

Design Size (Cambria)

Design Size (Latin Modern)

The designsize is normally 10 point, but as there is no real reference for this a designer

decides how to translate this into a visual representation. As a consequence the 20pt in

the second line of the example definitions only means that the font is scaled to (normally)

twice the designsize. The third line scaled by a factor 1.5 and the reason for using a

value thousand times larger is that TEX’s numbers are integers.

The next three lines are typical for Latin Modern (derived from Computer Modern) be-

cause this family comes in different design sizes.

\font \MyFontD = lmr12

\font \MyFontE = lmr12 at 20pt

\font \MyFontF = lmr12 scaled 1500

Because the designsize is part of the font metrics the second line (\MyFontE) is of similar

size as \MyFontB although the 12 point variant is visually better suited for scaling up.

These definitions refer to files, but what file? What gets loaded is the file with name

name.tfm. Eventually for embedding in the (let’s assume pdf) file the outlines are taken

from name.pfb. At that stage, when present, a name.vf is consulted in order to resolve

characters that are combinations of others (potentially from other pfb files). The map-

ping from name.tfm to name.pfb filename happens in the so called map file. This means

that one can also refer to another file, for instance name.ttf.

All this logic is hard coded in the engine and because the virtual font mechanism was

introduced later without extending the tfm format, it can be hard at times to figure out

issues when a (maybe obsolete) virtual file is present (this can be the case if you have

generated the tfm file from an afm file that comes with the pfb file when you buy one.

50

Lookups

But, in LuaTEX we no longer use traditional fonts and as a consequence we have more

options open. Before we move on to them, we mention yet another definition:

\font \MyFontG = lmr12 sa 1.2

This method is not part of TEX but is provided by ConTEXt, MkII as well as MkIV. It means

as much as “scale this font to 1.2 times the bodyfontsize”. As this involves parsing the

specification, it does not work as advertised here, but the next definition works okay:

\definefont[MyFontG][lmr12 sa 1.2]

This indicates that we already had a parser for font specifications on board which in

turn made it relatively easy to do even more parsing, for instance for font features as

introduced in XƎTEX and LuaTEX.

3.2 Specifications

In LuaTEX we intercept the font loader. We do so for several reasons.

• We want to make decisions on what file to load, this is needed when for instance there

are files with the same name but different properties.

• We want to be able to lookup by file, by name, and by more abstract specification. In

doing so, we want to be as tolerant as possible.

• We want to support several scaling methods, as discussed in the previous section.

• We want to implement several strategies for passing features and defining non stan-

dard approaches.

The formal specification of a font is as follows:

\definefont[PublicReference][filename]

\definefont[PublicReference][filename at dimension]

\definefont[PublicReference][filename scaled number]

We already had that extended to:

\definefont[PublicReference][filename]

\definefont[PublicReference][filename at dimension]

\definefont[PublicReference][filename scaled number]

\definefont[PublicReference][filename sa number]

So let’s generalize that to:

\definefont[PublicReference][filename scaling]

And in MkIV we now have:

\definefont[PublicReference][filename*featurenames scaling]

\definefont[PublicReference][filename:featurespecication scaling]

51

Lookups

\definefont[PublicReference][filename@virtualconstructor scaling]

The second variant is seldom used and is only provided because some users have fonts

defined in the XƎTEX way. Users are advised not to use this method. The last method

is special in the sense that it’s used to define fonts that are constructed using the built

in virtual font constructors. This method is for instance used for defining virtual math

fonts.

The first method is what we use most. It is really important not to forget the feature

specification. A rather safe bet is *default. In a next chapter we will discuss the differ-

ence between these two; here we focus on the name part.

The filename is in fact a symbolic name. In ConTEXt we have always used an indirect

reference to fonts. Look at this:

\definefont[TitleFont][SerifBold*default sa 2]

A reference like SerifBold makes it possible to define styles independent of the chosen

font family. This reference eventually gets resolved to a real name and there can be a

chain of references.

Font definitions can be grouped into a larger setup using typescripts. In that case, we

can set the features for a regular, italic, bold and bolditalic for the whole set but when a

fontname has a specific feature associated (as in the previous examples) that one takes

precedence.

so far we talked about fonts being files, but in practice a lookup happens by file as well

as by name as known to the system. In the next section this will be explained in more

detail.

3.3 File

You can force a file lookup with:

\definefont[TitleFont][file:somefilename*default sa 2]

If you use more symbolic names you can use the file: prefix in the mapping:

\definefontsynonym[SerifBold][file:somefile]

\definefont[TitleFont][SerifBold*default sa 2]

In projects that are supposed to run for a long time I always use the file based lookup,

because filenames tend to be rather stable. Also, as the lookup happens in the TEX

directory structure, file lookups will rely on the general file search routines. This has

the benefit that case is ignored. When no match is found the lookup will also use the

font name database. Spaces and special characters are ignored.

52

Lookups

The name alone is not enough as there can be similar filenames with different suffixes.

Therefore the lookup will happen in the order otf, ttf, afm, tfm and lua. You can force

a lookup by being more explicit, like:

\definefont[TitleFont][file:somefilename.ttf*default sa 1]

3.4 Name

Say that we want to use a Dejavu font and that instead of filenames we want to use its

given name. The best way to find out what is available is to call for a list:

mtxrun --script font --list --all dejavu

This produces the following list:

dejavusans dejavusans dejavusans.ttf

dejavusansbold dejavusansbold dejavusans-bold.ttf

dejavusansboldoblique dejavusansboldoblique dejavusans-boldoblique.ttf

dejavusanscondensed dejavusanscondensed dejavusanscondensed.ttf

dejavusanscondensedbold dejavusanscondensedbold dejavusanscondensed-bold.ttf

dejavusanscondensedboldoblique dejavusanscondensedboldoblique dejavusanscondensed-boldoblique.ttf

dejavusanscondensednormal dejavusanscondensed dejavusanscondensed.ttf

dejavusanscondensedoblique dejavusanscondensedoblique dejavusanscondensed-oblique.ttf

dejavusansextralight dejavusansextralight dejavusans-extralight.ttf

dejavusanslight dejavusansextralight dejavusans-extralight.ttf

dejavusansmono dejavusansmono dejavusansmono.ttf

dejavusansmonobold dejavusansmonobold dejavusansmono-bold.ttf

dejavusansmonoboldoblique dejavusansmonoboldoblique dejavusansmono-boldoblique.ttf

dejavusansmononormal dejavusansmonooblique dejavusansmono-oblique.ttf

dejavusansmonooblique dejavusansmonooblique dejavusansmono-oblique.ttf

dejavusansnormal dejavusans dejavusans.ttf

dejavusansoblique dejavusansoblique dejavusans-oblique.ttf

dejavuserif dejavuserif dejavuserif.ttf

dejavuserifbold dejavuserifbold dejavuserif-bold.ttf

dejavuserifbolditalic dejavuserifbolditalic dejavuserif-bolditalic.ttf

dejavuserifcondensed dejavuserifcondensed dejavuserifcondensed.ttf

dejavuserifcondensedbold dejavuserifcondensedbold dejavuserifcondensed-bold.ttf

dejavuserifcondensedbolditalic dejavuserifcondensedbolditalic dejavuserifcondensed-bolditalic.ttf

dejavuserifcondenseditalic dejavuserifcondenseditalic dejavuserifcondensed-italic.ttf

dejavuserifcondensednormal dejavuserifcondensed dejavuserifcondensed.ttf

dejavuserifitalic dejavuserifitalic dejavuserif-italic.ttf

dejavuserifnormal dejavuserif dejavuserif.ttf

The first two columns mention the names that we can use to access a font. These are

normalized names in the sense that we only kept letters and numbers. The next three

definitions are equivalent:

53

Lookups

\definefont[TitleFont][name:dejavuserif*default sa 1]

\definefont[TitleFont][name:dejavuserifnormal*default sa 1]

\definefont[TitleFont][name:dejavuserif.ttf*default sa 1]

In the list you see two names that all point to dejavusans-extralight.ttf:

dejavusansextralight

dejavusanslight

There are some heuristics built into ConTEXt and we do some cleanup as well. For

instance we interpret ital as italic. In a font there is sometimes information about

the weight and we look at those properties as well. Unfortunately font names (even

within a collection) are often rather inconsistent so you still need to know what you’re

looking for. The more explicit you are, the less change of problems.

3.5 Spec

There is often some logic in naming fonts but it’s not robust and really depends on how

consistent a font designer or typefoundry has been. In ConTEXt we can access names by

using a normalized scheme.

name-weight-style-width-variant

The following values are valid:

weight black bold demi demibold extrabold heavy light medium mediumbold nor-

mal regular semi semibold ultra ultrabold ultralight

style italic normal oblique regular reverseitalic reverseoblique roman slanted

width book condensed expanded normal thin

variant normal oldstyle smallcaps

The four specifiers are optional but the more you provide, the better the match. Let’s

give an example:

mtxrun --script fonts --list --spec dejavu

This reports:

dejavuserifcondensed normal normal normal normal dejavuserifcondensed dejavuserifcondensed.ttf

dejavuserif normal normal normal normal dejavuserif dejavuserif.ttf

dejavusansmono normal normal normal normal dejavusansmono dejavusansmono.ttf

dejavusanscondensed normal normal normal normal dejavusanscondensed dejavusanscondensed.ttf

dejavusans normal normal normal normal dejavusans dejavusans.ttf

We can be more specific, for instance:

mtxrun --script fonts --list --spec dejavu-bold

54

Lookups

dejavuserif bold normal normal normal dejavuserifbold dejavuserif-bold.ttf

dejavusansmono bold normal normal normal dejavusansmonobold dejavusansmono-bold.ttf

dejavusans bold normal normal normal dejavusansbold dejavusans-bold.ttf

We add another specifier:

mtxrun --script fonts --list --spec dejavu-bold-italic

dejavuserif bold italic normal normal dejavuserifbolditalic dejavuserif-bolditalic.ttf

dejavusansmono bold italic normal normal dejavusansmonoboldoblique dejavusansmono-boldoblique.ttf

dejavusans bold italic normal normal dejavusansboldoblique dejavusans-boldoblique.ttf

As the first hit is used we need to be more specific with respect to the name, so lets do

that in an example definition:

\definefont[TitleFont][spec:dejavuserif-bold-italic*default sa 1]

Watch the prefix spec. Wolfgang Schusters simplefonts module nowadays uses this

method to define sets of fonts based on a name only specification. Of course that works

best if a fontset has well defined properties.

55

Methods

4 Methods

4.1 Introduction

A font definition looks as follows:

\definefont

[MyFont]

[namepart method specification size]

For example:

\definefont

[MyFont]

[Bold*default at 12.3pt]

We have already discussed the namepart and size in a previous chapter and here we

will focus on the method. The method is represented by a character and although we

currently only have a few methods there can be many more.

4.2 : (direct features)

This one is seldom used, but those coming from another macro package to ConTEXt

might use it as first attempt to defining a font.

\definefont

[MyFont]

[Bold:+kern;+liga; at 12.3pt]

This is the XƎTEX way of defining fonts. A + means as much as “turn on this feature” so

you can guess what the minus sign does. Alternatively you can use a key/value approach

with semicolons as separator. If no value is given the value yes is assumed.

\definefont

[MyFont]

[Bold:kern=yes;liga=yes; at 12.3pt]

When we started supporting XƎTEX we ran into issues with already present features of

ConTEXt as the XƎTEX syntax also has some more obscure properties using slashes and

brackets for signalling a file or name lookup. As in ConTEXt we prefer a more symbolic

approach anyway, it never was a real issue.

4.3 * (symbolic features)

The most natural way to associate a set of features with a font instance is the following:

56

Methods

\definefont

[MyFont]

[Bold*default at 12.3pt]

This will use the featureset named default and this one is defined in font-pre.mkiv

which might be worth looking at.

\definefontfeature

[always]

[mode=auto,

script=auto,

kern=yes,

mark=yes,

mkmk=yes,

curs=yes]

\definefontfeature

[default]

[always]

[liga=yes,

tlig=yes,

trep=yes] % texligatures=yes,texquotes=yes

\definefontfeature

[smallcaps]

[always]

[smcp=yes,

tlig=yes,

trep=yes] % texligatures=yes,texquotes=yes

\definefontfeature

[oldstyle]

[always]

[onum=yes,

liga=yes,

tlig=yes,

trep=yes] % texligatures=yes,texquotes=yes

\definefontfeature % == default unless redefined

[ligatures]

[always]

[liga=yes,

tlig=yes,

trep=yes]

\definefontfeature % can be used for type1 fonts

57

Methods

[complete]

[always]

[compose=yes,

liga=yes,

tlig=yes,

trep=yes]

\definefontfeature

[none]

[mode=none,

features=no]

These definitions show that you can construct feature sets on top of existing ones, but

keep in mind that they are defined instantly, so any change in the parent is not reflected

in its kids.

In a font definition you can specify more than one set:

\definefont

[MyFont]

[Bold*always,oldstyle at 12.3pt]

4.4 @ (virtual features)

This method is somewhat special as it demands knowledge of the internals of the Con-

TEXt font code. Much of it is still experimental but it is a nice playground. A good

example of its usage can be found in the file m-punk.mkiv where we create a font out of

MetaPost graphics.

Another example is virtual math. As in the beginning of LuaTEX and MkIV there were

only a few OpenType math fonts, and as I wanted to get rid of the old mechanisms, it

was decided to virtualize the math fonts. For instance a Latin Modern Roman 10 point

math font can be defined as follows:

\definefontsynonym

[LMMathRoman10-Regular]

[LMMath10-Regular@lmroman10-math]

The lmroman10-math refers to a virtual definition and in this case it is one using a built-

in constructor and therefore we use a goodies file to specify the font. That file looks as

follows:

return {

name = "lm-math",

version = "1.00",

comment = "Goodies that complement latin modern math.",

58

Methods

author = "Hans Hagen",

copyright = "ConTeXt development team",

mathematics = {

...

virtuals = {

...

["lmroman10-math"] = ten,

...

},

...

}

}

Here ten is a previously defined table:

local ten = {

{ name = "lmroman10-regular.otf", features = "virtualmath", main = true },

{ name = "rm-lmr10.tfm", vector = "tex-mr-missing" } ,

{ name = "lmmi10.tfm", vector = "tex-mi", skewchar = 0x7F },

{ name = "lmmi10.tfm", vector = "tex-it", skewchar = 0x7F },

{ name = "lmsy10.tfm", vector = "tex-sy", skewchar = 0x30, parameters = true } ,

{ name = "lmex10.tfm", vector = "tex-ex", extension = true } ,

{ name = "msam10.tfm", vector = "tex-ma" },

{ name = "msbm10.tfm", vector = "tex-mb" },

{ name = "stmary10.afm", vector = "tex-mc" },

{ name = "lmroman10-bold.otf", vector = "tex-bf" } ,

{ name = "lmmib10.tfm", vector = "tex-bi", skewchar = 0x7F } ,

{ name = "lmsans10-regular.otf", vector = "tex-ss", optional = true },

{ name = "lmmono10-regular.otf", vector = "tex-tt", optional = true },

{ name = "eufm10.tfm", vector = "tex-fraktur", optional = true },

{ name = "eufb10.tfm", vector = "tex-fraktur-bold", optional = true },

}

This says as much as: take lmroman10-regular.otf as starting point and overload slots

with ones found in the following fonts. The vectors are predefined as they are shared

with other font sets like px and tx.

In due time more virtual methods might end up in ConTEXt because they are a convenient

way to extend or manipulate fonts.

4.5 Lua fonts

You can define a font in Lua. In the process you can use all kind of helper functions that

ConTEXt provides. Here is an example:

local startactualtext = backends.codeinjections.startunicodetoactualtext

59

Methods

local stopactualtext = backends.codeinjections.stopunicodetoactualtext

return function(specification)

local features = specification.features.normal

local name = features.original or "dejavu-serif"

local option = features.option -- we only support "line"

local size = specification.size -- always set

local detail = specification.detail -- e.g. default

if detail then

name = name .. "*" .. detail

end

local f, id = fonts.constructors.readanddefine(name,size)

if f then

f.properties.name = specification.name

f.properties.virtualized = true

f.fonts = {

{ id = id },

}

for s in string.gmatch("aeuioy",".") do

local n = utf.byte(s)

local c = f.characters[n]

if c then

local w = c.width or 0

local h = c.height or 0

local d = c.depth or 0

if option == "line" then

f.characters[n].commands = {

{ "special", "pdf:direct:" .. startactualtext(n) },

{ "rule", option == "line" and size/10, w },

{ "special", "pdf:direct:" .. stopactualtext() },

}

else

f.characters[n].commands = {

{ "special", "pdf:direct:" .. startactualtext(n) },

{ "down", d },

{ "rule", h + d, w },

{ "special", "pdf:direct:" .. stopactualtext() },

}

end

else

-- probably a real bad font

end

end

end

return f

60

Methods

end

This code is stored in fonts-demo-rule.lua and we can load that font in the usual way,

by specifying a filename:

\definefont

[MyRuleFont]

[file:fonts-demo-rule.lua*default sa 1]

S

﻿

wh

﻿

n w

﻿﻿

s

﻿﻿

t w

﻿

g

﻿

t t

﻿

xt t

﻿

p

﻿

s

﻿

t wh

﻿

r

﻿﻿

ll v

﻿

w

﻿

ls

﻿

r

﻿

r

﻿

pl

﻿

c

﻿

d b

﻿

r

﻿

l

﻿

s. Th

﻿﻿

ct

﻿﻿

lt

﻿

xt

﻿

nj

﻿

ct

﻿﻿

n (

﻿

n th

﻿﻿

r

﻿

) m

﻿

k

﻿

s

﻿

t p

﻿

ss

﻿

bl

﻿

t

﻿

c

﻿

t

﻿

nd p

﻿

st

﻿

th

﻿

t

﻿

xt fr

﻿

m th

﻿

pdf

d

﻿

c

﻿

m

﻿

nt b

﻿

t wh

﻿

l

﻿

wr

﻿

t

﻿

ng th

﻿

s (m

﻿

d 2016)

﻿

mupdf b

﻿

s

﻿

d v

﻿﻿

w

﻿

r c

﻿﻿

ldn’t h

﻿

ndl

﻿﻿

t

﻿

nd

acrobat h

﻿

d pr

﻿

bl

﻿

ms w

﻿

th sp

﻿

c

﻿

s.

\definefontfeature

[myrulefont]

[default]

[original=file:texgyrepagella-regular.otf]

\definefont

[MyRuleFont]

[file:fonts-demo-rule.lua*myrulefont]

Th

﻿

pr

﻿

-0.090

v

﻿﻿﻿

s c

﻿

d

﻿

d

﻿

m

﻿

ns
-0.135

tr
-0.135

﻿

t

﻿

s h

﻿

-0.225

w w
-0.360

﻿

c

﻿

n p

﻿

ss

﻿

f
-0.135

﻿

ntn

﻿

m

﻿

t
-0.090

﻿

b

﻿﻿

s

﻿

d

﻿

s b

﻿

s

﻿

t
-0.090

﻿

t
0.135

h

﻿

g
-0.180

﻿

n

﻿

r
-0.135

﻿

t
-0.090

﻿

r
-0.540

.
In c

﻿

s

﻿﻿

-0.315

﻿﻿

w
-0.360

﻿

nd

﻿

r h

﻿

-0.225

w f
-0.135

﻿﻿

t

﻿

r

﻿

s b

﻿

h

﻿

-0.315

v
-0.360

﻿

w

﻿

t
0.135

h s

﻿

ch f
-0.135

﻿

nts:

﻿

s

﻿

-0.315

﻿﻿

c

﻿

n s

﻿﻿

h

﻿

r

﻿

, f
-0.135

﻿

nt k
-0.090

﻿

r
0.135

ns

﻿

r

﻿﻿

nd

﻿﻿

d

﻿

nj

﻿

ct

﻿

d. C

﻿

m
-0.180

p

﻿

r

﻿

d t
-0.090

﻿

Dejavu, t
0.135

h

﻿

Pagella f
-0.135

﻿

nt h

﻿

s q

﻿﻿

t

﻿

s

﻿

m

﻿

m

﻿

r

﻿

k
-0.090

﻿

r
0.135

ns.

\definefontfeature

[myrulefont]

[default]

[original=file:texgyrepagella-regular.otf,

option=line]

\definefont

[MyRuleFont]

[file:fonts-demo-rule.lua*myrulefont]

H

﻿

r

﻿

w

﻿

sh

﻿

w h

﻿

w th

﻿

p

﻿

ss

﻿

d option

﻿

s h

﻿

ndl

﻿

d. B

﻿

c

﻿﻿

s

﻿

w

﻿

n

﻿

l

﻿

ng

﻿

r h

﻿

v

﻿﻿

r

﻿

l

﻿

t

﻿﻿

nsh

﻿

p w

﻿

th th

﻿

h

﻿﻿

ght

﻿

nd d

﻿

pth, th

﻿

r

﻿﻿

l t

﻿

xt

﻿

s

﻿

b

﻿

t h

﻿

rd

﻿

r t

﻿

g

﻿﻿

ss.

4.6 Old fuzzy fonts

Most natural is to use OpenType or Type1 fonts. In the case of Type1 a matching pair

of afm and pfb files is needed. However, there can be situations where there is only a

tfm and pfb file (or not even that: just a bitmap file).

I will not show specimen here, simply because I don’t have (nor want to have) the

fonts needed in my development and production environments. The implementation

was tested with a specific czech computer modern font.

61

Methods

In a traditional (8 bit) setup we have an tfm file, a pfb file and a enc file. The order of

the characters in the tfm file directly relates to the input encoding. The enc file relates

that order to the order in the pfb file. The mapping from input encoding to font shape

encoding happens via glyph names. In the map file we tell what pfb file to use with what

enc file.

However, in the case of the csr.tfm and csr.pfb file it looks like in practice the enc file

is not used, probably because in the pfb file the standard encoding matches the order in

the tfm file. This is of course a rather dangerous assumption, especially if information

lacks to check it.

The next example definitions demonstrate several paths to go from Unicode input (source

file) to rendered shapes. As this is mostly meant for generic usage we use the low level

definition code (ConTEXt users are not supposed to use that method).

\font\foo=file:csr10.tfm:reencode=auto;mode=node;liga=yes;kern=yes

This is the easiest way. We use the tfm file for dimensions, ligatures and kerns. The auto

option will use the pfb file to identify the right mapping. We enable ligatures and kerns

and we use node mode. This indicates that we’re dealing with a pseudo OpenType setup

here. You can provide a pfb file with the pfbfile feature in case the name differes from

the tfm file.

\font\foo=file:csr10.tfm:reencode=csr.enc;mode=node;liga=yes;kern=yes

Now we use the enc file for the encoding vector but we still need the pfb file for mapping

that onto the right shape. You probably can best use auto instead.

\font\foo=file:csr10.tfm:reencode=csr.enc;bitmap=yes;mode=node;liga=yes;kern=yes

Here we force bitmap shapes. This is a bit tricky as a different code path is followed in

the backend. Unless the situation is too confusing, a proper ToUnicode is included in

the output, so that cut and paste works all right, given that the viewer is able to deal

with it (always use Acrobat as reference).

Why do we need modes and/or to simulate OpenType behaviour? Indeed it seldom makes

sense with tfm files but in this particular case teh font has a quote cheat.

\startluacode

fonts.handlers.otf.addfeature {

name = "czechdqcheat",

type = "substitution",

data = {

quotedblright = "csquotedblright",

},

}

\stopluacode

62

Methods

We could make this a language specific feature but as this font is not meant for other

languages it makes no sense to do so. This feature is enabled with:

czechdqcheat=yes

This will replace one quote by another with different side bearings. Of course a properly

bounded quote with proper kerning makes much more sense. A test case is:

\quotedblleft X\quotedblright

\quotedblright X\quotedblleft

63

Features

5 Features

5.1 Introduction

If you look into fonts, it is hard not to bump into kerns (spacing between characters) and

ligatures (combining multiple shapes into one) and apart from monospaced fonts most

Type1 fonts have them. In the OpenType universe we call these properties features and

in such a font there can be many such features.

For those who grew up with TEX or still remember the times of eight bit fonts, it is no

secret that TEX macro packages did some magic to get most out of a font: replacing

missing glyphs, fixing metrics, using commands to access shapes that had a weird code

point, to mention a few. As there is absolutely no guarantee that an OpenType font does

better, there is a good reason to continue messing around with fonts. After all, it’s what

TEX users seem to like: control.

So, when we started writing support for OpenType quite soon a mechanism has been

created that permits adding our own features to the repertoire that comes with a font.

Because OpenType features demand a configuration and control mechanism, it made

sense to generalize that and provide a single interface.

This means that when we talk about font features, we don’t limit ourselves to those

provided by the font, but also those provided by ConTEXt. As with font features, they

are enabled per font.

Some of the extra features are sort of generic, others are very font specific and their

properties are somewhat bound to a font. Such features are defined in a font goodie

files. Consider these goodies a font extension mechanism.

Some features need information that only the engine can provide. This is why we have

analyzers. Some are generic, others are bound to scripts. They come in action before

features are applied. Rather special is applying features in combination with paragraph

building. This is something very specific to ConTEXt but it depends on properties of the

font. It falls into the category ‘optimizing’.

It is clear that when we talk of features many aspects of a font play a role. In this chapter

we will discuss all the mentioned aspects. There is quite a bit of Lua code shown in this

chapter, but don’t worry, users will seldom need to tweak fonts this way. On the other

hand it’s good to see what is possible.

5.2 Regulars

5.2.1 Introduction

The OpenType specification, which can be found on the Microsoft website is no easy

reading. Some of the concepts are easy to understand, like relative positioning (that we

64

Features

call kerning in TEX) or ligature substitution (as we have ligatures in TEX too). It makes

no sense to discuss the bitwise composition of an OpenType or TrueType file here. First

of all, all we get to see is a Lua table, and in ConTEXt even that one gets sanitized and

optimized into a more useable table. However, as the data that comes with a font is a

good indication of what a font is capable of, we will discuss some of it in an appendix.

In this section we will discuss the basic principles and categories of features.

5.2.2 Feature sets

Because in the next examples we will demonstrate features, we need to know how we

can tell ConTEXt what features to use. Although you can add explicit feature definitions

to a font specification, I strongly advice you not to do this but use the more abstract

mechanism of feature sets. These are defined as follows:

\definefontfeature

[MyFeatureSet]

[alpha=yes,

beta=no,

gamma=123]

Such a set is bound to a font with the * specifier, as in:

\definefont

[MyFontInstance]

[MyNiceFont*MyFeatureSet at 12pt]

In most cases the already defined default feature set will suffice. It often makes sense

to use that one as base for new definitions:

\definefontfeature

[MyFeatureSet]

[default]

[alpha=yes,

beta=no,

gamma=123]

The second argument can be a list, as in:

\definefontfeature

[MyFeatureSet]

[MyFirstSet,MySecondSet]

[alpha=yes,

beta=no,

gamma=123]

Of course you need to know what features a font support, and one way to find out is:

mtxrun --script font --list --info --pattern=pagella

65

Features

Don’t be too surprised if different fonts show different features and even similar fea-

tures can be implemented differently. Sometimes you really need to know the font, but

fortunately many fonts come with examples.

There are many features and there values are kept with the font when it gets defined.

This means that when you change a featureset, it will not affect already defined fonts.

Because fonts are often defined on demand, you need to be aware of the fact that a rede-

finition of a featureset can have consequences for already defined fonts. For instance,

a bodyfont switch only sets up the fonts and delays defining them.

Although features are a sort of abstractions it can be interesting to see what features

and values are actually used:

\usemodule[fonts-features] \showusedfeatures

You will notice that we have more features than OpenType fonts can offer. This is be-

cause in ConTEXt features is a more general concept.

feature description value internal

aalt access all alternates yes true

abvm above-base mark positioning yes true

abvs above-base substitutions yes true

akhn akhands yes true

analyze + analysis of character classes yes true

anum + arabic digits yes true

autolanguage - position position

autoscript - position position

blwf below-base forms yes true

blwm below-base mark positioning yes true

blws below-base substitutions yes true

calt contextual alternates yes true

ccmp glyph composition/decomposition yes true

char-ligatures + unicode char specials to ligatures yes true

cjct conjunct forms yes true

clig contextual ligatures no false

yes true

cmcp - yes true

compat-ligatures + unicode compat specials to ligatures yes true

compose + additional composed characters yes true

curs cursive positioning yes true

dist distances yes true

dlig discretionary ligatures no false

yes true

expansion + apply hz optimization quality quality

extend + scale glyphs horizontally .8 0.8

1.2 1.2

66

Features

features + features no false

fin2 terminal forms #2 yes true

fin3 terminal forms #3 yes true

fina terminal forms yes true

goodies + goodies on top of built in features dingbats dingbats

half half forms yes true

haln halant forms no false

yes true

init initial forms yes true

isol isolated forms yes true

js16 - yes true

keepligatures + keep ligatures in letterspacing auto auto

kern kerning yes true

lang - japanese japanese

liga standard ligatures no false

yes true

ljmo leading jamo forms yes true

lnum lining figures no false

locl localized forms yes true

mark mark positioning yes true

mathalternates + additional math alternative shapes yes true

mathitalics + additional math italic corrections yes true

mathnolimitsmode + influence nolimits placement 0,800 0,800

mathsize + apply mathsize specified in the font yes true

med2 medial forms #2 yes true

medi medial forms yes true

missing + missing symbols yes true

mkmk mark to mark positioning yes true

mode + mode base base

node node

none none

nostackmath + disable math stacking mechanism yes true

nukt nukta forms yes true

onum old style figures no false

yes true

option - line line

original - file:texgyrepagella-regular.otf file:texgyrepagella-regular.otf

pnum proportional figures no false

yes true

pref pre-base forms yes true

pres pre-base substitutions yes true

protrusion + l/r margin character protrusion quality quality

pstf post-base forms yes true

psts post-base substitutions yes true

67

Features

rkrf rakar forms yes true

rlig required ligatures no false

yes true

rphf reph form yes true

rtlm right to left math yes true

salt stylistic alternates yes true

slant + slant glyphs .2 0.2

smcp small capitals no false

yes true

ss01 - yes true

ss03 - yes true

ss10 - yes true

ss12 - yes true

ss15 - yes true

ss16 - yes true

ss19 - yes true

ss24 - yes true

ss25 - yes true

ss26 - yes true

ss27 - yes true

ss31 - yes true

ss34 - yes true

ss35 - yes true

ss36 - yes true

ss37 - yes true

ss38 - yes true

ss41 - yes true

ss42 - yes true

ss43 - yes true

ss60 - yes true

ssty script style 1 1

2 2

no false

sups superscript yes true

tjmo trailing jamo forms yes true

tlig + tex ligatures yes true

tnum tabular figures no false

yes true

trep + tex replacements yes true

unicoding + adapt unicode table yes true

vatu vattu variants yes true

vjmo vowel jamo forms yes true

zero slashed zero yes true

68

Features

5.2.3 Main categories

There are two (but potentially more) main groups of features: those that deal with sub-

stitution, and those that lead to positioning. It is not really needed to know the gory

details, but it helps to know at least a bit about them as it can help to track down issues

with fonts.

There are several substitutions possible:

• a single substitution replaces one glyph by another

• a multiple substitution replaces one glyph by one or more

• a ligature substitution replaces multiple glyphs by one glyph

• an alternate substitution replaces one glyph by one out of a set

Like it or not, but these categories are not always used as intended: they just are a way

of replacing one or more glyphs by one or more other glyphs. This means that when for

instance ij gets replaced by one glyph (given that the font supports it) a ligature sub-

stitution is used, even when in fact we have to do with a diftong that can be represented

by one character.

No matter what features you will use, keep in mind that they are nothing more than

a combination of substitutions and positioning directives. So, the de facto standard

ligature building feature liga indeed uses a ligature substitution, but other features

with names that resemble no ligatures might use this substitution as well.

An example of a single substitution is an oldstyle (onum) although it can as well be im-

plemented as a choice out of alternate glyphs. Another example is smallcaps (smcp).

Nowdays these are more or less standard features for a grown up font, while in the past

they came as separate fonts. So, instead of loading an extra font, one sticks to one and

selects the feature that does the substitution.

A second category concerns relative positioning. Again we have several variants:

• a single positioning moves a glyph over one of two axis and can change the width

and/or height

• a pair positioning also moved glyphs but concerns two adjacent glyphs

• a cursive positioning operates on a range of glyphs and is used to visually connect

them

In addition there are three ways to anchor marks onto glyphs:

• a mark can be anchored on a base glyph

• a mark can be anchored on a specific (visual) component of a ligature

• a mark can be anchored on another mark

In base mode the single, alternate and ligature substitutions can rather easily be mapped

onto the traditional TEX font handling mechanism and this is what happens in base mode.

A single substitution is just another instance of a glyph so there we just replace the

69

Features

original index into the glyph table by another one. In the case of an alternate we change

the default index into one of several possible replacements in the alternate set. Ligatures

can be mapped onto TEXs ligature mechanism. The single positioning maps nicely on

TEXs kerning mechanism and pairwise positioning is not applicable in base mode. In

node mode we don’t do any remapping at loading time but delegate that to Lua when

processing the node lists.

Marks are special in the sense that they normally only occur in scripts that also use sub-

stitution and positioning which in turn means that some more housekeeping is involved.

After all, we need to keep track to what a mark applies. Of course a font can provide reg-

ular latin accents as marks but that is ill practice because cut and paste might not work

out as expected. A proper font will support composed characters and provide glyphs

that have the accents built in. Marks are not dealt with in base mode.

Talking of complex scripts, the above set of operations is far from enough. Take for

instance Arabic, where a sequence of 5 characters with 3 marks can easily become

two glyphs glued together with two marks only. In the process we can have single

substitutions, ligatures being built, marks being anchored and glyphs being cursively

positioned. But, in order to do this well, some contextual analysis has to be done as

well. Again we have several variants of this:

• with contextual substitution a replacement takes place depending on a matching se-

quence of glyphs, optionally preceded or followed by matches

• with contextual positioning shifting and anchoring happens based on a matching se-

quence of glyphs, optionally preceded or followed by matches

• multiple contextual substitutions or positionings can be chained together

• this can also happen in the reverse order (for right-to-left scripts)

In practice there is no fundamental difference between these and we can collapse them

all in a sequence of lookups resulting in a sequence of whatever other manipulation is

wanted.

Given this, what is a feature? It’s mostly a sequence of actions expressed in the above.

And although there is a whole repertoire of semi-standardized features like liga and

onum, there is no real hard coded support for them in ConTEXt. Instead we have a generic

feature processor that deals with all of them. A feature, say abcd, has a definition that

boils down to a sequence of lookups. A lookup is just a name that is associated to one of

the mentioned actions. So, abcd can do a decomposition (multiple substitution), then a

replacement (single substitution) based on neighbouring glyphs, then do some ligature

building (ligature substitution) and finally position the resulting glyphs relative to each

other (like cursive positioning and anchoring marks).

Imagine that we start out with 5 characters in the input. Instead of real glyphs we

represent them by rectangles. The third one is a mark.

70

Features

1

2

3

4 5

In the next variant we see that four and five have been replaced by number six. This is

a ligature replacement.

1

2

3

6

The mark is an independent entity. Sometimes it has a width, sometimes it hasn’t. In

both cases we can position it. Here we move the shape left and down. There are two

ways to do this: simple pairwise kerning but better is to use anchors. Here we have one

anchor per shape but there can be many.

1

2

3

6

Next we apply some kerning. Of course the anchored marks need to move as well.

71

Features

1

2

3

6

Alternatively we can connect the shapes in a cursive way. The name cursive is some-

what misleading as it just boils down to shifting. The cursive indicates that the shifts

accumulate within a word.

1
2

3

6

5.2.4 Single substitution

Single substitutions are probably the most used ones. For instance, when you ask for

small caps, a lot of glyphs get replaced. When using oldstyle numerals only digits get

replaced but even then each glyph has to be checked. This can be demonstrated with

the Latin Modern fonts.

$123.45 $123.45
As you can see here, Latin Modern has an oldstyle dollar sign. If you don’t like that

one, you’re in troubles as it comes with the rest of the oldstyles. The only way out is to

apply the oldstyle numerals to digits only which involves more tagging than you might

be willing to add. So, whenever you choose a substitution, be aware that you have not

that much control over what gets substituted: it’s the font that drives it. Here are some

examples:

\definefontfeature[capsandold][smallcaps,oldstyle]

\showotfcomposition{dejavu-serif*capsandold at 24pt}{}{It's 2013!}

\showotfcomposition{cambria*capsandold at 24pt}{}{It's 2013!}

\showotfcomposition{lmroman10regular*capsandold at 24pt}{}{It's 2013!}

72

Features

\showotfcomposition{texgyrepagellaregular*capsandold at 24pt}{}{It's 2013!}

font 65: DejaVuSerif.ttf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, onum=yes, script=dflt, smcp=yes, spacekern=yes,

tlig=yes, trep=yes

step 1 It's 2013! U+49:I U+74:t U+27:' U+73:s [glue]

U+32:2 U+30:0 U+31:1 U+33:3 U+21:!
feature 'trep', type 'gsub_single', lookup 'trep', replacing

U+00027 (quotesingle) by single U+02019 (quoteright)

result It’s 2013! U+49:I U+74:t U+2019:’ U+73:s [glue]

U+32:2 U+30:0 U+31:1 U+33:3 U+21:!
font 66: cambria.ttf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, onum=yes, script=latn, smcp=yes, spacekern=yes,

tlig=yes, trep=yes

step 1 It's 2013! U+49:I U+74:t U+27:' U+73:s [glue] U+32:2
U+30:0 U+31:1 U+33:3 U+21:!
feature 'trep', type 'gsub_single', lookup 'trep', replacing

U+00027 by single U+02019

step 2 It’s 2013! U+49:I U+74:t U+2019:’ U+73:s [glue]

U+32:2 U+30:0 U+31:1 U+33:3 U+21:!
feature 'smcp', type 'gsub_single', lookup 's_s_7', replacing

U+00074 by single U+F0015

feature 'smcp', type 'gsub_single', lookup 's_s_7', replacing

U+00073 by single U+F0014

step 3 Ię’Ę 2013! U+49:I U+F0015:ę U+2019:’ U+F0014:Ę
[glue] U+32:2 U+30:0 U+31:1 U+33:3 U+21:!

73

Features

feature 'onum', type 'gsub_single', lookup 's_s_23', replacing

U+00032 by single U+F0147

feature 'onum', type 'gsub_single', lookup 's_s_23', replacing

U+00030 by single U+F0145

feature 'onum', type 'gsub_single', lookup 's_s_23', replacing

U+00031 by single U+F0146

feature 'onum', type 'gsub_single', lookup 's_s_23', replacing

U+00033 by single U+F0148

result Ię’Ę ͟͠͞͡! U+49:I U+F0015:ę U+2019:’ U+F0014:Ę
[glue] U+F0147:͠ U+F0145:͞ U+F0146:͟ U+F0148:͡ U+21:!

font 67: lmroman10-regular.otf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, onum=yes, script=dflt, smcp=yes, spacekern=yes,

tlig=yes, trep=yes

step 1 It's 2013! U+49:I U+74:t U+27:' U+73:s [glue] U+32:2
U+30:0 U+31:1 U+33:3 U+21:!
feature 'trep', type 'gsub_single', lookup 'trep', replacing

U+00027 (quotesingle) by single U+02019 (quoteright)

step 2 It’s 2013! U+49:I U+74:t U+2019:’ U+73:s [glue]

U+32:2 U+30:0 U+31:1 U+33:3 U+21:!
feature 'onum', type 'gsub_single', lookup 's_s_4', replacing

U+00032 (two) by single U+0F732 (two.oldstyle)

feature 'onum', type 'gsub_single', lookup 's_s_4', replacing

U+00030 (zero) by single U+0F730 (zero.oldstyle)

feature 'onum', type 'gsub_single', lookup 's_s_4', replacing

U+00031 (one) by single U+0F731 (one.oldstyle)

feature 'onum', type 'gsub_single', lookup 's_s_4', replacing

U+00033 (three) by single U+0F733 (three.oldstyle)

74

Features

result It’s 2013! U+49:I U+74:t U+2019:’ U+73:s [glue]

U+F732:2 U+F730:0 U+F731:1 U+F733:3 U+21:!
font 68: texgyrepagella-regular.otf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, onum=yes, script=dflt, smcp=yes, spacekern=yes,

tlig=yes, trep=yes

step 1 It's 2013! U+49:I U+74:t U+27:' U+73:s [glue] U+32:2
U+30:0 U+31:1 U+33:3 U+21:!
feature 'trep', type 'gsub_single', lookup 'trep', replacing

U+00027 (quotesingle) by single U+02019 (quoteright)

step 2 It’s 2013! U+49:I U+74:t U+2019:’ U+73:s [glue]

U+32:2 U+30:0 U+31:1 U+33:3 U+21:!
feature 'smcp', type 'gsub_single', lookup 's_s_3', replacing

U+00074 (t) by single U+0F774 (t.sc)

feature 'smcp', type 'gsub_single', lookup 's_s_3', replacing

U+00073 (s) by single U+0F773 (s.sc)

step 3 It’s 2013! U+49:I U+F774:t U+2019:’ U+F773:s [glue]

U+32:2 U+30:0 U+31:1 U+33:3 U+21:!
feature 'onum', type 'gsub_single', lookup 's_s_5', replacing

U+00032 (two) by single U+0F732 (two.oldstyle)

feature 'onum', type 'gsub_single', lookup 's_s_5', replacing

U+00030 (zero) by single U+0F730 (zero.oldstyle)

feature 'onum', type 'gsub_single', lookup 's_s_5', replacing

U+00031 (one) by single U+0F731 (one.oldstyle)

feature 'onum', type 'gsub_single', lookup 's_s_5', replacing

U+00033 (three) by single U+0F733 (three.oldstyle)

result It’s 2013! U+49:I U+F774:t U+2019:’ U+F773:s [glue]

U+F732:2 U+F730:0 U+F731:1 U+F733:3 U+21:!

75

Features

5.2.5 Multiple substitution

In a multiple substitution a sequence of characters (glyphs) gets replaced by another

sequence. In fact, you might wonder why one--to--one, multiple--to--one and multiple--to--

multiple are not all generalized into this variant. Efficiency is probably the main reason.6

For instance the many--to--one is often used for ligatures (liga) and as a consequence

liga is often misused also for non--ligatures.

One usage of multiple replacements is to avoid and or undo other replacements. In

the next example we see a language dependent fi ligature. Take the dutch ij and ie

diftongs. Here we need to prevent the i becoming combined with the f as it would look

weird. Among the solutions for this are: context dependent ligatures (which involves a

lot of rules), or multiple to multiple replacements (looking at the fij sequence).

\definefontfeature[default-fijn-en][default][language=eng,script=latn]

\definefontfeature[default-fijn-nl][default][language=nld,script=latn]

\definedfont[lmroman10-regular*default-fijn-en]\en effe fijn fietsen

\definedfont[lmroman10-regular*default-fijn-nl]\nl effe fijn fietsen

This gives:

effe fijn fietsen
effe fijn fietsen
Of course from this result one cannot see what (combination of) substitution(s) was used,

but it’s a nice exercise to work out a solution.

Multiple substitutions are mostly used for scripts more complex than latin or special

fonts like Zapfino where advanced contextual analysis happens.

5.2.6 Alternate substitution

Alternates are simple one--to--one substitutions. Popular examples are small capitials

and oldstyle numerals.

A nice application of alternates is the punk font. This font is a Knuth original. As part

of experimenting with the MetaPost library in the early days of LuaTEX and MkIV, run-

time randomization was implemented. However, that variant used virtual fonts and was

6 Isn’t it strange that complex mechanisms are designed to save a few bytes while at the same time we produce

ridiculous large pictures with cameras.

76

Features

somewhat resource hungry. So, in a later stage Khaled Hosny made an OpenType ver-

sion using MetaPost output. Randomization is implemented through the rand feature.

In MkIV the rand feature is not really special and behaves just like any other (stylistic)

alternate. The only difference is that for this feature a value of yes equals random. This

also means that any feature that uses alternates use them randomly.

\definefontfeature[punknova-first] [mode=node,kern=yes,rand=first]

\definefontfeature[punknova-2] [mode=node,kern=yes,rand=2]

\definefontfeature[punknova-yes] [mode=node,kern=yes,rand=yes]

\definefontfeature[punknova-random][mode=node,kern=yes,rand=random]

We use this is:

The original punk font is designed by Don Knuth: xxxxxxxxxxxx

\definedfont[punknova-regular at 15pt] \getbuffer[sample]

\definedfont[punknova-regular*punknova-first at 15pt] \getbuffer[sample]

\definedfont[punknova-regular*punknova-2 at 15pt] \getbuffer[sample]

\definedfont[punknova-regular*punknova-yes at 15pt] \getbuffer[sample]

\definedfont[punknova-regular*punknova-random at 15pt] \getbuffer[sample]

In order to illustrate the variants we show a sequence of x’s. There are upto ten different

variants per characters.

The original punk font is designed by Don Knuth: xxxxxxxxxxxx
The original punk font is designed by Don Knuth: xxxxxxxxxxxx
The original punk font is designed by Don Knuth: xxxxxxxxxxxx
The original punk font is designed by Don Knuth: xxxxxxxxxxxx
The original punk font is designed by Don Knuth: xxxxxxxxxxxx
There is one pitfall with random alternates: if each run leads to a different outcome,

we can end up in oscillation: different shapes give different paragraphs and we can get

more pages or cross references etc. that can end up differently so this is why ConTEXt

always uses the same random seed (which gets reset when you purge the auxiliary files.

5.2.7 Ligature substitution

A ligature is traditionally a combination of several characters into one. Popular ligatures

are ‘fi’, ‘fl’, ‘ffi’ and , ‘ffl’. Occasionally we see ‘æ’, ‘œ’ and some more. Often ligatures

are language dependant. For instance in languages like Dutch and German there can be

compound words where one part ends with an f and the next part starts with an f and

that looks bad or at least not intuitive. To some extent one can wonder if this tradition of

ligatures is a good one. It definitely made sense ages ago, but I wouldn’t be surprised if

they are often added to fonts because the encoding vectors have them. After all, nothing

prevents to go ahead and come up with way more ligatures.

77

Features

There can be many ligature features in a font. Although we support arbitrary features,

that is: those not registered as being official one way or the other, the following are

known by description:

clig contextual ligatures

dlig discretionary ligatures

hlig historical ligatures

liga standard ligatures

rlig required ligatures

tlig traditional tex ligatures

The default feature set has type liga as wel as the TEX specific tlig that replaces

successive hyphen signs into en- and emdashes. The arabic feature set also has rlig

enabled.

Now, there is one thing you should realize when we discuss specific features and the

underlaying mechanisms: there is no real relationship between the features’s name and

the mechanisms used: any feature can use any underlying mechanism or combination.

This is why deep down we see that what is internally called ligature gets used for any

purpose where multiple--to--one replacements happen, and why the liga feature can use

single substitutions or alternates to swap in another rendering so that the dot of the i

stays free of the preceding f. And for some fonts relative positioning can be used to

achieve a ligature effect.

The next examples demonstrate how the liga feature deals with ffi. Possible solutions

are: replace all three at once, replace the first two first and in a next step, combine a

ligature and following character, replace one or more components by variants that have

no interference with the dot of the ‘i’.

\showotfcomposition{dejavu-serif*default at 48pt}{}{ffi}

\showotfcomposition{cambria*default at 48pt}{}{ffi}

\showotfcomposition{lmroman10regular*default at 48pt}{}{ffi}

\showotfcomposition{texgyrepagellaregular*default at 48pt}{}{ffi}

font 75: DejaVuSerif.ttf @ 48.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=dflt, spacekern=yes, tlig=yes, trep=yes

step 1 ffi U+66:f U+66:f U+69:i
feature 'liga', type 'gsub_ligature', lookup 's_s_3', replacing

U+00066 (f) upto U+00066 (f) by ligature U+0FB00 case 2

78

Features

result ffi U+FB00:ff U+69:i
font 76: cambria.ttf @ 48.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=latn, spacekern=yes, tlig=yes, trep=yes

step 1 ffi U+66:f U+66:f U+69:i
feature 'liga', type 'gsub_contextchain', chain lookup

's_s_17', index 0, replacing single U+00066 by U+F016D

result fϐi U+66:f U+F016D:ϐ U+69:i
font 77: lmroman10-regular.otf @ 48.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=dflt, spacekern=yes, tlig=yes, trep=yes

step 1 ffi U+66:f U+66:f U+69:i
feature 'liga', type 'gsub_ligature', lookup 's_s_8', replacing

U+00066 (f) upto U+00066 (f) by ligature U+0FB00 (f_f) case 2

step 2 ffi U+FB00:ff U+69:i
feature 'liga', type 'gsub_ligature', lookup 's_s_9', replacing

U+0FB00 (f_f) upto U+00069 (i) by ligature U+0FB03 (f_f_i)

case 2

result ffi U+FB03:ffi

79

F
-0.492

eatures

font 78: texgyrepagella-regular.otf @ 48.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=dflt, spacekern=yes, tlig=yes, trep=yes

step 1 ffi U+66:f U+66:f U+69:i
feature 'liga', type 'gsub_ligature', lookup 's_s_9', replacing

U+00066 (f) upto U+00066 (f) by ligature U+0FB00 (f_f) case 2

step 2 ffi U+FB00:ff U+69:i
feature 'liga', type 'gsub_ligature', lookup 's_s_10',

replacing U+0FB00 (f_f) upto U+00069 (i) by ligature U+0FB03

(f_f_i) case 2

result ffi U+FB03:ffi
5.2.8 Single positioning

Single positioning is also known as kerning, moving characters closer together so that

we get a more uniformly spaced sequence of glyphs. It is a mistake to think that kerning

is always needed! There are fonts that have hardly any kerns or no kerns at all and still

look good.

Dejavu Serif: W
-0.652

e thrive in information--thick worlds because of our marvelous and everyday capac-

ity to select, edit, single out, structure, highlight, group, pair
-0.879

, merge, harmonize, synthesize, focus,

organize, condense, reduce, boil down, choose, categorize, catalog, classify
-1.063

, list, abstract, scan,

look into, idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over
-0.879

, sort, integrate,

blend, inspect, filter
-0.879

, lump, skip, smooth, chunk, average, approximate, cluster
-0.879

, aggregate, outline,

summarize, itemize, review
-0.949

, dip into, flip through, browse, glance into, leaf through, skim, refine,

enumerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from the

goats. (E.R. Tufte)

Cambria: W
-0.527

e thri
-0.180

v
-0.176

e in inf
-0.110

ormation--thick w
-0.114

or
-0.044

lds because of our marv
-0.176

elous and e
-0.088

v
-0.176

ery
-0.176

da
-0.176

y capacity t
-0.079

o se-

lect
0.132

, edit
0.132

, sing
-0.062

le out
0.132

, structur
-0.132

e, hig
-0.062

hlig
-0.062

ht
0.132

, gr
-0.132

oup, pair
-0.879

, mer
-0.062

ge, harmonize, s
-0.066

ynthesize, f
-0.110

ocus, or
-0.062

g
-0.075

anize, con-

dense, r
-0.132

educe, boil do
-0.044

wn, choose, cat
-0.079

egorize, catalog, classify
-0.747

, list
0.132

, abstr
-0.154

act
0.132

, scan, look int
-0.079

o, idealize, iso-

lat
-0.079

e, discriminat
-0.079

e, distinguish, scr
-0.132

een, pigeonhole, pick o
-0.132

v
-0.176

er
-0.879

, sort
0.132

, int
-0.079

egr
-0.154

at
-0.079

e, blend, inspect
0.132

, ϐilt
-0.079

er
-0.879

, lump,

skip, smooth, chunk, a
-0.176

v
-0.176

er
-0.154

age, appr
-0.132

o
-0.132

ximat
-0.079

e, clust
-0.079

er
-0.879

, aggr
-0.132

eg
-0.075

at
-0.079

e, outline, summarize, it
-0.079

emize, r
-0.132

e
-0.088

view
-0.659

, dip

80

Features

int
-0.079

o, ϐlip thr
-0.132

oug
-0.062

h, br
-0.132

o
-0.044

w
-0.075

se, g
-0.062

lance int
-0.079

o, leaf thr
-0.132

oug
-0.062

h, skim, r
-0.132

eϐine, enumer
-0.154

at
-0.079

e, g
-0.062

lean, s
-0.066

ynopsize, winno
-0.044

w

the w
-0.088

heat fr
-0.132

om the chaff and separ
-0.154

at
-0.079

e the sheep fr
-0.132

om the goats. (E.R. T
-0.220

uft
-0.079

e)

Latin Roman Regular: W
-0.830

e thriv
-0.280

e in information--thic
-0.280

k w
-0.280

orlds b
0.280

ecause of our marv
-0.280

elous and
ev

-0.280

eryda
-0.280

y capacit
-0.280

y to select, edit, single out, structure, highligh
-0.280

t, group, pair, merge, harmo-
nize, syn

-0.280

thesize, fo
0.280

cus, organize, condense, reduce, b
0.280

oil do
-0.280

wn, c
-0.280

ho
0.280

ose, categorize, catalog,
classify

-0.830

, list, abstract, scan, lo
0.280

ok in
-0.280

to, idealize, isolate, discriminate, distinguish, screen, pi-
geonhole, pic

-0.280

k o
-0.280

v
-0.280

er, sort, in
-0.280

tegrate, blend, insp
0.280

ect, filter, lump, skip, smo
0.280

oth, c
-0.280

h
-0.280

unk, a
-0.280

v
-0.280

erage,
appro

-0.280

ximate, cluster, aggregate, outline, summarize, itemize, review, dip in
-0.280

to, flip through,
bro

-0.280

wse, glance in
-0.280

to, leaf through, skim, refine, en
-0.280

umerate, glean, synopsize, winno
-0.280

w the
wheat from the c

-0.280

haff and separate the sheep from the goats. (E.R. T
-0.830

ufte)

Lucida Bright: We thrive in information--thick worlds because of our marvelous and everyday capacity
to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, orga-
nize, condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize, item-
ize, review, dip into, flip through, browse, glance into, leaf through, skim, refine, enumerate, glean,
synopsize, winnow the wheat from the chaff and separate the sheep from the goats. (E.R. Tufte)

P
-0.360

ag
-0.180

ella R
-0.180

egular
-0.180

: W
-0.585

e t
0.135

hriv
-0.360

e in inf
-0.135

or
0.090

mation--t
0.135

hick w
-0.360

or
-0.270

lds because of our mar
0.180

v
-0.360

elous and e
-0.090

v
-0.360

er
0.135

yda
-0.360

y ca-
pacity t

-0.090

o select, edit, single out, s
-0.135

tr
0.090

ucture, highlight, g
0.135

roup, pair
-0.630

, mer
-0.090

g
-0.180

e, har
0.090

monize, synt
0.135

hesize, f
-0.135

ocus,
or

-0.090

g
-0.135

anize, condense, reduce, boil do
-0.225

wn, choose, categorize, catalog, classify
-0.945

, lis
-0.135

t, abs
-0.135

tr
-0.135

act, scan, look
int

-0.090

o, idealize, isolate, discriminate, dis
-0.135

tinguish, screen, pig
-0.180

eonhole, pick o
-0.225

v
-0.360

er
-0.630

, sort, integ
0.135

r
-0.135

ate, blend,
inspect, filter

-0.630

, lum
-0.180

p, skip, smoo
-0.135

t
0.135

h, chunk
-0.180

, a
-0.315

v
-0.360

er
-0.135

ag
-0.180

e, appro
-0.270

ximate, clus
-0.135

ter
-0.630

, agg
0.135

reg
-0.135

ate, outline, summa-
rize, itemize, re

-0.090

vie
-0.090

w
-0.945

, dip int
-0.090

o, flip t
0.135

hrough, bro
-0.225

w
-0.135

se, glance int
-0.090

o, leaf t
0.135

hrough, skim, refine, enumer
-0.135

ate,
glean, synopsize, winno

-0.225

w t
0.135

he wheat from t
0.135

he chaff and separ
-0.135

ate t
0.135

he sheep from t
0.135

he goats. (E.R. T
-0.990

uf
0.090

te)

The next couple of examples show the action for a few words:

font 83: DejaVuSerif.ttf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=dflt, spacekern=yes, tlig=yes, trep=yes

step 1 We thrive U+57:W U+65:e [glue] U+74:t
U+68:h U+72:r U+69:i U+76:v U+65:e
feature 'kern', type 'gpos_pair', lookup 'p_s_2', shifting

single U+00065 (e) by -1.95703pt

result We thrive U+57:W [kern] U+65:e [glue] U+74:t
U+68:h U+72:r U+69:i U+76:v U+65:e

81

Features

font 45: cambria.ttf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=latn, spacekern=yes, tlig=yes, trep=yes

step 1 We thrive U+57:W U+65:e [glue] U+74:t U+68:h
U+72:r U+69:i U+76:v U+65:e
feature 'kern', type 'gpos_pair', lookup 'p_s_0', shifting

single U+00065 by -1.40625pt

feature 'kern', type 'gpos_pair', lookup 'p_s_0', shifting

single U+00076 by -0.48047pt

feature 'kern', type 'gpos_pair', lookup 'p_s_0', shifting

single U+00065 by -0.46875pt

result We thrive U+57:W [kern] U+65:e [glue] U+74:t
U+68:h U+72:r U+69:i [kern] U+76:v [kern] U+65:e

font 84: lmroman10-regular.otf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=dflt, spacekern=yes, tlig=yes, trep=yes

step 1 We thrive U+57:W U+65:e [glue] U+74:t U+68:h
U+72:r U+69:i U+76:v U+65:e
feature 'kern', type 'gpos_pair', lookup 'p_s_1', shifting

single U+00065 (e) by -1.992pt

feature 'kern', type 'gpos_pair', lookup 'p_s_1', shifting

single U+00065 (e) by -0.672pt

result We thrive U+57:W [kern] U+65:e [glue] U+74:t
U+68:h U+72:r U+69:i U+76:v [kern] U+65:e

font 85: LucidaBrightOT.otf @ 24.0pt

82

Features

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=dflt, spacekern=yes, tlig=yes, trep=yes

result We thrive U+57:W U+65:e [glue] U+74:t U+68:h
U+72:r U+69:i U+76:v U+65:e

font 86: texgyrepagella-regular.otf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=dflt, spacekern=yes, tlig=yes, trep=yes

step 1 We thrive U+57:W U+65:e [glue] U+74:t U+68:h
U+72:r U+69:i U+76:v U+65:e
feature 'kern', type 'gpos_pair', lookup 'p_s_1', shifting

single U+00065 (e) by -1.56pt

feature 'kern', type 'gpos_pair', lookup 'p_s_1', shifting

single U+00068 (h) by 0.36pt

feature 'kern', type 'gpos_pair', lookup 'p_s_1', shifting

single U+00065 (e) by -0.96pt

result We thrive U+57:W [kern] U+65:e [glue] U+74:t
[kern] U+68:h U+72:r U+69:i U+76:v [kern] U+65:e

5.2.9 Pairwise positioning

This variant of positioning involved the first, second or both glyphs of a glyph pair. The

specification can influence the horizontal and vertical positions we well as the widths of

the positioned glyphs.

We need an example here.

5.2.10 Mark positioning

Marks are (often) small symbols that represent accents (in latin) or vowels (in arabic)

that get attached to base glyphs. In the input stream they come after the character

that they apply to. Many fonts come with precomposed latin characters which means

that an à in the input is mapped directly onto its corresponding shape. When the input

83

Features

contains an a followed by a ̀ input normalization will normally turn this into an à.

But, when this doesn’t happen, the font machinery has to make sure that the mark gets

positioned right onto the base character. In traditional Type1 fonts that more or less

happened automatically by overlaying the shapes. In OpenType (single) positioning is

used to place the mark right.

\showotfcomposition{dejavu-serif*default at 24pt}{}{à a\utfchar{"0300} à}

\showotfcomposition{cambria*default at 24pt}{}{à a\utfchar{"0300} à}

\showotfcomposition{lmroman10regular*default at 24pt}{}{à a\utfchar{"0300} à}

\showotfcomposition{lucidabrightot*default at 24pt}{}{à a\utfchar{"0300} à}

\showotfcomposition{texgyrepagellaregular*default at 24pt}{}{à a\utfchar{"0300} à}

Of course a font can contain logic that replaces a sequence of base and mark into pre-

composed characters with the right Unicode entry.

font 83: DejaVuSerif.ttf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=dflt, spacekern=yes, tlig=yes, trep=yes

step 1 à à à U+61:a U+300:̀ [glue] U+61:a U+300:̀ [glue]

U+E0:à
feature 'mark', type 'gpos_mark2base', lookup 'p_s_1', anchor ,

bound 1, anchoring mark U+00300 (gravecomb) to basechar

U+00061 (a) => (1.64063pt,0pt)

feature 'mark', type 'gpos_mark2base', lookup 'p_s_1', anchor ,

bound 2, anchoring mark U+00300 (gravecomb) to basechar

U+00061 (a) => (1.64063pt,0pt)

result à à à U+61:a U+300:̀ [glue] U+61:a U+300:̀ [glue]

U+E0:à
font 45: cambria.ttf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=latn, spacekern=yes, tlig=yes, trep=yes

result à à à U+61:a U+300:̀ [glue] U+61:a U+300:̀ [glue] U+E0:à

84

Features

font 84: lmroman10-regular.otf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=dflt, spacekern=yes, tlig=yes, trep=yes

result à à à U+61:a U+300:̀ [glue] U+61:a U+300:̀ [glue] U+E0:à
font 85: LucidaBrightOT.otf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=dflt, spacekern=yes, tlig=yes, trep=yes

step 1 à à à U+61:a U+300:̀ [glue] U+61:a U+300:̀ [glue] U+E0:à
feature 'mark', type 'gpos_mark2base', lookup 'p_s_0', anchor ,

bound 1, anchoring mark U+00300 (gravecomb) to basechar

U+00061 (a) => (-0.768pt,0pt)

feature 'mark', type 'gpos_mark2base', lookup 'p_s_0', anchor ,

bound 2, anchoring mark U+00300 (gravecomb) to basechar

U+00061 (a) => (-0.768pt,0pt)

result à à à U+61:a U+300:̀ [glue] U+61:a U+300:̀ [glue] U+E0:à
font 86: texgyrepagella-regular.otf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes, kern=yes,

liga=yes, mark=yes, mathkerns=yes, mathrules=yes, mkmk=yes,

mode=node, script=dflt, spacekern=yes, tlig=yes, trep=yes

result à à à U+61:a U+300:̀ [glue] U+61:a U+300:̀ [glue] U+E0:à
You can imagine that when marks are bound to characters that have become ligatures

the anchoring is more complex as the font machinery has to keep track of onto which

component the mark goes. For this purpose marks as well as base characters and base

ligatures have anchors and feature lookups can explicitly refer to them.

85

Features

5.2.11 Contextual analysis

What actually happens when turning a list of characters into a list of glyphs can range

from real simple to pretty complex. For instance the smcp feature only has to run over

the list and relate characters to a smallcaps shape. A slightly more complex feature

might also demand some positioning. One step further is the use of contextual analysis,

i.e. looking at previous, current and following characters (or glyphs). Because features

can range from simple to complex the actual processing is not per feature! A font comes

with a sequence of so called lookups that relate to a feature, script and language. Also,

each feature can use one--to--one, multiple--to--one and many--to--many replacements as

well as relative positioning.

So, what actually happens is not that a feature is processed, but that all features are

dealt with at the same time, in the order that the font prescribes. Enabling a specific

feature means that a step is executed, while a disabled feature skips all steps that are

tagged as belonging to that feature. And, as each feature can use contextual analysis,

you can imagine that the effective sequence of actions can be a complex mix.

A nice example of a contextual substitution is the centered period character in catalan

in ebgaramond:

\definefontfeature

[example]

[default]

[locl=yes,script=latn,language=cat]

\definedfont[file:ebgaramond12-regular.otf*default at 40pt]l·l\quad

\definedfont[file:ebgaramond12-regular.otf*example at 40pt]l·l

We show the boundingbox of the glyphs. The centered period between two l’s is is

replaced by a raised variant with no width.

l·l l·l
It will be clear that in order to use such features you need to know what the font provides.

For some fonts you need to explicitly enable the latin script (while others use default).

Such a feature can be part of localized support but that is no rule. In that respect

OpenType features are a rather unpredictable mess. For instance, nothing prevents

such a feature to be a ligature, and in case you find that strange, especially ligature

features are often abused for any purpose.

5.2.12 Ligatures and hyphenation

In this section we will say a few words on how hyphenation interferes with (especially)

ligature building. For this you need to know that:

86

Features

effe

But when hyphenation is permitted between the two s’s we actually have internally:

ef{-}{}{}fe

The first snippet comes at the end of a line, the second at the beginning of a the next

line and the last snippet is used when no hyphenation is needed. Such triplets need to

be taken into account when we do replacements and positioning and also when we do

contextual lookups.

An OpenType font is just a container that collects the following:

• graphic representations of characters and symbols

• information about what characters the shapes represent

• rules about converting (sequences of) characters into one or more representations

• rules about positioning representations relative to each other

Although the way this information is stored is standardized, the rules are not. You can

imagine that there would be some standard way to turn an f and i into an ‘fi’ but we

already saw that this is not the case. Here are some possibilities:

• The two characters get their own standard glyph, maybe with some kerning.

• The two characters are combined into one shape.

• The f gets a narrow representation and is kept close to the standard i.

• A standard f is kerned with a dotless i (not to be confused with the Unicode charac-

ter).

• A special f is combined with a special i.

If the two characters are represented by their own shape, some contextual analysis takes

place. Again there are several approaches to this:

• When an f is seen in the input, the next character is checked and one or both gets

replaced.

• When an i is seen in the input, the previous character is checked and the i gets

replaced.

• When an f several following characters are checked, for instance to see if we need

to take ij into account.

Traditionally the f followed by an f, l and i get a treatment, but some fonts also combine

the f with k, j, b, t and more.

The MkIV font handler is rather generic in the sense that it support what the font re-

quires. However, a complication is that the scripts (languages) that use these diverse

methods also expect hyphenation within such a ligature. Script like Arabic that are more

demanding don’t hyphenate so there interference with hyphenation is not a problem.

Some ligatures are sensitive for languages. In languages that have compound words it

might be undesirable to have a ligature at a word boundary, or in the Dutch word fijn

87

Features

we like to have a nice glyph (or combinations) for ij but no fi ligature. In a similar

way hyphenation patterns can have rules and it will be no surprise that the hyphenation

mechanism can compete with the ligature building for the best solution. This gets com-

plicated by the fact that there is no real way to recognize in the font handler if we really

are dealing with ligature building. Not only is the liga feature (and deep down the liga-

ture gsub handling) not bound to ligatures (but simply a many-to-one mapper), some of

the mentioned pseudo ligature builders use simple substitution and kerning and there

is no way to recognize that as a ligature.

Although it is possible to come up with a solution that is acceptable for many cases,

there is no way to predict what kind of tricks font designers will use. A hyphenation

point can be seen as follows:

effe ef-fe e{f-}{f}{ff}e

efficient ef-fi-cient e{ffi-}{}{ffi}cient

In the second case the larger ligatures has replaced the previous one. We could have

kept the first one because there are ways to manage two-step bounding ligatures but

it’s not worth the trouble (read: way more complex code and increased runtime for the

whole mechanism). Here the {ff} and {ffi} can be individual shapes or just one shape.

The three components of a hyphenation point: the pre, post and replacement text need

to be looked at independently so that we get the proper kerning with the preceding

and following characters. Also, in more complex (chained) lookups we need to compare

each element with its surrounding. A fully expanded solution tree is too time consuming

so we take some shortcuts and limits the checks to the level that it has no big impact

on performance. The occasionally needed backtracking and inspection of components

is currently quite reasonable. We need to trade quality with convenience: the result

should look okay but processing speed should also be as high as possible. There is no

need to let other scripts or regular fonts suffer too much from excessive script demands

of fonts that could have be done better.

The complication is that we not only need to check and replace but also need to check

the kerning with preceding and following characters. We also need to take the hyphen

into account (here one, but there can also be one after the break.

It is for this reason that in MkIV we have a (we think) acceptable mix of heuristics around

hyphenation points that deal with single and multiple substitution as well as kerning. It

will never be 100% pertect but we consider it better to drop an occasional hyphenation

in favor of proper font handling. In practice TEX is clever enough to break a paragraph

in lines within these restrictions.

In ConTEXt we have the traditional TEX hyphenator but also provide an extensible Lua

reimplementation. That one might become the default in future versions. In traditional

TEX there are several low level hyphenation representations: simple hyphen only points,

injected by the hyphenator, explicitly injected by the user or originating from a hyphen

88

Features

character. Then there is the generic (pre, post, replace) discretionary that can be ex-

plicitly injected by the user (or a macro). In MkIV all hyphenation points get normalized

to this generic discretionary. There is no need for old-time optimizations and a con-

sistent (expanded) representation is easier to deal with in other extensions. However,

because the font handler is supposed to also work outside ConTEXt we need to deal with

traditional cases too. But . . . the results might differ a bit.

5.2.13 Color

A recent new (and evolving) addition to OpenType is colored glyphs. One variant (by

Microsoft) uses overlays and this method is quite efficient.

\definefontfeature[colored][colr=yes]

\definefontsynonym[Emoji][file:seguiemj.ttf*default,colored]

\definesymbol[bug][\getglyphdirect{Emoji}{\char"1F41B}]

\definesymbol[ant][\getglyphdirect{Emoji}{\char"1F41C}]

\definesymbol[bee][\getglyphdirect{Emoji}{\char"1F41D}]

Here we see aᑍᑎᑏᑐᑑᑒᑓ, ᑕᑖᑗᑘ andᑚᑛᑜᑝᑞ, and they come in color! Once Unicode started adding

such symbols (and more get added) the distinction between characters and symbols get

even fuzzier. Of course one can argue that we communicate in pictograms but even

then, given that mankind lasts a while, the Unicode repertoire will explode.

ᑍᑎᑏᑐᑑᑒᑓᑕᑖᑗᑘᑚᑛᑜᑝᑞ
U+1F41B: bug U+1F41C: ant U+1F41D: bee

Figure 5.1 A few emojis from seguiemj.ttf

Here we use seguiemj.ttf, a font that comes with MS Windows. Colors are achieved

by combining glyphs rendered in different colors. A variant that uses svg instead of

overlays is emojionecolor-svginot.ttf:

\definefontfeature[svg][svg=yes]

\definefontsynonym[Emoji][file:emojionecolor-svginot.ttf*default,svg]

This time we get﻿ ,﻿ and﻿ and they look quite different. Both fonts also have ligatures

and you can wonder what sense that makes. It makes it impossible to swap fonts and as

there is no standard one never knows what to expect.

89

Features

U+1F41B: bug U+1F41C: ant U+1F41D: bee

Figure 5.2 A few emojis from emojionecolor-svginot.ttf

How do we know what faces add up to the ligature﻿ and how are we supposed to know

that there should zwj in between? When we input four faces separated by zero width

joiners, we get a four face symbol instead. The reason for having the joiners in between

is probably to avoid unexpected ligatures. The sequence man, woman, boy, boy gives

family:﻿ + zwj + zwj + zwj =﻿ , but two girls also work:﻿ + zwj + zwj

+ zwj =﻿ , so does a mixture of kids:﻿ + zwj + zwj + zwj =﻿ , although

(at least currently):﻿ + zwj + zwj + zwj =﻿ ‍﻿‍﻿‍﻿, gives twin boys. Of course

the real family emoj is﻿ .

In our times for sure many combinations are possible, so:﻿ + zwj + zwj + zwj

=﻿ , indeed gives a family, but I wonder at what point cultural bias will creep into

font design. One can even wonder how clothing and haircut will demand frequent font

updates:﻿ ,﻿ ,﻿ .

In the math alphabets we have a couple of annoying holes because some characters were

already present in Unicode. The bad thing here is that we now always have to deal with

these exceptions. But not so with emojis because here eventually all variants will show

up. Where a character A in red or blue uses the same code point, a white telephone and

black telephone have their own. And because obsolete scripts are already supported in

Unicode and more get added, we can expect old artifacts also showing up at some time.

Soon the joystick﻿ will be an unknown item to most of us, while the Microsoft hololens

migth get its slot.

For sure these mechanisms will evolve and to what extent we support them depends on

what users want. At least we have the basics implemented.

5.3 Extras

Todo.

5.4 Goodies

Goodies range from simple to complex. They share that they are defined in files and

loaded at runtime. There is a good change that when you read this, that there are already

90

Features

U+1F423: hatching chick U+1F424: baby chick U+1F425: front-facing

baby chick

Figure 5.3 Will all animals come in stages of development?

more goodies than mentioned here. Here we will just mention a couple of goodies. More

details can be found in the files that ship with ConTEXt and have suffix lfg.

A goodie file is a regular Lua file and is supposed to return a table. This table collects

data that is used for implementing the goodie or relates to a regular feature. It can also

provide information that is used for patching a font. An example of a simple goodie file

is the ones that accompanies the first release of the OpenType Lucida fonts.

return {

name = "lucida-opentype-math",

version = "1.00",

comment = "Goodies that complement lucida opentype.",

author = "Hans Hagen",

copyright = "ConTeXt development team",

mathematics = {

alternates = {

italic = {

feature = 'ss01',

value = 1,

comment = "Mathematical Alternative Italic"

},

}

}

}

This goodie file is only providing information about the meaning of a stylistic alternate.

These have abstract tags like ss01 and in this case this category collects alternative

italic (calligraphic) shapes. Because math does not follow the same rules as text, this

feature is enabled explicitly.

In the goodie file of Xits math the alternates table has more entries:

alternates = {

cal = { ... comment = "Mathematical Calligraphic Alphabet" },

91

Features

greekssup = { ... comment = "Mathematical Greek Sans Serif Alphabet" },

greekssit = { ... comment = "Mathematical Italic Sans Serif Digits" },

monobfnum = { ... comment = "Mathematical Bold Monospace Digits" },

mathbbbf = { ... comment = "Mathematical Bold Double-Struck Alphabet" },

mathbbit = { ... comment = "Mathematical Italic Double-Struck Alphabet" },

mathbbbi = { ... comment = "Mathematical Bold Italic Double-Struck Alphabet" },

upint = { ... comment = "Upright Integrals" },

vertnot = { ... comment = "Negated Symbols With Vertical Stroke" },

}

An alternate is triggered at the TEX end with:

ABC $\cal ABC$ $\mathalternate{cal}\cal ABC$

This is an example of a dynamic feature that gets applied when enabled at a specific

location in the input. The cal is only recognized when it is defined in a goodies file,

where the value is defined (in all of the above cases the value is 1).

The Xits math fonts has a goodie files that starts with:

return {

name = "xits-math",

version = "1.00",

comment = "Goodies that complement xits (by Khaled Hosny).",

author = "Hans Hagen",

copyright = "ConTeXt development team",

mathematics = {

italics = {

["xits-math"] = italics,

},

alternates = {

Here the italics variable is a table defined before the return that looks as follows:

local italics = {

defaultfactor = 0.025,

disableengine = true,

corrections = {

-- [0x1D44E] = 0.99, -- a (fraction of quad)

-- [0x1D44F] = 100, -- b (font points)

[0x1D453] = -0.0375, -- f

}

}

This rather specific table tells ConTEXt that (when enabled) it has to apply italic correc-

tion. It disables support built into the TEX engine (which in the case of LuaTEX is close

92

Features

to absent anyway). It will apply a default italic correction of 0.025 but for some shapes

a different value is used. Again we have some commands at the TEX end:

\setupmathematics[italics=1] % fontitalics

\setupmathematics[italics=2] % fontdata

\setupmathematics[italics=3] % quad based

\setupmathematics[italics=4] % combination of 1 and 3

Because (definitely at the start of the LuaTEX project) we had no proper OpenType math

fonts, but at the same time wanted to move on to OpenType and Unicode math and no

longer struggle with all those math families and definitions. The way out of this problem

is to define a virtual math font. The code for doing this is built into the MkIV core but is

controlled by a goodie definition. Take for instance Antykwa Math:

return {

name = "antykwa-math",

version = "1.00",

comment = "Goodies that complement antykwa math.",

author = "Hans, Mojca, Aditya",

copyright = "ConTeXt development team",

mathematics = {

mapfiles = {

"antt-rm.map",

"antt-mi.map",

"antt-sy.map",

"antt-ex.map",

"mkiv-base.map",

},

virtuals = {

["antykwa-math"] = {

{ name = "file:AntykwaTorunska-Regular", features = "virtualmath", main = true },

{ name = "mi-anttri.tfm", vector = "tex-mi", skewchar=0x7F },

{ name = "mi-anttri.tfm", vector = "tex-it", skewchar=0x7F },

{ name = "sy-anttrz.tfm", vector = "tex-sy", skewchar=0x30, parameters = true } ,

{ name = "ex-anttr.tfm", vector = "tex-ex", extension = true } ,

{ name = "msam10.tfm", vector = "tex-ma" },

{ name = "msbm10.tfm", vector = "tex-mb" },

},

Normally users will not define such tables but the keys give an indication of what is

involved. The same is true for the previously shown tables: they are just provided in the

ConTEXt distribution.

Text fonts also can have goodies. We start with a rather dumb one and there will be

not that many of those. This one is needed to turn a Type1 font with a rather special

encoding into a Unicode font. The next mapping is possible because the dingbats are

part of Unicode.

93

Features

return {

name = "dingbats",

version = "1.00",

comment = "Goodies that complement dingbats (funny names).",

author = "Hans Hagen",

copyright = "ConTeXt development team",

remapping = {

tounicode = true,

unicodes = {

a1 = 0x2701,

a10 = 0x2721,

a100 = 0x275E,

a101 = 0x2761,

a102 = 0x2762,

Applying this encoding happens in two steps. Because goodies like this are just features,

we need to define a proper font feature set:

\definefontfeature

[dingbats]

[mode=base,

goodies=dingbats,

unicoding=yes]

We have a base mode font, so no special processing takes place. The goodies key is used

to communicate the goodies file. The unicoding key is used to apply the encoding. Of

course this only works because the remapper code is present in the core and is hooked

in to the font initialization code. The dingbats feature set is predefined, just as the font

definition:

\definefontsynonym [ZapfDingbats] [file:uzdr] [features=dingbats]

Here is a goodie file that I made a while ago:

return {

name = "oxoniensis",

version = "1.00",

comment = "Oxoniensis test file for Thomas Schmitz.",

author = "Hans Hagen",

copyright = "ConTeXt development team",

features = {

lunatesigma = {

type = "substitution",

data = {

sigma = 0x03F2,

sigma1 = 0x03F2,

94

Features

Sigma = 0x03F9,

phi = phi1,

},

}

},

}

There is not that much to say about this, apart from that it’s a sort of fake feature that

gets enabled as regular one:

\definefontfeature[test]

[mode=node,

kern=yes,

lunatesigma=yes,

goodies=oxoniensis]

\definefont[somefont][file:oxoniensis*test]

A complete different kind of goodie is the following. At one of the ConTEXt meetings

Mojca Miklavec discussed the possibility to have an additional mechanism for defining

combinations of fonts. Often fonts come in a set of four (regular, italic, bold and bold

italic). In MkII the complexity of typescripts depends on the amount of encodings that

need to be supported but in MkIV things are easier. For a set of four fonts a typescript

looks as follows:

\starttypescript [sans] [somesansfont] [name]

\setups[font:fallback:sans]

\definefontsynonym [Sans] [file:somesans] [features=default]

\definefontsynonym [SansBold] [file:somesansb] [features=default]

\definefontsynonym [SansItalic] [file:somesansi] [features=default]

\definefontsynonym [SansBoldItalic] [file:somesansz] [features=default]

\stoptypescript

We still have the abstract notion of a Sans font so that we can refer to the regular shape

without knowing the real name but the number of lines needed is small. Such a definition

can then be referred to using:

\starttypescript[somefontset]

\definetypeface [somefontset] [rm] [serif] [someserif] [default]

\definetypeface [somefontset] [ss] [sans] [somesans] [default]

\definetypeface [somefontset] [tt] [mono] [somemono] [default]

\definetypeface [somefontset] [mm] [math] [somemath] [default]

\stoptypescript

So far things look simple. Given that many fonts follow a similar naming scheme Wolf-

gang made a module that avoids such definitions altogether. However, being involved

in the development of the Antykwa fonts, Mojca ran into the situation that not just four

95

Features

fonts were part of the set but many more. There are several weight (think of light and

heavy variants) as well as condensed variants and of course the whole set is not per se

a multiple of four.

In the meantime, in addition to the file: and name: accessors, ConTEXt had an addi-

tional one tagged spec: where a string made out of weight, style, width etc. is turned

into a (best guessed) font name. Therefore the most natural way to deal with the many-

fonts-in-a-set dilemma was to provide an additional interface between this specification

and the font set and the most robust method was to define all in a goodie file.

In this case the goodies are loaded independent of the font, that is: not as a feature. For

instance:

\loadfontgoodies[antykwapoltawskiego]

This file maps obscure fontnames onto the spec: interface so that we can access them

in a robust way.

\definefont

[MyFontA]

[file:Iwona-Regular*smallcaps]

\definefont

[MyFontB]

[file:AntykwaTorunska-Regular*smallcaps]

\definefont

[MyFontC]

[file:antpoltltcond-regular*smallcaps]

\definefont

[MyFontD]

[spec:antykwapoltawskiego-bold-italic-condensed-normal*smallcaps]

\definefont

[MyFontE]

[spec:antykwapoltawskiego-bold-italic-normal]

The goodies file looks as follows:

return {

name = "antykwa-poltawskiego",

version = "1.00",

comment = "Goodies that complement Antykwa Poltawskiego",

author = "Hans & Mojca",

copyright = "ConTeXt development team",

files = {

name = "antykwapoltawskiego", -- shared

list = {

["AntPoltLtCond-Regular.otf"] = {

weight = "light",

96

Features

style = "regular",

width = "condensed",

},

...

["AntPoltExpd-BoldItalic.otf"] = {

weight = "bold",

style = "italic",

width = "expanded",

},

},

},

typefaces = {

["antykwapoltawskiego-light"] = {

shortcut = "rm",

shape = "serif",

fontname = "antykwapoltawskiego",

normalweight = "light",

boldweight = "medium",

width = "normal",

size = "default",

features = "default",

},

...

},

}

In addition to the files-to-specification mapping, there is also a typeface specification

table. This permits the definition of a typeface in the following way:

\definetypeface

[name=mojcasfavourite,

preset=antykwapoltawskiego,

normalweight=light,

boldweight=bold,

width=expanded]

\setupbodyfont

[mojcasfavourite]

When resolving the definition, the best possible match will be taken from the typeface

table in the goodie file. Of course this is not something that we expect the average user

to deliver and deal with.

As the Antykwa font is somewhat atypical and not used in everyday typesetting, you

might wonder if all this overhead makes sense. However, there are type foundries that

97

Features

do ship their fonts in many weights and for those using a Lua goodie file instead of many

typescripts in TEX coding makes sense. Take for instance TheMix:

\loadfontgoodies

[themix]

\definetypeface

[name=themix,

preset=themix-light]

\definetypeface

[name=themix,

preset=themixmono-light]

\setupbodyfont

[themix]

In this case the goodie file can serve as a template for more such fonts. In order to be

efficient this goodie file uses a couple of local tables (we could have used metatables

instead).

local themix = {

name = "themix",

shortcut = "ss",

shape = "sans",

fontname = "themix",

width = "normal",

size = "default",

features = "default",

}

local themixmono = {

name = "themixmono",

shortcut = "tt",

shape = "mono",

fontname = "themixmono",

width = "normal",

size = "default",

features = "default",

}

The main goodie table defines a lot of weights:

return {

name = "themix",

version = "1.00",

98

Features

comment = "Goodies that complement TheMix (by and for sale at www.lucasfonts.com).",

author = "Hans Hagen",

copyright = "ConTeXt development team",

files = {

list = {

["TheMixOsF-ExtraLight"] = {

name = "themix",

weight = "extralight",

style = "regular",

width = "normal"

},

["TheMixOsF-ExtraLightItalic"] = {

...

},

...

["TheMixOsF-Black"] = {

...

},

["TheMixOsF-BlackItalic"] = {

...

},

...

--

["TheMixMono-W2ExtraLight"] = {

name = "themixmono",

weight = "extralight",

style = "regular",

width = "normal"

},

...

["TheMixMono-W9BlackItalic"] = {

...

},

},

},

typefaces = {

["themix-extralight"] = table.merged(themix, {

normalweight = "extralight",

boldweight = "semilight"

}),

["themix-light"] = table.merged(themix, {

normalweight = "light",

boldweight = "normal"

}),

99

Features

...

["themixmono-bold"] = table.merged(themixmono, {

normalweight = "bold",

boldweight = "black"

}),

},

}

It’s now time for some generic goodies. In the ConTEXt distribution there is a goodie file

that (at the time of this writing) looks as follows:

local default = {

analyze = "yes",

mode = "node",

language = "dflt",

script = "dflt",

}

local smallcaps = {

smcp = "yes",

}

local function statistics(tfmdata)

commands.showfontparameters(tfmdata)

end

local function squeeze(tfmdata)

for k, v in next, tfmdata.characters do

v.height = 0.75 * (v.height or 0)

v.depth = 0.75 * (v.depth or 0)

end

end

return {

name = "demo",

version = "1.01",

comment = "An example of goodies.",

author = "Hans Hagen",

featuresets = {

default = {

default,

},

smallcaps = {

default, smallcaps,

},

100

Features

},

colorschemes = {

default = {

[1] = {

"one", "three", "five", "seven", "nine",

},

[2] = {

"two", "four", "six", "eight", "ten",

},

},

all = {

[1] = {

"*",

},

},

some = {

[1] = {

"0x0030:0x0035",

},

},

},

postprocessors = {

statistics = statistics,

squeeze = squeeze,

},

}

This demo file implements several goodies: featuresets, colors and postprocessors.

Keep in mind that a goodie file can provide whatever information it wants but of course

only known subtables will be dealt with.

The coloring of glyphs can happen by name, which assumes that glyph names are used,

or by number. Here we use generic glyph names, but for a specific font one might need

to provide a special goodie file. For instance, the color section of the goodie file for the

husayni font has entries like:

[3] = {

"Ttaa.waqf", "SsLY.waqf", "QLY.waqf", "Miim.waqf", "LA.waqf", "Jiim.waqf",

"Threedotsabove.waqf", "Siin.waqf", "Ssaad.waqf", "Qaaf.waqf", "SsL.waqf",

"QF.waqf", "SKTH.waqf", "WQFH.waqf", "Kaaf.waqf", "Ayn.ruku", "Miim.nuun_high",

"Siin.Ssaad", "Nuunsmall", "emptydot_low", "emptydot_high", "Sifr.fill",

"Miim.nuun_low", "Nuun.tanwiin",

},

Of course such a definition can only be made when the internals of the font are known

and in this case it concerns a pretty complex font.

101

Features

\definefontfeature

[demo-colored]

[goodies=demo,

colorscheme=default,

featureset=default]

\definefontfeature

[demo-colored-all]

[goodies=demo,

colorscheme=all,

featureset=default]

\definefontfeature

[demo-colored-some]

[goodies=demo,

colorscheme=some,

featureset=default]

\definefont[DemoFontA][MonoBold*demo-colored at 10pt]

\definefont[DemoFontB][MonoBold*demo-colored-all at 10pt]

\definefont[DemoFontC][MonoBold*demo-colored-some at 10pt]

\starttabulate[||||]

\NC

\DemoFontA \resetfontcolorscheme test 1234567890 \NC

\DemoFontA \setfontcolorscheme [1]test 1234567890 \NC

\DemoFontA \setfontcolorscheme [2]test 1234567890 \NC

\NR

\NC

\DemoFontB \resetfontcolorscheme test 1234567890 \NC

\DemoFontB \setfontcolorscheme [1]test 1234567890 \NC

\DemoFontB \setfontcolorscheme [2]test 1234567890 \NC

\NR

\NC

\DemoFontC \resetfontcolorscheme test 1234567890 \NC

\DemoFontC \setfontcolorscheme [1]test 1234567890 \NC

\DemoFontC \setfontcolorscheme [2]test 1234567890 \NC

\NR

\stoptabulate

test 1234567890 test 1234567890 test 1234567890

test 1234567890 test 1234567890 test 1234567890

test 1234567890 test 1234567890 test 1234567890

102

Features

Here is an example that I made at the TUG 2013 conference in Japan, after a presentation

by Chof. The font (adapted by by Dohyun Kim) can be downloaded from: http://ftp.ktug

.org/KTUG/hcr-lvt/1.910_nomac/.

\definefontfeature

[korean-composed]

[goodies=hanbatanglvt,

colorscheme=default,

mode=node,

ljmo=yes,

tjmo=yes,

vjmo=yes,

script=hang,

language=kor]

\definefont

[KoreanJMO]

[hanbatanglvt*korean-composed]

\definecolor[colorscheme:100:1][r=.75]

\definecolor[colorscheme:100:2][g=.75]

\definecolor[colorscheme:100:3][b=.75]

\definecolor[colorscheme:101:1][g=.75,b=.75]

\definecolor[colorscheme:101:2][r=.75,b=.75]

\definecolor[colorscheme:101:3][r=.75,g=.75]

나랏말ᄊᆞ미中듕國귁에달아문ᄍᆞᆼ와로서르ᄉᆞᄆᆞᆺ디아니ᄒᆞᆯᄊᆡ사ᄅᆞᆷ마다ᄒᆡᅇᅧ수ᄫᅵ니겨나...

no colorscheme

나랏말ᄊᆞ미中듕國귁에달아문ᄍᆞᆼ와로서르ᄉᆞᄆᆞᆺ디아니ᄒᆞᆯᄊᆡ사ᄅᆞᆷ마다ᄒᆡᅇᅧ수ᄫᅵ니겨나...

colorscheme 100

나랏말ᄊᆞ미中듕國귁에달아문ᄍᆞᆼ와로서르ᄉᆞᄆᆞᆺ디아니ᄒᆞᆯᄊᆡ사ᄅᆞᆷ마다ᄒᆡᅇᅧ수ᄫᅵ니겨나...

colorscheme 101

The goodie definition looks as follows (watch how we use ranges):

return {

name = "hanbatanglvt",

version = "1.00",

comment = "Goodies that complement the hanbatanglvt fonts.",

author = "Hans Hagen",

colorschemes = {

103

Features

default = {

{ "0x01100:0x0115F" }, -- jamo_initial (r/c)

{ "0x01160:0x011A7" }, -- jamo_medial (g/m)

{ "0x011A8:0x011FF" }, -- jamo_final (b/y)

}

}

}

This is much shorter (and efficent) that defining a whole vector, as in:

local f_uni_base = string.formatters["uni%04X"]

local f_uni_plus = string.formatters["uni%04X.y%s"]

local function range(first,last)

local t = { }

for i=first,last do

t[#t+1] = f_uni_base(i)

for j=0,19 do

t[#t+1] = f_uni_plus(i,j)

end

end

return t

end

return {

name = "hanbatanglvt",

version = "1.00",

comment = "Goodies that complement the hanbatanglvt fonts.",

author = "Hans Hagen",

colorschemes = {

default = {

range(0x01100,0x0115F), -- jamo_initial (r/c)

range(0x01160,0x011A7), -- jamo_medial (g/m)

range(0x011A8,0x011FF), -- jamo_final (b/y)

}

}

}

By using names we don’t depend on Unicode which sometimes is needed when glyphs

have ended up in the private space. However, by default, after glyphs have been mapped

to colors, an extra pass will make sure that characters pushed into private space will

get the same mapping as their regular Unicode has gotten (given that the number is

known). Of course explicitly assigned colors will be preserved.

Another generic demo feature is postprocessing. In principle one can add additional

postprocessors but for that the source code needs to be consulted which in turn assumes

some knowledge of fonts and ConTEXt internals.

104

Features

\definefontfeature

[justademoa]

[default]

[goodies=demo,

postprocessor=squeeze]

\definefontfeature

[justademob]

[default]

[goodies=demo,

postprocessor=statistics]

\definefontfeature

[justademoc]

[default]

[goodies=demo,

postprocessor={statistics,squeeze}]

The statistics just print some font parameters to the log so that one is not showing up

here. The squeeze looks as follows:

\definefont[DemoFontD][Serif*default at 30pt]

\definefont[DemoFontE][Serif*justademoa at 30pt]

DemoFontD height & depth DemoFontE height & depth

The squeezer just makes the height and depth of glyphs a bit smaller and it is not that

hard to imagine other manipulations. The demo goodie file is good place to start playing

with such things.

Because there is less standardization with respect to features than one might suspect,

goodie files provide a mean to define featuresets. We can use such a set in another

definition:

\definefontfeature

[demo-smallcaps]

[goodies=demo,

featureset=smallcaps]

Of course this only makes sense for more complex combinations. The already mentioned

husayni font comes with many features and most of these work together.

The basic goodie table looks as follows:

return {

name = "husayni",

version = "1.00",

105

Features

comment = "Goodies that complement the Husayni font by Idris Samawi Hamid.",

author = "Idris Samawi Hamid and Hans Hagen",

featuresets = { },

solutions = { },

stylistics = { },

colorschemes = { },

}

We already saw the color schemes and now we will fill in the other tables. First we

define a couple of sets:

local basics = {

analyze = "yes",

mode = "node",

language = "dflt",

script = "arab",

}

local analysis = {

ccmp = "yes",

init = "yes", medi = "yes", fina = "yes",

}

local regular = {

rlig = "yes", calt = "yes", salt = "yes", anum = "yes",

ss01 = "yes", ss03 = "yes", ss07 = "yes", ss10 = "yes", ss12 = "yes",

ss15 = "yes", ss16 = "yes", ss19 = "yes", ss24 = "yes", ss25 = "yes",

ss26 = "yes", ss27 = "yes", ss31 = "yes", ss34 = "yes", ss35 = "yes",

ss36 = "yes", ss37 = "yes", ss38 = "yes", ss41 = "yes", ss42 = "yes",

ss43 = "yes", js16 = "yes",

}

local positioning = {

kern = "yes", curs = "yes", mark = "yes", mkmk = "yes",

}

local minimal_stretching = {

js11 = "yes", js03 = "yes",

}

local medium_stretching = {

js12="yes", js05="yes",

}

local maximal_stretching= {

js13 = "yes", js05 = "yes", js09 = "yes",

106

Features

}

local wide_all = {

js11 = "yes", js12 = "yes", js13 = "yes", js05 = "yes", js09 = "yes",

}

local shrink = {

flts = "yes", js17 = "yes", ss05 = "yes", ss11 = "yes", ss06 = "yes",

ss09 = "yes",

}

local default = {

basics, analysis, regular, positioning, -- xxxx = "yes", yyyy = 2,

}

Next we define some featuresets and we use the default as starting point:

featuresets = {

default = {

default,

},

minimal_stretching = {

default, js11 = "yes", js03 = "yes",

},

medium_stretching = {

default, js12="yes", js05="yes",

},

maximal_stretching= {

default, js13 = "yes", js05 = "yes", js09 = "yes",

},

wide_all = {

default, js11 = "yes", js12 = "yes", js13 = "yes", js05 = "yes",

js09 = "yes",

},

shrink = {

default, flts = "yes", js17 = "yes", ss05 = "yes", ss11 = "yes",

ss06 = "yes", ss09 = "yes",

},

}

When defining the font at the TEX end we can now refer to for instance wide_all which

saves us some typing. However, it does not stop here. In a later paragraph we will see

how fonts can work in tandem with the parbuilder. For that purpose the goodie table

has a solutions subtable:

solutions = {

107

Features

experimental = {

less = {

"shrink"

},

more = {

"minimal_stretching", "medium_stretching", "maximal_stretching", "wide_all"

},

},

}

Here we define an experimental solution for optimizing the lines in a paragraph: we

can narrow words or we can widen them according to a specific featureset. In order to

reach the optimal solution the text will be retypeset under a different feature regime.

TODO: show how to apply.

Because there are a some 55 stylistic and 21 justification variants the goodie file also

provides a stylistics table and for tracing purposes the colorschemes table is popu-

lated.

Yet another demonstration of manipulation is the following. Not all fonts come with all

combined glyphs. Although we have an auto-compose feature in ConTEXt it sometimes

helps to be specific with respect to some combinations. This is where the compositions

goodie kicks in:

local compose = {

[0x1E02] = {

anchored = "top",

},

[0x1E04] = {

anchored = "bottom",

},

[0x0042] = { -- B

anchors = {

top = {

x = 300,

y = 700,

},

bottom = {

x = 300,

y = -30,

},

},

},

[0x0307] = {

anchors = {

108

Features

top = {

x = -250,

y = 550,

},

},

},

[0x0323] = {

anchors = {

bottom = {

x = -250,

y = -80,

},

},

},

}

return {

name = "lm-compose-test",

version = "1.00",

comment = "Goodies that demonstrate composition.",

author = "Hans and Mojca",

copyright = "ConTeXt development team",

compositions = {

["lmroman12-regular"] = compose,

}

}

Of course this assumes some knowledge of the font metrics (in base points) and Unicode

slots, but it might be worth the trouble. After all, one only needs to figure it out once.

But keep in mind that it will always be a kludge.

A slightly different way to define such compositions is the following:

local defaultunits = 193 - 30

local compose = {

DY = defaultunits,

-- [0x010C] = { DY = defaultunits }, -- Ccaron

-- [0x02C7] = { DY = defaultunits }, -- textcaron

}

-- fractions relative to delta(X_height - x_height)

local defaultfraction = 0.85

local compose = {

109

Features

DY = defaultfraction, -- uppercase compensation

}

return {

name = "lucida-one",

version = "1.00",

comment = "Goodies that complement lucida.",

author = "Hans and Mojca",

copyright = "ConTeXt development team",

compositions = {

["lbr"] = compose,

["lbi"] = compose,

["lbd"] = compose,

["lbdi"] = compose,

}

}

Of course no one really needs this because OpenType Lucida fonts have replaced the

Type1 versions.

The next goodie table is dedicated to the de facto standard TEX font Latin Modern. There

is a bit of history behind this file. When we started writing ConTEXt there were not that

many fonts available and so we ended up with a font system that was rather well suited

for the predecessor of Latin Modern, called Computer Modern. And because these fonts

came in design sizes the font system was made such that it could cope efficiently with

many files in a font set. Although there is no additional overhead compared to small font

sets, apart from more files, there is some burden in defining them. And, as they are the

default fonts, these definitions slow down the initialization of ConTEXt (which is due to

the fact that the large typescript definitions were loaded and parsed). So, at some point

the decision was made to kick out these definitions and move the burden of figuring out

the right size to Lua. When Latin Modern is chosen as font the effect is the same when

design sizes are enabled. But, instead of many definitions (one for each combination of

size and style) we now have an option. A non-designsize typeface is defined as follows:

\starttypescript [modern,modern-base]

\definetypeface [\typescriptone] [rm] [serif] [modern] [default]

\definetypeface [\typescriptone] [ss] [sans] [modern] [default]

\definetypeface [\typescriptone] [tt] [mono] [modern] [default]

\definetypeface [\typescriptone] [mm] [math] [modern] [default]

\quittypescriptscanning

\stoptypescript

The designsize variant looks like this:

\starttypescript [modern-designsize]

\definetypeface [\typescriptone]

110

Features

[rm] [serif] [latin-modern-designsize] [default] [designsize=auto]

\definetypeface [\typescriptone]

[ss] [sans] [latin-modern-designsize] [default] [designsize=auto]

\definetypeface [\typescriptone]

[tt] [mono] [latin-modern-designsize] [default] [designsize=auto]

\definetypeface [\typescriptone]

[mm] [math] [latin-modern-designsize] [default] [designsize=auto]

\quittypescriptscanning

\stoptypescript

Of course there are accompanying typescripts that map the sans, serif, mono and math

styles onto files. The designsize magic uses the following table. We show only part of

the file, as it is in the ConTEXt distribution.

return {

name = "latin modern",

version = "1.00",

comment = "Goodies that complement latin modern.",

author = "Hans Hagen",

copyright = "ConTeXt development team",

mathematics = {

tweaks = {

aftercopying = {

mathematics.tweaks.fixbadprime, -- prime is too low

},

},

},

designsizes = {

["LMMathRoman-Regular"] = {

["4pt"] = "LMMath5-Regular@lmroman5-math",

...

["12pt"] = "LMMath12-Regular@lmroman12-math",

default = "LMMath10-Regular@lmroman10-math"

},

["LMMathRoman-Bold"] = { -- not yet ready

...

},

["LMRoman-Regular"] = {

["4pt"] = "file:lmroman5-regular",

...

["12pt"] = "file:lmroman12-regular",

default = "file:lmroman10-regular",

},

["LMRoman-Bold"] = {

...

111

Features

},

["LMRoman-Demi"] = {

default = "file:lmromandemi10-regular",

},

["LMRoman-Italic"] = {

...

},

...

["LMRoman-Unslanted"] = {

default = "file:lmromanunsl10-regular",

},

["LMSans-Regular"] = {

...

},

["LMTypewriter-Regular"] = {

...

},

...

["LMTypewriterVarWd-DarkOblique"] = {

default = "file:lmmonoproplt10-boldoblique",

},

...

["LMTypewriter-CapsOblique"] = {

default = "file:lmmonocaps10-oblique",

},

}

}

The auto option will choose a best fit compatible to the MkII implementation. When

default is used instead, the default filename will be taken. Of course one might won-

der if there will ever be similar goodie files because design sizes are not that popular

nowadays.

Not all fonts are perfect and of course the LuaTEX engine can have flaws as well. For

this reason we can implement patches. Here is another example of a goodie file that has

some more code than just a table:

local patches = fonts.handlers.otf.enhancers.patches

local function patch(data,filename,threshold)

local m = data.metadata.math

if m then

local d = m.DisplayOperatorMinHeight or 0

if d < threshold then

patches.report("DisplayOperatorMinHeight(%s -> %s)",d,threshold)

m.DisplayOperatorMinHeight = threshold

112

Features

end

end

end

patches.register("after","analyze math","asana",

function(data,filename) patch(data,filename,1350) end)

local function less(value,target,original)

return 0.25 * value

end

local function more(value,target,original)

local o = original.mathparameters.DisplayOperatorMinHeight

if o < 2800 then

return 2800 * target.parameters.factor

else

return value -- already scaled

end

end

return {

name = "asana-math",

version = "1.00",

comment = "Goodies that complement asana.",

author = "Hans Hagen",

copyright = "ConTeXt development team",

mathematics = {

parameters = {

DisplayOperatorMinHeight = more,

StackBottomDisplayStyleShiftDown = less,

StackBottomShiftDown = less,

StackDisplayStyleGapMin = less,

StackGapMin = less,

StackTopDisplayStyleShiftUp = less,

StackTopShiftUp = less,

StretchStackBottomShiftDown = less,

StretchStackGapAboveMin = less,

StretchStackGapBelowMin = less,

StretchStackTopShiftUp = less,

}

}

}

In fact, in addition to already mentioned mapfiles and virtuals subtables, we can pass

variables and overload parameters.

113

Features

return {

name = "lm-math",

...

mathematics = {

mapfiles = {

...

},

virtuals = {

...

variables = {

joinrelfactor = 3, -- default anyway

},

parameters = { -- test values

-- FactorA = 123.456,

-- FactorB = false,

-- FactorC = function(value,target,original)

-- return 7.89 * target.factor

-- end,

-- FactorD = "Hi There!",

},

}

}

This kind of goodie functionality is typical for the development of LuaTEX and experimen-

tal math fonts and no user should ever be bothered with it. However, it demonstrates

that we’re not stuck with only features built in the fonts.

It can be that a user is not satisfied by some aspects of a math font design. There is not

much that we can do about the shapes, but we can manipulate for instance dimensions.

For this there are two mechanism available: automatically applied dimensional fixes and

a mathdimensions feature. Both work with the same goody specification.

mathematics = {

...

dimensions = {

},

...

}

The entries in a dimensions table are tables themselves. There can be many of them so

one can organize dimensional tweaks in groups. The default group is always applied,

while others are applied on demand. Say that want to tweak all ± and ∓.7

mathematics = {

7 In fact, this mechanism is a a response to a mail on the ConTEXt mailing list.

114

Features

dimensions = {

default = {

[0x00B1] = { -- ±

height = 500,

depth = 0,

},

[0x2213] = { -- ∓

height = 500,

depth = 0,

},

},

},

}

This will give these two characters a different height and depth. However, this will not

have much effect in rendering (much larger dimensions might have).

mathematics = {

dimensions = {

default = {

[0x00B1] = { -- ±

yoffset = 100,

},

[0x2213] = { -- ∓

yoffset = -100,

},

},

},

}

This will raise and lower the glyphs in their bounding boxes and give them an appearance

more close to their ancestors. But defined this way, they are always applied and that

might not be what we want. So, we can do this:

mathematics = {

dimensions = {

signs = {

[0x00B1] = { -- ±

yoffset = 100,

},

[0x2213] = { -- ∓

yoffset = -100,

},

},

},

}

115

Features

This time the application is feature driven. As with all features, setting them up has to

happen before fonts are loaded. This will do the trick:

\definefontfeature [lm-math] [mathdimensions=signs]

The lm-math feature is not defined by default but can be used for such purposes. It is

defined with the fontname:

\definefontsynonym

[LMMathRoman-Regular]

[file:latinmodern-math-regular.otf]

[features={math\mathsizesuffix,lm-math},

goodies=lm]

A rather specialized goodie is the one that is used to specify math cut-ins. A good quality

math font has these kerns already defined but even then you might want to add or replace

some by your own. Here is an example of such a patch. Normally there are multiple

goodies defined in one file but we only show kerns here:

local kern_200 = { bottomright = { { kern = -200 } } }

local kern_100 = { bottomright = { { kern = -100 } } }

return {

name = "pagella-math",

version = "1.00",

comment = "Goodies that complement pagella.",

author = "Hans Hagen",

copyright = "ConTeXt development team",

mathematics = {

kerns = {

[0x1D449] = kern_200, -- math italic V

[0x1D44A] = kern_100, -- math italic W

},

},

}

As with other goodies the file is loaded with:

\definefontsynonym

[MathRoman] % names used in definitions

[file:texgyrepagella-math.otf] % the file to be loaded

[features=math\mathsizesuffix, % size dependent features

goodies=pagella-math] % the goodie file to be applied

This is typically a goodie that is always applied and not driven by a feature. After all,

the values given are passed to the engine (after being scaled).

116

Features

Most goodies are bound to fonts of collections of fonts. This is different for treatments.

These ship with the distribution but you can also provide your own. As this is still some-

what experimental we just mention a few aspects. The entries are filenames that point

to tables.

return {

name = "treatments",

version = "1.00",

comment = "Goodies that deals with some general issues.",

author = "Hans Hagen",

copyright = "ConTeXt development team",

treatments = {

["adobeheitistd-regular.otf"] = {

embedded = false, -- not yet used

comment = "this font is part of acrobat",

},

["crap.ttf"] = {

ignored = true,

comment = "a text file with suffix ttf",

},

["latinmodern-math.otf"] = {

comment = "experimental",

},

["rubish-regular.ttf"] = {

comment = "check output for missing à and á",

}

},

}

The comment entry in such a table becomes part of the message at the end of a run:

mkiv lua stats > loaded fonts: 2 files: latinmodern-math.otf (experimental), lmroman12-regular.otf

The ignored flag signals the font name database builder to ignore the file. This means

that the font can still be known as file, but that its (name based) properties are not

collected. As you asked explicitly for a file, the file can still be loaded. You can use this

trick to avoid issues with the database builder in case of a problematic file, but a real

run will still try to load the file. After all, you get what you ask for. If loading and usage

is successful you get at least the message reported at the end of the run.

5.5 Analyzers

An OpenType font is kind of special in the sense that it provides some information on how

to turn sequences of characters into sequences of glyphs. In fact, if all fonts had a rea-

sonable repertoire of glyphs most of the information that concerns combining, remap-

ping and shuffling the input and/or mapping onto glyphs could as well happen in the

117

Features

renderer. This means that fonts have many of their internal features tables in common,

or more precisely could share many gsub related issues, if only there had been some

predefined sets of substitutional features.

So, for most of the time, a feature processor just does what the font demands and the

font provides the information. There are however a few cases where font only provide

part of the logic. Take for instance the init, medi, fina and isol features that relate to

positions in the word: the start, the end, in the middle or isolated. For these features to

work the engine has to provide information about the state of a character (glyph) and

this is where analysis kicks in. Just watch this:

\definefontfeature

[default-with-analyze]

[default]

[script=latn,mode=node,

init=yes,medi=yes,fina=yes,isol=yes]

\showotfcomposition

{dejavu-serif*default-with-analyze at 24pt}

{}

{I don't wanna know tha\utfchar{"300}t!}

In the tracer the different categories are colored. This kind of information is especially

important for typesetting Arabic. Normally ConTEXt can figure out itself when this is

needed so you don’t have to worry too much about this kind of additional actions.

font 95: DejaVuSerif.ttf @ 24.0pt

features analyze=yes, autolanguage=position, autoscript=position,

checkmarks=yes, curs=yes, devanagari=yes, dummies=yes,

extensions=yes, extrafeatures=yes, extraprivates=yes,

fina=yes, init=yes, isol=yes, kern=yes, liga=yes, mark=yes,

mathkerns=yes, mathrules=yes, medi=yes, mkmk=yes, mode=node,

script=latn, spacekern=yes, tlig=yes, trep=yes

step 1 I don't wanna know thàt!
U+49:I [glue] U+64:d U+6F:o U+6E:n U+27:' U+74:t [glue]

U+77:w U+61:a U+6E:n U+6E:n U+61:a [glue] U+6B:k
U+6E:n U+6F:o U+77:w [glue] U+74:t U+68:h U+61:a U+300:̀

U+74:t U+21:!
feature 'trep', type 'gsub_single', lookup 'trep', replacing

U+00027 (quotesingle) by single U+02019 (quoteright)

118

Features

step 2 I don’t wanna know thàt!
U+49:I [glue] U+64:d U+6F:o U+6E:n U+2019:’ U+74:t [glue]

U+77:w U+61:a U+6E:n U+6E:n U+61:a [glue] U+6B:k
U+6E:n U+6F:o U+77:w [glue] U+74:t U+68:h U+61:a U+300:̀

U+74:t U+21:!
feature 'mark', type 'gpos_mark2base', lookup 'p_s_1', anchor ,

bound 1, anchoring mark U+00300 (gravecomb) to basechar

U+00061 (a) => (1.64063pt,0pt)

result I don’t wanna know thàt!
U+49:I [glue] U+64:d U+6F:o U+6E:n U+2019:’ U+74:t [glue]

U+77:w U+61:a U+6E:n U+6E:n U+61:a [glue] U+6B:k
U+6E:n U+6F:o U+77:w [glue] U+74:t U+68:h U+61:a U+300:̀

U+74:t U+21:!

5.6 Processors

Todo.

5.7 Optimizing

Todo.

5.8 Tracing

There are a lot of tracing options in MkIV, but most will never be seen by users. Most

are enabled using the tracker mechanism. Some have a bit more visibility and have a

dedicated command to trigger them.

When something is going terribly wrong, you will always get a message but sometimes

even an end-user has to request for more information. An example are missing charac-

ters. There are several ways to get them reported:

\enabletrackers[fonts.missing=replace]

\enabletrackers[fonts.missing=remove]

\enabletrackers[fonts.missing]

For historic reasons we also have:

119

Features

\checkcharactersinfont

\removemissingcharacters

\replacemissingcharacters

which happens automatically when you enable the tracker. There is some extra overhead

involved so you might want to turn on this feature on only if you really expect characters

not to be present.

Say that we use Latin Modern fonts and ask for some of the rare fractions:

\definedfont[lmroman10-regular*default-with-missing at 10pt]

a b c ½ ⅓ ¼ ⅕ ⅙ ⅛ Ɣ ɣ ʤ ʭ ʮ α β γ

We get this: a b c ½ ¼ . In the log file you will find something like

this:

fonts > characters > start missing characters: lmroman10-regular.otf

missing > U+00194 Ɣ LATIN CAPITAL LETTER GAMMA

missing > U+00263 ɣ LATIN SMALL LETTER GAMMA

missing > U+002A4 ʤ LATIN SMALL LETTER DEZH DIGRAPH

missing > U+002AD ʭ LATIN LETTER BIDENTAL PERCUSSIVE

missing > U+002AE ʮ LATIN SMALL LETTER TURNED H WITH FISHHOOK

missing > U+003B1 α GREEK SMALL LETTER ALPHA

missing > U+003B2 β GREEK SMALL LETTER BETA

missing > U+003B3 γ GREEK SMALL LETTER GAMMA

missing > U+02153 ⅓ VULGAR FRACTION ONE THIRD

missing > U+02155 ⅕ VULGAR FRACTION ONE FIFTH

missing > U+02159 ⅙ VULGAR FRACTION ONE SIXTH

missing > U+0215B ⅛ VULGAR FRACTION ONE EIGHTH

fonts > characters > stop missing characters

If you’re lucky your editor will use a font that shows the missing characters (dejavu

monospace is a good candidate).

The replacement characters can help you to locate the spots where something is missing

so that an alternative can be considered. The replacements resemble the category of

the missing character.

symbol name

placeholder lowercase blue

placeholder lowercase magenta

placeholder lowercase red

placeholder lowercase yellow

placeholder mark green

120

Features

placeholder punctuation cyan

placeholder uppercase red

You can call up this legend after loading an extra module:

\usemodule[s][fonts-missing]

\showmissingcharacterslegend

\showmissingcharacters

The last command shows a detailed list of missing characters

filename lmroman10-regular.otf

missing 12

U+00194 Ɣ LATIN CAPITAL LETTER GAMMA

U+00263 ɣ LATIN SMALL LETTER GAMMA

U+002A4 ʤ LATIN SMALL LETTER DEZH DIGRAPH

U+002AD ʭ LATIN LETTER BIDENTAL PERCUSSIVE

U+002AE ʮ LATIN SMALL LETTER TURNED H WITH FISHHOOK

U+003B1 α GREEK SMALL LETTER ALPHA

U+003B2 β GREEK SMALL LETTER BETA

U+003B3 γ GREEK SMALL LETTER GAMMA

U+02153 ⅓ VULGAR FRACTION ONE THIRD

U+02155 ⅕ VULGAR FRACTION ONE FIFTH

U+02159 ⅙ VULGAR FRACTION ONE SIXTH

U+0215B ⅛ VULGAR FRACTION ONE EIGHTH

Here the characters are shown, because we use a monospaced font that happens to have

them. Of course this example uses characters that are rarely used and are unlikely to

show up in future versions of the Latin Modern fonts.

Here a few more relevant trackers will be mentioned.

5.9 Discretionaries

The font handler has to do some magick to get features working with and across discre-

tionaries. To some extend you can use font switches inside discretionaries but for sure

border cases are not dealt with. This works:

121

Features

12567

12ͣ67

125ͣ567

123

467

12͡

͢67

123͡

͢467

12567

12ͣ67

125ͣ567

123

467

12͡

͢67

123͡

͢467

1 2 3 4

The first two examples have otf.alwaysdisk enabled, the last two have it disabled.

\definedfont[cambria*default]

12\discretionary

{3} {4} {5}%

67\par

12{\oldstyle\discretionary

{3} {4} {5}}%

67\par

12\discretionary

{3{\oldstyle3}} {{\oldstyle4}4} {5{\oldstyle5}5}%

67\par

5.10 Some remarks

If you talk about features and fonts it is not difficult to end up speaking OpenType. How-

ever, in ConTEXt we use the term in a more general way, if only because we provide more

features. In traditional TEX we have a few features: ligatures, smallcaps and kerns, and

to some extent we can see oldstyle numerals also as feature. It is however important to

notice that in OpenType ligatures are just a synonym for combining multiple characters

into on. From the user interface point of view these operations are grouped into liga,

dlig, clig and rlig and for TEXies we have tlig. The distinction is not as clear as one

might think: any feature can use the ligature builder. And as a consequence we see that

happen too, for instance some fonts use ccmp for constructing mandatory ligatures.

Some of these interpretations (or maybe even tricks) are side effects of for instance user

interfaces. If one can for instance not turn on or off the ccmp feature, but can do that

for liga, then one way to keep some ligatures in for instance letter spaced text, is to

put them into ccmp, assuming that this one will always be enabled. Eventually that then

becomes a sort of standard. Personally I don’t like such pseudo standards but we have

to live with them.

Another example of such a standard is the used of non breakable spaces to influence

treatment of some Devanagari characters. Where Unicode has special characters to

influence mechanisms that combine and replace characters, the lack of some triggers

others to be used and eventually that becomes a standard. Similar ambiguities arise with

122

Features

math: we have no way to indicate math (while we do have ways to indicate a change in

writing order).

Talking of math, take OpenType math: at some point there is a draft, that then gets

implemented in one word processor using one font, but omissions or imperfections that

surface (maybe because more fonts and engines are developed) stay around because

the initial implementation is published and frozen, simply because there are many users

that stick to expectations. Where TEXies accept a few years of development, this is not

true for commercial applications.8

So, although there is without doubt progress, some annoyances stay. The TEX community

has always been able to adapt, and this is one reason why a Lua implementation is nice:

it gives room for experiments, extensions, variants, etc. Of course it also makes a bit

more independent, although one may wonder if that matters any longer in a rapidly

changing world. The original idea behind TEX, that it should be useable for ages, will

survive, but users might see more changes in a lifetime than foreseen when TEX showed

up.

8 Of course html is the biggest example of this: we’re stuck forever with open tags without close tags, mixed

uppercase and lowercase tags, attributes without value or values without quotes.

123

Scripts

6 Scripts

6.1 Introduction

As OpenType fonts can provide specific features to deal with scripts and languages it

makes sense to spend some word on this.

124

Scripts

125

Math

7 Math

7.1 Introduction

As one can expect, math support in ConTEXt is to some extend modelled after what plain

TEX provides, plus what was later decided to be standard. This mostly concerns the way

fonts behave and what names are used to access glyphs or special constructs. It means

that when you come from another macro package you can stick to coding math the way

you did before, at least the basic coding. In addition to this, ConTEXt gives control over

fonts, structure and rendering and most of that was either driven by personal need or

user demand. To be honest, many of the options are probably of not much interest to

the average user.

As we focus on fonts we will only touch this aspect of math here. Right from when we

started with developing LuaTEX, cleaning op the math part of ConTEXt was part of the

game. Some primitives were added that would make it possible to avoid unnecessary

complex macros to get certain glyphs rendered, like radicals, accents and extensibles.

This was made easy because we also support OpenType math and because we knew that

eventually the Latin Modern and Gyre fonts would also support OpenType. In order to

move forward and get rid of traditional eight bit fonts ConTEXt MkIV can construct a

virtual OpenType font from traditional math fonts. It makes not much sense to discuss

that here as by now this method is only provided for reasons of compatibility and a

reference to the past. As a lot of time went into this it will always stay around if only to

remind us of what we went through to get where we are now.

7.2 Unicode math

Due to the limited amount of glyphs in a Type1 font a macro package has to jump through

loops in order to get traditional TEX engines behave well. As a practical consequence

these fonts are often a mixture of characters, symbols, punctuation and snippets that

make up larger shapes. The font dimensions in these files have often special meanings

too.

This has all changed considerably with math being part of Unicode. It was however Mi-

crosoft where the real action took place: the development of the first font that combined

Unicode with OpenType technology. The Cambria font can be considered the benchmark

for fonts that surfaced later. The characteristic of a math font are the following:

• All math alphabets are present: latin as well as greek, in regular, italic, bold, fraktur

and script variants as well as some combinations of these.

• The symbols that make sense are present (read: the more obscure shapes can be

omited).

• For the characters that make sense, there are two variants that render well at smaller

sizes: script and scriptscript. In the font they have the same size but the application

will scale them down. This feature is named ssty.

126

Math

• Characters that can extend horizontally (for instance accents and arrows) or verti-

cally (like radicals and fences) have associated larger variants and carries informa-

tion about how to grow indefinitely.

• There is a whole lot of special math dimensions. Most of the ones already used in TEX

are present.

• Some glyphs come in variants in order to please special usage. There can also be

variants for script or fraktur alphabets.

This means that in practice an OpenType math font is quite large. We easily have thou-

sands of glyphs. It also means that creating such a font involves some expertise and

this is one of the reasons why TEX usergroups have joined forces in developing a suite

of fonts. There are also other initiatives in the TEX community, of which Xits is an exam-

ple.9 The well known Lucida Bright math font package has also been upgraded to a set

of OpenType math fonts.

The fact that there are not that many math fonts out there has a positive side as well:

ConTEXt comes with them pre-configured. Because during the development of LuaTEX

we needed to have at least a couple of fonts for testing, and because it makes no sense

to waste time on traditional fonts, the Latin Modern, Palatino, Times and a few more

fonts were (and still are) provided as virtual Unicode fonts.

In a regular text font, what you key in is what you get out. So, when you’ve chosen a

font with an italic shape, you get italic shapes, even if the smallcaps feature is enabled.

In math, if you use the right unicodes you also get the shape you expect. Because in

this case italic shapes are situated in one of the alphabets you explicitly choose a ren-

dering. You can enter the right codepoints directly, so for instance if you enter Unicode

character U+1D434 you will get 𝐴. In practice something like $\bi A$ should also give

that character if only because that is what we have been doing for over three decades.

This means that the engine has to map a regular A onto the bold italic alphabet. In a

traditional approach you will use math families for this, but in ConTEXt MkIV we simply

use one font and one family and let the MkIV machinery do the rest.

In text mode we switch fonts styles in the following way:

regular {\it italic} {\bf bold} {\bi bold italic} and so on

The three commands shown here are shortcuts for font switches. This input is converted

into an internal representation and after whatever manipulations are applied end up as:

regular italic bold bold italic and so on

If we look at what fonts we end up with we get:

regular italic bold bold italic and so on

9 This is a useable variant of Stix fonts with proper math features, some extra glyphs and experimental right--to--

left shapes.

127

Math

Now lets do the same in math mode:

$regular {\it italic} {\bf bold} {\bi bold italic} and so on$

This time we get a different result:

𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑎𝑙𝑖𝑐𝐛𝐨𝐥𝐝𝒃𝒐𝒍𝒅𝒊𝒕𝒂𝒍𝒊𝒄𝑎𝑛𝑑𝑠𝑜𝑜𝑛

If again we analyze the fonts you see this:

𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑎𝑙𝑖𝑐𝐛𝐨𝐥𝐝𝒃𝒐𝒍𝒅𝒊𝒕𝒂𝒍𝒊𝒄𝑎𝑛𝑑𝑠𝑜𝑜𝑛

All glyphs come from the same font. Instead of regular we get italic simply because

math characters are italic by nature. The two character style switches are not really

font switches but just make sure that the given input is mapped onto the right alphabet.

A traditional approach using Type1 fonts is to use a so called math family for each al-

phabet. In that case each alphabet maps one--to--one onto the font: when we switch to a

bold family we just take the glyph that sits in that slot. In MkIV we have all characters

in one family so behind the screens a given character is remapped.

Now take a look at the following example:

$text^{script^{scriptscript}}$

This renders to this, with the characters marked by font:

𝑡𝑒𝑥𝑡𝑠𝑐𝑟𝑖𝑝𝑡𝑠𝑐𝑟𝑖𝑝𝑡𝑠𝑐𝑟𝑖𝑝𝑡

This time we have three different fonts: one for each of the three math sizes. But this

representation is not entirely honest, because indeed we have three font instances for

math, but the glyphs come from the same OpenType math font. We just load the same

font three times, once for each size. In fact we load the font once, but use three copies,

scaled accordingly to the relative scale the font prescribes.

There is a whole bunch of commands to choose specific characters in math mode using

a regular input. These are state switching commands.

\mr 𝑎 𝐴

\mathdefault 𝑎 𝐴
\mathscript 𝒶 𝒜
\mathfraktur 𝔞 𝔄
\mathblackboard 𝕒 𝔸

\rm \mathrm a A
\ss \mathss 𝖺 𝖠
\tt \mathtt 𝚊 𝙰

\tf \mathtf \tfmath a A

128

Math

\sl \mathsl \slmath 𝑎 𝐴
\it \mathit \itmath 𝑎 𝐴

\bf \mathbf \bfmath 𝐚 𝐀
\bs \mathbs \bsmath 𝒂 𝑨
\bi \mathbi \bimath 𝒂 𝑨

As you can see here, some commands have synonyms. The short commands adapt them-

selves to text and mathmode, the longer ones are meant for use in math mode only.

In text mode distinctive shapes are either a font property (the whole font looks that way)

or a stylistic alternate (an extra feature of a font). In math mode we can have alternates,

but in addition to the previously mentioned alphabet switchers we have a few more:

\frak 𝔞 𝔄
\cal 𝒶 𝒜
\bbd 𝕒 𝔸
\blackboard 𝕒 𝔸
\fraktur 𝔞 𝔄
\gothic 𝔞 𝔄

This chapter is not meant as an introduction to math but it is good to know that math

font support in ConTEXt is rather flexible. There are several mechanisms for remapping

and converting characters and sequences into others and more is possible. Here is one:

\startformula

\reals {\mathbf R} \utfchar{"0211D} \utfchar{"1D411}

\stopformula

ℝ𝐑ℝ𝐑

Compare this to:

\setupmathematics[symbolset=blackboard-to-bold]

\startformula

\reals {\mathbf R} \utfchar{"0211D} \utfchar{"1D411}

\stopformula

𝐑𝐑𝐑𝐑

Greek is always troublesome because instead of regular text shapes math uses a few

variants. Because in Unicode characters are only included once, we have gaps in the

math alphabets but MkIV will take care of this.10 Depending on the field an author has

to choose between upright and italic greek:

$\nabla \alpha \mathgreekupright \nabla \alpha \mathgreekitalic \nabla \alpha$

10 This is a typical example of where exceptions in a standard force all applications that deal with it have to imple-

ment tweaks.

129

Math

∇𝛼∇α𝛻𝛼

By default ConTEXt is set up as follows:

\setupmathematics

[sygreek=normal,

lcgreek=italic,

ucgreek=normal]

Again, these are not features of a font. The font just provides the glyphs and the TEX

engine, controlled by ConTEXt takes care of mapping characters to glyphs and building

special constructs. The same is true for spacing. Although math fonts do have kerning

information, most of the math spacing is controlled by properties of characters and not

by the font.

$a \mathord{+} b$ 𝑎+𝑏
$a \mathpunct{+} b$ 𝑎+𝑏
$a \mathinner{+} b$ 𝑎+𝑏
$a \mathop{+} b$ 𝑎+𝑏
$a \mathalpha{+} b$ 𝑎 + 𝑏
$a \mathnothing{+} b$ 𝑎 + 𝑏
$a \mathbin{+} b$ 𝑎 + 𝑏
$a \mathrel{+} b$ 𝑎 + 𝑏

As a user you don’t have to worry about these issues because characters are tagged

according to their usage.11

With TEX being the oldest and still dominant math renderer it is no surprise that Mi-

crosoft modelled its math renderer after TEX and Cambria quite well suits the concept.

In retrospect it is somewhat unfortunate that we’re still stuck with some left overs (or

compromises) from the past with respect to spacing built into the font. However, as

long as this is consistent over fonts it’s not that relevant. You can always influence the

spacing with the commands mentioned.

If you look at the low level definitions in for instance plain TEX but also in ConTEXt MkII

that relate to prime symbols it probably takes a while before you figure out what happens

there. For instance, the prime symbol is triggered by a quote and multiple in a row

results in primes that are spaced tightly. In Unicode we have slots for single, double

and tripple primes. Therefore, in MkIV we have a mechanism that accepts different

kinds of input that eventually all end up in one of these three glyphs.

f^2 𝑓2

$f\prime ^2$ 𝑓′2

$f\prime \prime ^2$ 𝑓″2

$f\prime \prime \prime ^2$ 𝑓‴2

11 There are a few more commands, like \mathlimop, \mathnolop and mathbox but these are used differently.

130

Math

$f{\prime }^2$ 𝑓′2

$f{\prime \prime }^2$ 𝑓″2

$f{\prime \prime \prime }^2$ 𝑓‴2

$f'(x)$ 𝑓′(𝑥)
$f''(x)$ 𝑓″(𝑥)
$f'''(x)$ 𝑓‴(𝑥)
$f\utfchar{0x2032}(x)$ 𝑓𝑥2032(𝑥)
$f\utfchar{0x2033}(x)$ 𝑓𝑥2033(𝑥)
$f\utfchar{0x2034}(x)$ 𝑓𝑥2034(𝑥)
$f\utfchar{0x2032}\utfchar{0x2032}(x)$ 𝑓𝑥2032𝑥2032(𝑥)
$f\utfchar{0x2032}\utfchar{0x2032}\utfchar{0x2032}(x)$ 𝑓𝑥2032𝑥2032𝑥2032(𝑥)
$f\utfchar{0x2033}\utfchar{0x2032}(x)$ 𝑓𝑥2033𝑥2032(𝑥)
$f\utfchar{0x2032}\utfchar{0x2033}(x)$ 𝑓𝑥2032𝑥2033(𝑥)

Again, this is not the same as ligature building features in text fonts, but handled in a

different way.

The TEX engine understands the concept of italic correction. When an italic shape is

followed by for instance an upright shape, you can insert a \/ and the engine will add a

correction as defined in the font. In OpenType we don’t have such corrections available

but we can fake it, which is what the itlc feature in ConTEXt does. However, you need

to enable this feature explicitly. An example of a setup is:

\definefontfeature

[default]

[default]

[itlc=yes,textitalics=yes]

\setupitaliccorrection

[global,always]

This will make sure that the right amount of correction is added between italic shapes

and non italics or boxes. Using text instead of always would limit the correction to

glyphs only and leaving out the global would permit selective (grouped) usage at the

cost of more runtime. There is no need for the \/ here.

In math we also can have italic correction but there it is built into the engine and in

traditional TEX no directives are needed. Italic correction properties in math fonts are

somewhat troublesome as their application depends on what we’re dealing with: sym-

bols, super- and subscripts, etc. Because early versions of LuaTEX didn’t handle all of it

well, if only because the fonts were not yet okay, the MkIV math handler provides a bit

of control.

0 𝑚 t 𝑚 t t 𝑚 t 𝑚 t no correction

1 𝑚 t 𝑚 t t 𝑚 t 𝑚 t only apply italics when the font carries them

2 𝑚 t 𝑚 t t 𝑚 t 𝑚 t apply italics provided by the font or automatically calculated

131

Math

3 𝑚 t 𝑚 t t 𝑚 t 𝑚 t apply italics based on an emwidth and character properties

4 𝑚 t 𝑚 t t 𝑚 t 𝑚 t use method 1 but fall back on 3 if needed

Because we cannot rely on fonts too much, we default to method 3 which in practice

works out well, so the setup is:

\setupmathematics

[italics=3]

There are all kind of commands that can be used to build math constructs in such a

way that super- and subscripts are consistently rendered. It goes beyond this chapter to

discuss them and most users will never see or use those commands. The main message of

the examples above is that text and math use different fonts and properties and therefore

also different methods in rendering text or a formula. Even if the names of mechanisms

are the same (like italics) you cannot assume that both modes do exactly the same.

7.3 Bold math

If you look at what Unicode provides you will notice that there are quite some bold

characters. First of all there are a bunch of alphabets and because bold is not present

in the text part of Unicode these alphabets have no holes. Then there are some symbols

that have special meaning.

U+04X 𝐀 MATHEMATICAL BOLD CAPITAL A

U+04X 𝐁 MATHEMATICAL BOLD CAPITAL B

U+04X 𝐂 MATHEMATICAL BOLD CAPITAL C

U+04X 𝐃 MATHEMATICAL BOLD CAPITAL D

U+04X 𝐄 MATHEMATICAL BOLD CAPITAL E

U+04X 𝐅 MATHEMATICAL BOLD CAPITAL F

U+04X 𝐆 MATHEMATICAL BOLD CAPITAL G

U+04X 𝐇 MATHEMATICAL BOLD CAPITAL H

U+04X 𝐈 MATHEMATICAL BOLD CAPITAL I

U+04X 𝐉 MATHEMATICAL BOLD CAPITAL J

U+04X 𝐊 MATHEMATICAL BOLD CAPITAL K

U+04X 𝐋 MATHEMATICAL BOLD CAPITAL L

U+04X 𝐌 MATHEMATICAL BOLD CAPITAL M

U+04X 𝐍 MATHEMATICAL BOLD CAPITAL N

U+04X 𝐎 MATHEMATICAL BOLD CAPITAL O

U+04X 𝐏 MATHEMATICAL BOLD CAPITAL P

U+04X 𝐐 MATHEMATICAL BOLD CAPITAL Q

U+04X 𝐑 MATHEMATICAL BOLD CAPITAL R

U+04X 𝐒 MATHEMATICAL BOLD CAPITAL S

U+04X 𝐓 MATHEMATICAL BOLD CAPITAL T

U+04X 𝐔 MATHEMATICAL BOLD CAPITAL U

U+04X 𝐕 MATHEMATICAL BOLD CAPITAL V

132

Math

U+04X 𝐖 MATHEMATICAL BOLD CAPITAL W

U+04X 𝐗 MATHEMATICAL BOLD CAPITAL X

U+04X 𝐘 MATHEMATICAL BOLD CAPITAL Y

U+04X 𝐙 MATHEMATICAL BOLD CAPITAL Z

U+04X 𝐚 MATHEMATICAL BOLD SMALL A

U+04X 𝐛 MATHEMATICAL BOLD SMALL B

U+04X 𝐜 MATHEMATICAL BOLD SMALL C

U+04X 𝐝 MATHEMATICAL BOLD SMALL D

U+04X 𝐞 MATHEMATICAL BOLD SMALL E

U+04X 𝐟 MATHEMATICAL BOLD SMALL F

U+04X 𝐠 MATHEMATICAL BOLD SMALL G

U+04X 𝐡 MATHEMATICAL BOLD SMALL H

U+04X 𝐢 MATHEMATICAL BOLD SMALL I

U+04X 𝐣 MATHEMATICAL BOLD SMALL J

U+04X 𝐤 MATHEMATICAL BOLD SMALL K

U+04X 𝐥 MATHEMATICAL BOLD SMALL L

U+04X 𝐦 MATHEMATICAL BOLD SMALL M

U+04X 𝐧 MATHEMATICAL BOLD SMALL N

U+04X 𝐨 MATHEMATICAL BOLD SMALL O

U+04X 𝐩 MATHEMATICAL BOLD SMALL P

U+04X 𝐪 MATHEMATICAL BOLD SMALL Q

U+04X 𝐫 MATHEMATICAL BOLD SMALL R

U+04X 𝐬 MATHEMATICAL BOLD SMALL S

U+04X 𝐭 MATHEMATICAL BOLD SMALL T

U+04X 𝐮 MATHEMATICAL BOLD SMALL U

U+04X 𝐯 MATHEMATICAL BOLD SMALL V

U+04X 𝐰 MATHEMATICAL BOLD SMALL W

U+04X 𝐱 MATHEMATICAL BOLD SMALL X

U+04X 𝐲 MATHEMATICAL BOLD SMALL Y

U+04X 𝐳 MATHEMATICAL BOLD SMALL Z

U+04X 𝑨 MATHEMATICAL BOLD ITALIC CAPITAL A

U+04X 𝑩 MATHEMATICAL BOLD ITALIC CAPITAL B

U+04X 𝑪 MATHEMATICAL BOLD ITALIC CAPITAL C

U+04X 𝑫 MATHEMATICAL BOLD ITALIC CAPITAL D

U+04X 𝑬 MATHEMATICAL BOLD ITALIC CAPITAL E

U+04X 𝑭 MATHEMATICAL BOLD ITALIC CAPITAL F

U+04X 𝑮 MATHEMATICAL BOLD ITALIC CAPITAL G

U+04X 𝑯 MATHEMATICAL BOLD ITALIC CAPITAL H

U+04X 𝑰 MATHEMATICAL BOLD ITALIC CAPITAL I

U+04X 𝑱 MATHEMATICAL BOLD ITALIC CAPITAL J

U+04X 𝑲 MATHEMATICAL BOLD ITALIC CAPITAL K

U+04X 𝑳 MATHEMATICAL BOLD ITALIC CAPITAL L

U+04X 𝑴 MATHEMATICAL BOLD ITALIC CAPITAL M

U+04X 𝑵 MATHEMATICAL BOLD ITALIC CAPITAL N

133

Math

U+04X 𝑶 MATHEMATICAL BOLD ITALIC CAPITAL O

U+04X 𝑷 MATHEMATICAL BOLD ITALIC CAPITAL P

U+04X 𝑸 MATHEMATICAL BOLD ITALIC CAPITAL Q

U+04X 𝑹 MATHEMATICAL BOLD ITALIC CAPITAL R

U+04X 𝑺 MATHEMATICAL BOLD ITALIC CAPITAL S

U+04X 𝑻 MATHEMATICAL BOLD ITALIC CAPITAL T

U+04X 𝑼 MATHEMATICAL BOLD ITALIC CAPITAL U

U+04X 𝑽 MATHEMATICAL BOLD ITALIC CAPITAL V

U+04X 𝑾 MATHEMATICAL BOLD ITALIC CAPITAL W

U+04X 𝑿 MATHEMATICAL BOLD ITALIC CAPITAL X

U+04X 𝒀 MATHEMATICAL BOLD ITALIC CAPITAL Y

U+04X 𝒁 MATHEMATICAL BOLD ITALIC CAPITAL Z

U+04X 𝒂 MATHEMATICAL BOLD ITALIC SMALL A

U+04X 𝒃 MATHEMATICAL BOLD ITALIC SMALL B

U+04X 𝒄 MATHEMATICAL BOLD ITALIC SMALL C

U+04X 𝒅 MATHEMATICAL BOLD ITALIC SMALL D

U+04X 𝒆 MATHEMATICAL BOLD ITALIC SMALL E

U+04X 𝒇 MATHEMATICAL BOLD ITALIC SMALL F

U+04X 𝒈 MATHEMATICAL BOLD ITALIC SMALL G

U+04X 𝒉 MATHEMATICAL BOLD ITALIC SMALL H

U+04X 𝒊 MATHEMATICAL BOLD ITALIC SMALL I

U+04X 𝒋 MATHEMATICAL BOLD ITALIC SMALL J

U+04X 𝒌 MATHEMATICAL BOLD ITALIC SMALL K

U+04X 𝒍 MATHEMATICAL BOLD ITALIC SMALL L

U+04X 𝒎 MATHEMATICAL BOLD ITALIC SMALL M

U+04X 𝒏 MATHEMATICAL BOLD ITALIC SMALL N

U+04X 𝒐 MATHEMATICAL BOLD ITALIC SMALL O

U+04X 𝒑 MATHEMATICAL BOLD ITALIC SMALL P

U+04X 𝒒 MATHEMATICAL BOLD ITALIC SMALL Q

U+04X 𝒓 MATHEMATICAL BOLD ITALIC SMALL R

U+04X 𝒔 MATHEMATICAL BOLD ITALIC SMALL S

U+04X 𝒕 MATHEMATICAL BOLD ITALIC SMALL T

U+04X 𝒖 MATHEMATICAL BOLD ITALIC SMALL U

U+04X 𝒗 MATHEMATICAL BOLD ITALIC SMALL V

U+04X 𝒘 MATHEMATICAL BOLD ITALIC SMALL W

U+04X 𝒙 MATHEMATICAL BOLD ITALIC SMALL X

U+04X 𝒚 MATHEMATICAL BOLD ITALIC SMALL Y

U+04X 𝒛 MATHEMATICAL BOLD ITALIC SMALL Z

U+04X 𝓐 MATHEMATICAL BOLD SCRIPT CAPITAL A

U+04X 𝓑 MATHEMATICAL BOLD SCRIPT CAPITAL B

U+04X 𝓒 MATHEMATICAL BOLD SCRIPT CAPITAL C

U+04X 𝓓 MATHEMATICAL BOLD SCRIPT CAPITAL D

U+04X 𝓔 MATHEMATICAL BOLD SCRIPT CAPITAL E

U+04X 𝓕 MATHEMATICAL BOLD SCRIPT CAPITAL F

134

Math

U+04X 𝓖 MATHEMATICAL BOLD SCRIPT CAPITAL G

U+04X 𝓗 MATHEMATICAL BOLD SCRIPT CAPITAL H

U+04X 𝓘 MATHEMATICAL BOLD SCRIPT CAPITAL I

U+04X 𝓙 MATHEMATICAL BOLD SCRIPT CAPITAL J

U+04X 𝓚 MATHEMATICAL BOLD SCRIPT CAPITAL K

U+04X 𝓛 MATHEMATICAL BOLD SCRIPT CAPITAL L

U+04X 𝓜 MATHEMATICAL BOLD SCRIPT CAPITAL M

U+04X 𝓝 MATHEMATICAL BOLD SCRIPT CAPITAL N

U+04X 𝓞 MATHEMATICAL BOLD SCRIPT CAPITAL O

U+04X 𝓟 MATHEMATICAL BOLD SCRIPT CAPITAL P

U+04X 𝓠 MATHEMATICAL BOLD SCRIPT CAPITAL Q

U+04X 𝓡 MATHEMATICAL BOLD SCRIPT CAPITAL R

U+04X 𝓢 MATHEMATICAL BOLD SCRIPT CAPITAL S

U+04X 𝓣 MATHEMATICAL BOLD SCRIPT CAPITAL T

U+04X 𝓤 MATHEMATICAL BOLD SCRIPT CAPITAL U

U+04X 𝓥 MATHEMATICAL BOLD SCRIPT CAPITAL V

U+04X 𝓦 MATHEMATICAL BOLD SCRIPT CAPITAL W

U+04X 𝓧 MATHEMATICAL BOLD SCRIPT CAPITAL X

U+04X 𝓨 MATHEMATICAL BOLD SCRIPT CAPITAL Y

U+04X 𝓩 MATHEMATICAL BOLD SCRIPT CAPITAL Z

U+04X 𝓪 MATHEMATICAL BOLD SCRIPT SMALL A

U+04X 𝓫 MATHEMATICAL BOLD SCRIPT SMALL B

U+04X 𝓬 MATHEMATICAL BOLD SCRIPT SMALL C

U+04X 𝓭 MATHEMATICAL BOLD SCRIPT SMALL D

U+04X 𝓮 MATHEMATICAL BOLD SCRIPT SMALL E

U+04X 𝓯 MATHEMATICAL BOLD SCRIPT SMALL F

U+04X 𝓰 MATHEMATICAL BOLD SCRIPT SMALL G

U+04X 𝓱 MATHEMATICAL BOLD SCRIPT SMALL H

U+04X 𝓲 MATHEMATICAL BOLD SCRIPT SMALL I

U+04X 𝓳 MATHEMATICAL BOLD SCRIPT SMALL J

U+04X 𝓴 MATHEMATICAL BOLD SCRIPT SMALL K

U+04X 𝓵 MATHEMATICAL BOLD SCRIPT SMALL L

U+04X 𝓶 MATHEMATICAL BOLD SCRIPT SMALL M

U+04X 𝓷 MATHEMATICAL BOLD SCRIPT SMALL N

U+04X 𝓸 MATHEMATICAL BOLD SCRIPT SMALL O

U+04X 𝓹 MATHEMATICAL BOLD SCRIPT SMALL P

U+04X 𝓺 MATHEMATICAL BOLD SCRIPT SMALL Q

U+04X 𝓻 MATHEMATICAL BOLD SCRIPT SMALL R

U+04X 𝓼 MATHEMATICAL BOLD SCRIPT SMALL S

U+04X 𝓽 MATHEMATICAL BOLD SCRIPT SMALL T

U+04X 𝓾 MATHEMATICAL BOLD SCRIPT SMALL U

U+04X 𝓿 MATHEMATICAL BOLD SCRIPT SMALL V

U+04X 𝔀 MATHEMATICAL BOLD SCRIPT SMALL W

U+04X 𝔁 MATHEMATICAL BOLD SCRIPT SMALL X

135

Math

U+04X 𝔂 MATHEMATICAL BOLD SCRIPT SMALL Y

U+04X 𝔃 MATHEMATICAL BOLD SCRIPT SMALL Z

U+04X 𝕬 MATHEMATICAL BOLD FRAKTUR CAPITAL A

U+04X 𝕭 MATHEMATICAL BOLD FRAKTUR CAPITAL B

U+04X 𝕮 MATHEMATICAL BOLD FRAKTUR CAPITAL C

U+04X 𝕯 MATHEMATICAL BOLD FRAKTUR CAPITAL D

U+04X 𝕰 MATHEMATICAL BOLD FRAKTUR CAPITAL E

U+04X 𝕱 MATHEMATICAL BOLD FRAKTUR CAPITAL F

U+04X 𝕲 MATHEMATICAL BOLD FRAKTUR CAPITAL G

U+04X 𝕳 MATHEMATICAL BOLD FRAKTUR CAPITAL H

U+04X 𝕴 MATHEMATICAL BOLD FRAKTUR CAPITAL I

U+04X 𝕵 MATHEMATICAL BOLD FRAKTUR CAPITAL J

U+04X 𝕶 MATHEMATICAL BOLD FRAKTUR CAPITAL K

U+04X 𝕷 MATHEMATICAL BOLD FRAKTUR CAPITAL L

U+04X 𝕸 MATHEMATICAL BOLD FRAKTUR CAPITAL M

U+04X 𝕹 MATHEMATICAL BOLD FRAKTUR CAPITAL N

U+04X 𝕺 MATHEMATICAL BOLD FRAKTUR CAPITAL O

U+04X 𝕻 MATHEMATICAL BOLD FRAKTUR CAPITAL P

U+04X 𝕼 MATHEMATICAL BOLD FRAKTUR CAPITAL Q

U+04X 𝕽 MATHEMATICAL BOLD FRAKTUR CAPITAL R

U+04X 𝕾 MATHEMATICAL BOLD FRAKTUR CAPITAL S

U+04X 𝕿 MATHEMATICAL BOLD FRAKTUR CAPITAL T

U+04X 𝖀 MATHEMATICAL BOLD FRAKTUR CAPITAL U

U+04X 𝖁 MATHEMATICAL BOLD FRAKTUR CAPITAL V

U+04X 𝖂 MATHEMATICAL BOLD FRAKTUR CAPITAL W

U+04X 𝖃 MATHEMATICAL BOLD FRAKTUR CAPITAL X

U+04X 𝖄 MATHEMATICAL BOLD FRAKTUR CAPITAL Y

U+04X 𝖅 MATHEMATICAL BOLD FRAKTUR CAPITAL Z

U+04X 𝖆 MATHEMATICAL BOLD FRAKTUR SMALL A

U+04X 𝖇 MATHEMATICAL BOLD FRAKTUR SMALL B

U+04X 𝖈 MATHEMATICAL BOLD FRAKTUR SMALL C

U+04X 𝖉 MATHEMATICAL BOLD FRAKTUR SMALL D

U+04X 𝖊 MATHEMATICAL BOLD FRAKTUR SMALL E

U+04X 𝖋 MATHEMATICAL BOLD FRAKTUR SMALL F

U+04X 𝖌 MATHEMATICAL BOLD FRAKTUR SMALL G

U+04X 𝖍 MATHEMATICAL BOLD FRAKTUR SMALL H

U+04X 𝖎 MATHEMATICAL BOLD FRAKTUR SMALL I

U+04X 𝖏 MATHEMATICAL BOLD FRAKTUR SMALL J

U+04X 𝖐 MATHEMATICAL BOLD FRAKTUR SMALL K

U+04X 𝖑 MATHEMATICAL BOLD FRAKTUR SMALL L

U+04X 𝖒 MATHEMATICAL BOLD FRAKTUR SMALL M

U+04X 𝖓 MATHEMATICAL BOLD FRAKTUR SMALL N

U+04X 𝖔 MATHEMATICAL BOLD FRAKTUR SMALL O

U+04X 𝖕 MATHEMATICAL BOLD FRAKTUR SMALL P

136

Math

U+04X 𝖖 MATHEMATICAL BOLD FRAKTUR SMALL Q

U+04X 𝖗 MATHEMATICAL BOLD FRAKTUR SMALL R

U+04X 𝖘 MATHEMATICAL BOLD FRAKTUR SMALL S

U+04X 𝖙 MATHEMATICAL BOLD FRAKTUR SMALL T

U+04X 𝖚 MATHEMATICAL BOLD FRAKTUR SMALL U

U+04X 𝖛 MATHEMATICAL BOLD FRAKTUR SMALL V

U+04X 𝖜 MATHEMATICAL BOLD FRAKTUR SMALL W

U+04X 𝖝 MATHEMATICAL BOLD FRAKTUR SMALL X

U+04X 𝖞 MATHEMATICAL BOLD FRAKTUR SMALL Y

U+04X 𝖟 MATHEMATICAL BOLD FRAKTUR SMALL Z

U+04X 𝚨 MATHEMATICAL BOLD CAPITAL ALPHA

U+04X 𝚩 MATHEMATICAL BOLD CAPITAL BETA

U+04X 𝚪 MATHEMATICAL BOLD CAPITAL GAMMA

U+04X 𝚫 MATHEMATICAL BOLD CAPITAL DELTA

U+04X 𝚬 MATHEMATICAL BOLD CAPITAL EPSILON

U+04X 𝚭 MATHEMATICAL BOLD CAPITAL ZETA

U+04X 𝚮 MATHEMATICAL BOLD CAPITAL ETA

U+04X 𝚯 MATHEMATICAL BOLD CAPITAL THETA

U+04X 𝚰 MATHEMATICAL BOLD CAPITAL IOTA

U+04X 𝚱 MATHEMATICAL BOLD CAPITAL KAPPA

U+04X 𝚲 MATHEMATICAL BOLD CAPITAL LAMDA

U+04X 𝚳 MATHEMATICAL BOLD CAPITAL MU

U+04X 𝚴 MATHEMATICAL BOLD CAPITAL NU

U+04X 𝚵 MATHEMATICAL BOLD CAPITAL XI

U+04X 𝚶 MATHEMATICAL BOLD CAPITAL OMICRON

U+04X 𝚷 MATHEMATICAL BOLD CAPITAL PI

U+04X 𝚸 MATHEMATICAL BOLD CAPITAL RHO

U+04X 𝚹 MATHEMATICAL BOLD CAPITAL THETA SYMBOL

U+04X 𝚺 MATHEMATICAL BOLD CAPITAL SIGMA

U+04X 𝚻 MATHEMATICAL BOLD CAPITAL TAU

U+04X 𝚼 MATHEMATICAL BOLD CAPITAL UPSILON

U+04X 𝚽 MATHEMATICAL BOLD CAPITAL PHI

U+04X 𝚾 MATHEMATICAL BOLD CAPITAL CHI

U+04X 𝚿 MATHEMATICAL BOLD CAPITAL PSI

U+04X 𝛀 MATHEMATICAL BOLD CAPITAL OMEGA

U+04X 𝛁 MATHEMATICAL BOLD NABLA

U+04X 𝛂 MATHEMATICAL BOLD SMALL ALPHA

U+04X 𝛃 MATHEMATICAL BOLD SMALL BETA

U+04X 𝛄 MATHEMATICAL BOLD SMALL GAMMA

U+04X 𝛅 MATHEMATICAL BOLD SMALL DELTA

U+04X 𝛆 MATHEMATICAL BOLD SMALL EPSILON

U+04X 𝛇 MATHEMATICAL BOLD SMALL ZETA

U+04X 𝛈 MATHEMATICAL BOLD SMALL ETA

U+04X 𝛉 MATHEMATICAL BOLD SMALL THETA

137

Math

U+04X 𝛊 MATHEMATICAL BOLD SMALL IOTA

U+04X 𝛋 MATHEMATICAL BOLD SMALL KAPPA

U+04X 𝛌 MATHEMATICAL BOLD SMALL LAMDA

U+04X 𝛍 MATHEMATICAL BOLD SMALL MU

U+04X 𝛎 MATHEMATICAL BOLD SMALL NU

U+04X 𝛏 MATHEMATICAL BOLD SMALL XI

U+04X 𝛐 MATHEMATICAL BOLD SMALL OMICRON

U+04X 𝛑 MATHEMATICAL BOLD SMALL PI

U+04X 𝛒 MATHEMATICAL BOLD SMALL RHO

U+04X 𝛓 MATHEMATICAL BOLD SMALL FINAL SIGMA

U+04X 𝛔 MATHEMATICAL BOLD SMALL SIGMA

U+04X 𝛕 MATHEMATICAL BOLD SMALL TAU

U+04X 𝛖 MATHEMATICAL BOLD SMALL UPSILON

U+04X 𝛗 MATHEMATICAL BOLD SMALL PHI

U+04X 𝛘 MATHEMATICAL BOLD SMALL CHI

U+04X 𝛙 MATHEMATICAL BOLD SMALL PSI

U+04X 𝛚 MATHEMATICAL BOLD SMALL OMEGA

U+04X 𝛛 MATHEMATICAL BOLD PARTIAL DIFFERENTIAL

U+04X 𝛜 MATHEMATICAL BOLD EPSILON SYMBOL

U+04X 𝛝 MATHEMATICAL BOLD THETA SYMBOL

U+04X 𝛞 MATHEMATICAL BOLD KAPPA SYMBOL

U+04X 𝛟 MATHEMATICAL BOLD PHI SYMBOL

U+04X 𝛠 MATHEMATICAL BOLD RHO SYMBOL

U+04X 𝛡 MATHEMATICAL BOLD PI SYMBOL

U+04X 𝜜 MATHEMATICAL BOLD ITALIC CAPITAL ALPHA

U+04X 𝜝 MATHEMATICAL BOLD ITALIC CAPITAL BETA

U+04X 𝜞 MATHEMATICAL BOLD ITALIC CAPITAL GAMMA

U+04X 𝜟 MATHEMATICAL BOLD ITALIC CAPITAL DELTA

U+04X 𝜠 MATHEMATICAL BOLD ITALIC CAPITAL EPSILON

U+04X 𝜡 MATHEMATICAL BOLD ITALIC CAPITAL ZETA

U+04X 𝜢 MATHEMATICAL BOLD ITALIC CAPITAL ETA

U+04X 𝜣 MATHEMATICAL BOLD ITALIC CAPITAL THETA

U+04X 𝜤 MATHEMATICAL BOLD ITALIC CAPITAL IOTA

U+04X 𝜥 MATHEMATICAL BOLD ITALIC CAPITAL KAPPA

U+04X 𝜦 MATHEMATICAL BOLD ITALIC CAPITAL LAMDA

U+04X 𝜧 MATHEMATICAL BOLD ITALIC CAPITAL MU

U+04X 𝜨 MATHEMATICAL BOLD ITALIC CAPITAL NU

U+04X 𝜩 MATHEMATICAL BOLD ITALIC CAPITAL XI

U+04X 𝜪 MATHEMATICAL BOLD ITALIC CAPITAL OMICRON

U+04X 𝜫 MATHEMATICAL BOLD ITALIC CAPITAL PI

U+04X 𝜬 MATHEMATICAL BOLD ITALIC CAPITAL RHO

U+04X 𝜭 MATHEMATICAL BOLD ITALIC CAPITAL THETA SYMBOL

U+04X 𝜮 MATHEMATICAL BOLD ITALIC CAPITAL SIGMA

U+04X 𝜯 MATHEMATICAL BOLD ITALIC CAPITAL TAU

138

Math

U+04X 𝜰 MATHEMATICAL BOLD ITALIC CAPITAL UPSILON

U+04X 𝜱 MATHEMATICAL BOLD ITALIC CAPITAL PHI

U+04X 𝜲 MATHEMATICAL BOLD ITALIC CAPITAL CHI

U+04X 𝜳 MATHEMATICAL BOLD ITALIC CAPITAL PSI

U+04X 𝜴 MATHEMATICAL BOLD ITALIC CAPITAL OMEGA

U+04X 𝜵 MATHEMATICAL BOLD ITALIC NABLA

U+04X 𝜶 MATHEMATICAL BOLD ITALIC SMALL ALPHA

U+04X 𝜷 MATHEMATICAL BOLD ITALIC SMALL BETA

U+04X 𝜸 MATHEMATICAL BOLD ITALIC SMALL GAMMA

U+04X 𝜹 MATHEMATICAL BOLD ITALIC SMALL DELTA

U+04X 𝜺 MATHEMATICAL BOLD ITALIC SMALL EPSILON

U+04X 𝜻 MATHEMATICAL BOLD ITALIC SMALL ZETA

U+04X 𝜼 MATHEMATICAL BOLD ITALIC SMALL ETA

U+04X 𝜽 MATHEMATICAL BOLD ITALIC SMALL THETA

U+04X 𝜾 MATHEMATICAL BOLD ITALIC SMALL IOTA

U+04X 𝜿 MATHEMATICAL BOLD ITALIC SMALL KAPPA

U+04X 𝝀 MATHEMATICAL BOLD ITALIC SMALL LAMDA

U+04X 𝝁 MATHEMATICAL BOLD ITALIC SMALL MU

U+04X 𝝂 MATHEMATICAL BOLD ITALIC SMALL NU

U+04X 𝝃 MATHEMATICAL BOLD ITALIC SMALL XI

U+04X 𝝄 MATHEMATICAL BOLD ITALIC SMALL OMICRON

U+04X 𝝅 MATHEMATICAL BOLD ITALIC SMALL PI

U+04X 𝝆 MATHEMATICAL BOLD ITALIC SMALL RHO

U+04X 𝝇 MATHEMATICAL BOLD ITALIC SMALL FINAL SIGMA

U+04X 𝝈 MATHEMATICAL BOLD ITALIC SMALL SIGMA

U+04X 𝝉 MATHEMATICAL BOLD ITALIC SMALL TAU

U+04X 𝝊 MATHEMATICAL BOLD ITALIC SMALL UPSILON

U+04X 𝝋 MATHEMATICAL BOLD ITALIC SMALL PHI

U+04X 𝝌 MATHEMATICAL BOLD ITALIC SMALL CHI

U+04X 𝝍 MATHEMATICAL BOLD ITALIC SMALL PSI

U+04X 𝝎 MATHEMATICAL BOLD ITALIC SMALL OMEGA

U+04X 𝝏 MATHEMATICAL BOLD ITALIC PARTIAL DIFFERENTIAL

U+04X 𝝐 MATHEMATICAL BOLD ITALIC EPSILON SYMBOL

U+04X 𝝑 MATHEMATICAL BOLD ITALIC THETA SYMBOL

U+04X 𝝒 MATHEMATICAL BOLD ITALIC KAPPA SYMBOL

U+04X 𝝓 MATHEMATICAL BOLD ITALIC PHI SYMBOL

U+04X 𝝔 MATHEMATICAL BOLD ITALIC RHO SYMBOL

U+04X 𝝕 MATHEMATICAL BOLD ITALIC PI SYMBOL

U+04X ? MATHEMATICAL BOLD CAPITAL DIGAMMA

U+04X ? MATHEMATICAL BOLD SMALL DIGAMMA

U+04X 𝟎 MATHEMATICAL BOLD DIGIT ZERO

U+04X 𝟏 MATHEMATICAL BOLD DIGIT ONE

U+04X 𝟐 MATHEMATICAL BOLD DIGIT TWO

U+04X 𝟑 MATHEMATICAL BOLD DIGIT THREE

139

Math

U+04X 𝟒 MATHEMATICAL BOLD DIGIT FOUR

U+04X 𝟓 MATHEMATICAL BOLD DIGIT FIVE

U+04X 𝟔 MATHEMATICAL BOLD DIGIT SIX

U+04X 𝟕 MATHEMATICAL BOLD DIGIT SEVEN

U+04X 𝟖 MATHEMATICAL BOLD DIGIT EIGHT

U+04X 𝟗 MATHEMATICAL BOLD DIGIT NINE

The biggest mistake one can make when discussing bold math is the assumption that

these bold alphabets are meant for section titles and other structural elements that need

some emphasis. This is not true, in that case we would expect the whole formula to be

bold and the bold symbols or variables would be even more bold. Bold math boils down to

all math being bold. The reason why we show the list of bold characters on the previous

pages is that it gives a good impression of fact that we’re mostly given alphabets in an

otherwise regular font.

As Latin Modern (being derived from Computer Modern) has some bold extras in MkII

to some extend we do support a complete bold math switch but mixing bold formulas

with regular ones has some limitations. Math typesetting consists of two phases: first

the input is translated into a special list where references to fonts are not yet resolved.

Instead families are used and each family has three sizes: text, script and scriptscript.

In a second pass the formula is typeset and the families get translated into fonts. So,

if we change the definition of a family, say math italic into bold math italic, then the

definition that is actual when the second pass takes place is used.

Although LuaTEX provides for many more families and as a consequence we could have

replaced the MkII mechanism with a more complete one, instead we just forgot about

it and stuck to one family for regular math and another one for bold math. Okay, this

is not entirely true as later on we added some more in order to deal with bidirectional

typesetting.

Only a few math fonts come with a bold variant. One of the objectives of the TEXGyre

math font project is to explore the possibilities of bold math companions, but such a font

will probably have less coverage, simply because no real complex math will end up in

for instance section titles.

When I wrote this down there were not that many math fonts that come with a real

(complete) bold variant. The ConTEXt math font subsystem tries to fill this gap as good

as possible by using pseudo fonts. When a typeface doesn’t define a math bold variant

a pseudo setup is used. When a real bold font is used, it could be that not all alphabets

are supported in which case a suitable alternative is tried.

The Xits font, assembed from Stix and enhanced by Khaled Hosny, comes with a bold

variant but the coverage is not complete, at least not when I wrote this paragraph. This

can go unnoticed because ConTEXt tries to work around this. On the other hand, it

definitely has bold properties, which can be seen from the next example. You switch

between regular and bold math with the \mr and \mb commands.

140

Math

\switchtobodyfont[xitsbidi]

$ \sqrt{x } \quad

\mb \sqrt{mb} \quad

\mathupright \sqrt{u } \quad

\mr \sqrt{mr} \quad

\mathupright \sqrt{u } \quad

\mathdefault \sqrt{d }

$

√𝑥 √𝑚𝑏 √u √𝑚𝑟 √u √𝑑

You can track some of what happens with:

\enabletrackers[math.remapping,math.families]

You will get some information about remapping or when it fails if fallback remapping is

used. But no matter what happens with glyphs, you will notice in this example that the

radical symbol is bold indeed.

7.4 Bidirectional math

There is not that much to tell about bidirectional math typesetting, simply because the

fonts are still in development. However, Khaled Hosny added some support to the Xits

font. Of course you need to load this font first:

\switchtobodyfont[xitsbidi]

In the previous chapter we mentioned bold math and as Xits also comes with a bold vari-

ant which means that this command loads the whole lot (which is fast enough anyway).

Easiest is to just show a few examples. When in left to right mode we get what we are

accustomed to:

\setupmathematics[align=l2r]

\startformula

\sqrt{x^2\over 4x} \eqno(1)

\stopformula

\startformula

5 < 6 > 4

\stopformula

\startformula

5 \leq 6 \geq 7

141

Math

\stopformula

√
𝑥2

4𝑥
1)

5 < 6 > 4
5 ≤ 6 ≥ 7

However, when we go the other way, we automatically get digits converted to arabic.

\setupmathematics[align=r2l,bidi=yes]

\startformula

\sqrt{2^ف\over {ب4 \eqno(1)

\stopformula

\startformula

5 < 6 > 4

\stopformula

\startformula

5 \leq 6 \geq 7

\stopformula

√
2��

��4
1(

5>6<4
5≤6≥7

You don’t have to worry about how the font is set up, but not that much is needed because

ConTEXt does it for you and the Xits typescripts carries the right definitions. Just to give

you an idea, we show a feature definition: The magic is in the rtlm feature combined

with locl.

\definefontfeature

[mathematics-r2l]

[mathematics]

[language=ara,

rtlm=yes,

locl=yes]

Some symbols are mirrored too:

\setupmathematics[align=r2l,bidi=yes]

\startformula

\sum^\infty_{0=س} 2^س \eqno(2)

142

Math

\stopformula

∞

∑
0=��

)22��

And of course the extensible fences are done properly too:

\setupmathematics[align=r2l,bidi=yes]

\startformula

\left(\root{2} \of{155}\right)

\stopformula

\startformula

\left[\int^{55}_{123} 666^3\right]

\qquad\textstyle\left[\int^{55}_{123} 666^3\right]

\stopformula

\startformula

\left\{\sum^{55}_{123} 666^3\right\}

\stopformula

)
2√155(

⎤
⎥
⎥
⎦

55

∫
123

6663
⎡
⎢
⎢
⎣

]

55
∫
123

6663
[

}

55

∑
123

6663
{

The real torture test is the radical sign. A mirrored shape is used and it grows upwards

as well as leftwards.

\setupmathematics[align=r2l,bidi=yes]

\startformula

\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{55}}}}}}}}}}

\stopformula

√√√√√√

√

√√√√√

√

√√√√√

√

√√√√

√

√√√√

√

√√√

√√√√√55

7.5 Styles

In text mode you use font switches like \sl that switches the current font to a slanted

one. In math mode it is an alphabet switch in the same font. In fact, there isn’t much to

143

Math

choose from fonts there, apart from a massive switch to bold, in which case \bf is just

a bolder alphabet in that bolder font.

A lot of things in math mode happen automatically. There are for instance always three

instances of (the same) font active, each different in size: text, script and the smallest,

scriptscript and when you ask for instance for a superscript the next smaller size is used.

normal \textstyle 𝑡𝑒𝑥𝑡𝑠𝑐𝑟𝑖𝑝𝑡𝑠𝑐𝑟𝑖𝑝𝑡𝑠𝑐𝑟𝑖𝑝𝑡

smaller \scriptstyle 𝑡𝑒𝑥𝑡𝑠𝑐𝑟𝑖𝑝𝑡𝑠𝑐𝑟𝑖𝑝𝑡𝑠𝑐𝑟𝑖𝑝𝑡

smallest \scriptscriptstyle 𝑡𝑒𝑥𝑡𝑠𝑐𝑟𝑖𝑝𝑡𝑠𝑐𝑟𝑖𝑝𝑡𝑠𝑐𝑟𝑖𝑝𝑡

In text style, superscripts can go twice smaller, but in script style only one smaller size

is left, and in scriptscript style you’re stuck with one size. The commands in the second

column can be used to force a style.

The math formula builder has an important property: the formula is typeset after it has

been scanned completely. In a traditional setup that has some consequences. Take this:

one \sl two \bf three \bi four

In a traditional setup four so called families are used and each character gets tagged

with a family number. So we have (for instance):

o7n7e7 t6w6o6 t5h5r5e5e5 f9o9u9r9

As the number of families was limited there could be at most 16 families. In fact, the first

four were traditionally reserved for math roman, math italic, symbol and extensibles.

Then, due to the limit of 256 characters per font, another few were used for additional

symbol fonts. So, adding a few more variants could exhaust the family pool quite fast.

You could argue that we could halfway redefine a family but this will not work as there is

a one to one relationship between family numbers and fonts assigned to them when the

formula has been read in (the last value counts). And grouping won’t help you either.

The actual (plain) situation is even more complex. As we have a limited number of

characters per font, most symbols are accessed by name, and the name relates to a

mathematical character definition using for instance \mathchardef. Such a definition

refers to a slot in a specific family number and therefore font. It also puts a character in

a so called math class. One of these, the alphanumeric class, with number 7, is special.

Characters that are input directly on the keyboard (like a--z can also be tagged this way

using \mathcode.

When we switch a family, this will normally not affect a symbol defined as math charac-

ter, simply because we refer to a specific family/slot combination, but when a character

has class 7, then it will be taken from the current family. This permits latin letters, digits

and greek letters to be typeset in different styles. So, in that traditional approach we

have fonts that provide a bunch of symbols as well as some alphabets. Think for instance

of a font with additional symbols where the regular alphabet slots contain blackboard

144

Math

shapes. The symbols are accessed directly and the characters are accessed via the reg-

ular a--z characters as these will adapt to the family and therefore font. In practice users

will not notice this complication as macro packages hide the implementation details.

In MkIV the situation is different as there we have one family (or a few more if we use

a full bold switch and/or bidirectional math). Although we no longer have the limit of

16 fonts we actually don’t need that many families, at least not in the way we’ve set up

MkIV12

o1n1e1 t1w1o1 t1h1r1e1e1 f1o1u1r1

So how does this relate to styles? Each family has three fonts and we can use the switch

commands to choose any of these. In text mode we use the term style for a font switch,

while in math mode it’s more than that: indeed we switch a font, but only in size, but

the spacing is also adapted. If a proper math font is used, the smaller sizes are actually

alternates in the font, visually adapted to suit their use.

In text mode we do this in order to limit the scope of a switch:

normal {\bf bold {\it italic} bold} normalbracket

This is the same as:

normal \bgroup \bf bold \bgroup \it italic\egroup

\ bold\egroup \ normalbracket

and:

normal \begingroup \bf bold \begingroup \it italic\endgroup

\ bold\endgroup \ normalbracket

The ConTEXt distribution ships with a plain math definition file that also uses one family

but reassigns some math codes when we switch to another style. As the number of

characters that this applies to this is efficient enough for a modern computer. A peek

into luatex-math.tex gives an impression of what we deal with. However, keep in mind

that the implementation in MkIV goes it differently and is therefore more powerful. We

also have hardly any definitions at the TEX end and use information from char-def.lua

instead.

In math mode there is a subtle difference in the way grouping works with styles:

text {\scriptstyle script} normal

This is the same as:

text \bgroup\scriptstyle script\egroup\ normal

12 A technical note: in principle the MkIV approach can have a speed penalty compared to a multi--family approach

but we don’t care too much about it. Also, as we load less fonts the extra overhead gets compensated nicely.

145

Math

but different from:

text \begingroup\scriptstyle script\endgroup\ script

This has to do with the fact that a style switch is explicitly registered in the math list

and grouping like this is not limiting the scope. In math mode the braced grouping

mode actually does create a math group and there the scope of the switch is limited

to that group. In practice users will not run into this but they can use macros that use

\begingroup. Among other reasons, this is why we have a special mathstyle mechanism.

\ruledhbox{$x\begingroup\scriptstyle x\endgroup x$} \quad

\ruledhbox{$x\begingroup\setupmathstyle[script]x\endgroup x$} \quad

\ruledhbox{$x{\setupmathstyle[script]x}x$} \quad

\ruledhbox{$x\startmathstyle[script]x\stopmathstyle x$}

This gives:

𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥

Mechanisms that support the mathstyle parameter know how to apply the proper group-

ing so you don’t have to worry there. You can best avoid using the verbose grouping

command and stick to braces or the start--stop command. An example is the fence

mechanism:

\definemathfence

[fancybracket] [bracket]

[color=darkblue]

\definemathfence

[smallbracket] [bracket]

[command=yes,color=darkgreen,mathstyle=small]

\definemathfence

[normalbracket] [bracket]

[command=yes,color=darkred]

We apply this to an example:

$x \fenced[bar]{\frac{1}{x}} x$ \quad

$x \fenced[doublebar]{\frac{1}{x}} x$ \quad

$x \fenced[bracket]{\frac{1}{x}} x$ \quad

$x \fenced[fancybracket]{\frac{1}{x}} x$ \quad

$x \frac{1}{n} \normalbracket{\frac{1}{n}} \smallbracket{\frac{1}{s}} x$

Of course these somewhat weird examples are not real but at least they demonstrate

the principles.

𝑥 ∣1𝑥 ∣ 𝑥 𝑥 ∥1
𝑥 ∥𝑥 𝑥[1

𝑥]𝑥 𝑥[1
𝑥]𝑥 𝑥1

𝑛 [1
𝑛] [1

𝑠]𝑥

A math style is a combination of the following keys. Their effect can depend on the

current state, for instance you can switch cramp or size indepently.

146

Math

display display style, like text style but somewhat more spacy

text text style, normally used inline

script smaller than text cq. display style

scriptscript smaller than script style

cramped packed more tightly positioned superscripts

uncramped normal normal positioned superscripts

small switch to the next smaller style but keep cramp state

big switch to the next larger style but keep cramp state

Future versions of MkIV will provide more features (like parameter sets driven by key-

words). As you might prefer a more symbolic approach we provide:

\definemathstyle[default][text,cramped]

After this you can use the keyword default which has the advantage that you only need

to change one definition in order to get different rendering.

7.6 Supported fonts

As in ConTEXt MKIV I wanted to go ahead with Unicode math as soon as the first version

of LuaTEX showed up. Because at that time only Cambria was available I decided to

provide virtual Unicode math fonts as a prelude to proper replacements for the popular

Type1 math fonts. In the meantime Xits came around and in 2012 we had quite useable

math companions for the public Latin Modern, Pagella and Termes fonts and the TEX

user groups started shipping OpenType variants of Lucida. The virtual variants will still

around so that we can compare them with the new implementations. As the official

specification of OpenType math is not always clear from the beginning the OpenType

fonts get improved over time. In fact, this is true not only for math fonts. Just think of

this:

• As Unicode gets extended, fonts might get more glyphs and possibly alternate shapes.

• The more languages are supported, the more glyphs are to be available and features

have to get language dependent instances.

• The larger the font, the bigger the chance that mistakes get unnoticed especially

when contextual subtitutions and positioning are used.

• Math fonts can get more script and scriptscript alternates, more size variants, more

advanced extensibles, bidirectional support, etc.

So, like regular programs, LuaTEX and macro packages, we now have fonts as compo-

nent that needs occasional updating. Of course resources like hyphenation patterns are

also subjected to this, so it’s not a new aspect. But still, best keep en eye on font updates.

While there are lots of text fonts, there are not that many math fonts, so you can safely

assume that ConTEXt ships with the proper setup for those fonts. Of course you have to

147

Math

choose a specific instance when you set up your own combination of fonts, but a peek

into the typescripts shows the way.

In the font manual and on the wiki you can find more about typescript and what is

possible, so here we just take a look at one definition:

\starttypescript [serif] [dejavu] [name]

\definefontsynonym [Serif] [name:dejavuserif] [features=default]

\definefontsynonym [SerifBold] [name:dejavuserifbold] [features=default]

\definefontsynonym [SerifItalic] [name:dejavuserifitalic] [features=default]

\definefontsynonym [SerifBoldItalic] [name:dejavuserifbolditalic] [features=default]

\stoptypescript

\starttypescript [sans] [dejavu] [name]

\definefontsynonym [Sans] [name:dejavusans] [features=default]

\definefontsynonym [SansBold] [name:dejavusansbold] [features=default]

\definefontsynonym [SansItalic] [name:dejavusansoblique] [features=default]

\definefontsynonym [SansBoldItalic] [name:dejavusansboldoblique] [features=default]

\stoptypescript

\starttypescript [mono] [dejavu] [name]

\definefontsynonym [Mono] [name:dejavusansmono] [features=none]

\definefontsynonym [MonoBold] [name:dejavusansmonobold] [features=none]

\definefontsynonym [MonoItalic] [name:dejavusansmonooblique] [features=none]

\definefontsynonym [MonoBoldItalic] [name:dejavusansmonoboldoblique] [features=none]

\stoptypescript

\starttypescript[dejavu]

\definetypeface [dejavu] [rm] [serif] [dejavu] [default]

\definetypeface [dejavu] [ss] [sans] [dejavu] [default]

\definetypeface [dejavu] [tt] [mono] [dejavu] [default]

\definetypeface [dejavu] [mm] [math] [xits] [default] [scale=1.2]

\stoptypescript

So, in many cases you can just copy this blob and replace the font names by your own.

Loading a font, and Dejavu is a predefined one, is done as follows:

\setupbodyfont[dejavu]

In a similar fashion you can enable cambria, pagella, termes, lucidaot, etc. and if you

don’t use this command at all, you get Latin Modern. These fonts are part of TEX distri-

butions, including ConTEXt stand--alone that can be downloaded from ConTEXt garden.

If you want to use Lucida, all you have to do when you have bought the fonts, is to put

the OpenType files in a place where they can be found, for instance:

148

Math

tex/texmf-fonts/fonts/data/lucida

Of course you need to run mtxrun --generate afterwards so that the files can be found.

Tracing and characters coverage will be discussed here as soon as the styles that are

used for them are normalized.

7.7 Stylistic alternates

Some fonts provide stylistic alternates. These can be described in goodies files and

the Lucida setup is a good example. Here we demonstrate the effects. We disable the

default math rendering (which takes the italic variants).

\switchtobodyfont[lucidaot,14.4pt]

\setupmathrendering[lucidaot][it=]

$x

^{i \leftarrow 0 = ∅}

_{i \leftarrow 0 = ∅}

$

The next code enabled three alternatives:

\switchtobodyfont[lucidaot,14.4pt]

\setupmathrendering[lucidaot][it=]

$x

^{i \leftarrow 0 = ∅}

_{\setmathfontalternate{arrow}

\setmathfontalternate{dotless}

\setmathfontalternate{zero}

i \leftarrow 0 = ∅}

$

Here we set them in one go:

\switchtobodyfont[lucidaot,14.4pt]

\setupmathrendering[lucidaot][it=]

$x

^{i \leftarrow 0 = ∅}

_{\setmathfontalternate{arrow,dotless,zero}

i \leftarrow 0 = ∅}

$

The last example shows how to enable these features globally:

\switchtobodyfont[lucidaot,14.4pt]

149

Math

\setupmathrendering[lucidaot][it=]

\setupmathematics[stylealternative={arrow,dotless,zero}]

$x

^{i \leftarrow 0 = ∅}

_{i \leftarrow 0 = ∅}

$

The results are collected here:

𝑥𝑖←0=∅
𝑖←0=∅ 𝑥𝑖←0=∅

𝚤←0=∅ 𝑥𝑖←0=∅
𝚤←0=∅ 𝑥𝚤←0=∅

𝚤←0=∅
nothing stepwise combined global

7.8 Italics and limits

An OpenType font treats italic correction differently from traditional fonts. Officially the

italic correction is used for placement above and below limits where the scripts shift left

and right half of the correction from the center of the shape. Advanced kerns are then to

be used for anchoring the scripts when they are placed at the right side (so far no fonts

seem to do this). Because we cannot foresee if fonts compensate for correction then we

can control placement a bit. There is a parameter \mathnolimitsmode that controls the

correction.

∫
0
1

∫
0
1

∫
0
1

∫
0
1

∫
0
1

0 1 2 3 4

A value larger than 15 is interpreted as a factor (in the usual TEX way 1000 means 1.0).

We have some values left for future use when correction is to be combined with kerns.

In ConTEXt we set the value to 1 which means that the factors for super- and subscript

are set via math parameters (or constants in the font). We use a default of {0,800} so we

don’t shift the superscript and the subscript we shift less than the italic correction. This

is driven by a feature but you can change the values before loading a font, for instance

with:

\adaptfontfeature[*math*][mathnolimitsmode={100,700}]

The defaults come out as:

∫
0

1 ∫
0

1 ∫
0

1 ∫
0

1
න
଴

ଵ

modern xits lucidaot pagella cambria

150

Math

151

Extensions

8 Extensions

8.1 Introduction

One of the benefits of using TEX is that you can add your own features and try to optimize

the look and feel. Of course this can also go wrong and output can look pretty awful when

you don’t know what you’re doing, but on the average it works out well. In many aspects

the move to an Unicode data path and OpenType fonts is a good one and solves a lot

of problems with traditional TEX engines and helps us to avoid complex and ugly hacks.

But, if you look into the source code of ConTEXt you will notice that there’s still quite

some complex coding needed. This is because we want to control mechanisms, even if

it’s only for dealing with some border cases. It’s also the reason why LuaTEX is what it

is: an extensible engine, building on tradition.

As always with TEX, fonts are an area where many tuning happens and this is also true in

ConTEXt. In this chapter some of the extensions will be discussed. Some extensions run

on top of the (rather generic) feature mechanism and some are using dedicated code.

8.2 Italics

Although OpenType fonts are more rich in features than traditional TEX and Type1 fonts,

one important feature is missing: italic correction. This might sound strange but you

need to keep in mind that in practice it’s a feature that needs to be applied manually.

test {\it test\/} test

It is possible to automate this mechanism and this is what the \em command does in

MkII:

test {\em test} test

This command knows that it switches to italic (or slanted) and when used nested it knows

to switch back. It also knows if a bold italic or slanted font is used. Therefore it can add

italic correction between an italic and upright shape.

An italic correction is bound to a glyph and bound to a font. In figure 8.1 we see how

an italic shape extends out of the bounding box. This is not the case in Dejavu: watch

figure 8.2.

test test
Latin Modern

Roman Regular

Latin Modern

Roman Italic

Figure 8.1 Italic overshoot in Latin Modern.

152

Extensions

test test
Dejavu Regular Dejavu Italic

Figure 8.2 Italic overshoot in Dejavu Serif.

This means that the application of italic correction should never been applied without

knowing the font. In figure 8.3 we see an upright word following an italic. The space is

determined by the upright one.

test test test test
Latin Modern Dejavu

Figure 8.3 Italic followed by upright.

Because it is to be used with care you need to enable this feature per font, You also

need to explicitly enable the application of this correction. in figure 8.4 we see italic

correction in action.

\definefontfeature

[italic]

[default]

[itlc=yes]

test test test test
test test test test

Figure 8.4 Italic correction.

This only signals the font constructor that additional italic information has to be added

to the font metrics. As we already mentioned, the application of correction is driven by

the \/ primitive and that one consults the font metrics. Because the correction is not

part of the original font metrics it is calculated automatically by adding a small value to

the width. This value is calculated as follows:

factor * (parameters.uwidth or 40) / 2

The uwidth parameter is sometimes part of the specification but if not, we take a rea-

sonable default. The factor is under user control:

\definefontfeature

[moreitalic]

[default]

153

Extensions

[itlc=5]

This is demonstrated in figure 8.5. You will notice that for Latin Modern (any) correction

makes sense, but for Dejavu it probably makes things look worse. This is why italic

correction is disabled by default. When enabled there are several variants:

global always apply correction

text only apply correction to text

always apply correction between text and boxes

none forget about correction

We keep track of the state using attributes but that comes at a (small) price in terms

of extra memory and runtime. The global option simply assumes that we always need

to check for correction (of course only for fonts that have this feature enables). In the

given example we used:

\setupitaliccorrection

[text]

You can combine keys:

\setupitaliccorrection

[global,always]

test test test test
test test test test

Figure 8.5 Italic correction (factor 5).

The itlc feature controls if a font gets italic correction applied. In principle this is all

that the user needs to do, given that the mechanism is enabled. These is an extra feature

that controls the implementation:

itlc no don’t apply italic correction (default)

yes apply italic correction

textitalics no precalculate italic corrections (permit engine usage)

yes precalculate italic corrections (inhibit engine)

delay delay calculation of corrections

When textitalics is set to yes or delay the mechanism built into the engine is com-

pletely disabled. When set to no the engine can kick in but normally the alternative

method takes precedence so that the engine sees no reason for further action. You can

trace italic corrections with:

\enabletrackers[typesetters.italics]

154

Extensions

8.3 Bounding boxes

There are some features that are rather useless and only make sense when figuring out

issues. An example of such a feature is the following:

\definefontfeature

[withbbox]

[boundingbox=yes]

\definefont

[FontWithBB]

[Normal*withbbox]

This feature adds a background to each character in a font. In some fonts a glyph has

a tight bounding box, while on other fonts some extra space is put on the left and right.

Keep in mind that this feature blocks colored text.

8.4 Slanting

This features (as well as the one described in the next section) are seldom used but

provided because they were introduced in pdfTEX.

\definefontfeature

[abitslanted]

[default]

[slant=.1]

\definefontfeature

[abitmoreslanted]

[default]

[slant=.2]

\definedfont[Normal*abitslanted]This is a bit slanted.

\definedfont[Normal*abitmoreslanted]And this is a bit more slanted.

The result is:

This is a bit slanted.

And this is a bit more slanted.

8.5 Extending

The second manipulation is extending the shapes horizontally:

\definefontfeature

[abitbolder]

155

Extensions

[default]

[extend=1.3]

\definefontfeature

[abitnarrower]

[default]

[extend=0.7]

\definedfont[Normal*abitbolder]This looks a bit bolder.

\definedfont[Normal*abitnarrower]And this is a bit narrower.

The result is:

This looks a bit bolder.

And this is a bit narrower.

We can also combine slanting and extending:

\definefontfeature

[abitofboth]

[default]

[extend=1.3,

slant=.1]

\definedfont[Normal*abitofboth]This is a bit bolder but also slanted.

If you remember those first needle matrix printers you might recognize the next render-

ing:

This is a bit bolder but also slanted.

8.6 Fixing

This is a rather special one. First we show a couple of definitions:

\definefontfeature

[dimensions-a]

[default]

[dimensions={1,1,1}]

\definefontfeature

[dimensions-b]

[default]

[dimensions={1,2,3}]

\definefontfeature

[dimensions-c]

156

Extensions

[default]

[dimensions={1,3,2}]

\definefontfeature

[dimensions-d]

[default]

[dimensions={3,3,3}]

As usual you apply such a feature as follows:

\definefont[MyFont][Serif*dimensions-a sa 2]

Alternatively you can use such a feature on its own:

\definefontfeature

[dimensions-333]

[dimensions={3,3,3}]

\definefont[MyFont][Serif*default,dimensions-333 sa 2]

In figure 8.6 you see these four definitions in action. The leftmost rendering is the

default rendering. The three numbers in the definitions represent the width (in em),

height and depth (in ex).

g g g g g

default 1em 1ex 1ex 1em 2ex 3ex 1em 3ex 2ex 3em 3ex 3ex

Figure 8.6 Freezing dimensions of glyphs.

This feature only makes sense for fonts that need a fixed width, like the cjk fonts that

are used for asian scripts. Normally those fonts already have fixed dimensions, but this

feature can be used to fix problematic fonts or add some more space. However, for such

large fonts this also brings a larger memory footprint.

A special case is the following:

\definefontfeature

[dimensions-e]

[dimensions=strut]

This will make the height and depth the same as the current strut height and depth:

\ruledhbox{\definedfont[Serif*default,dimensions-e at 8pt]clipped}

\ruledhbox{\definedfont[Serif*default,dimensions-e at 12pt]clipped}

\ruledhbox{\definedfont[Serif*default,dimensions-e at 24pt]clipped}

157

Extensions

The dimensions are (in this case) limited:

clipped clipped clipped

8.7 Unicoding

Nowadays we will mostly use fonts that ship with a Unicode aware encoding. And in

ConTEXt, even if we use a Type1 font, it gets mapped onto Unicode. However, there

are some exceptions, for instance the Zapf Dingbats in Type1 format. These have a

rather obscure private encoding and the glyph names run from a1 upto a206 and have

no relation to what the glyph represents.

In the case of Dingbats we’re somewhat lucky that they ended up in Unicode, so we can

relocate the glyphs to match their rightful place. This is done by means of a goodies file.

We already discussed this in section 5.4 so we only repeat the usage.

\definefontfeature

[dingbats]

[mode=base,

goodies=dingbats,

unicoding=yes]

\definefontsynonym

[ZapfDingbats]

[file:uzdr.afm]

[features=dingbats]

I tend to qualify the Dingbat font in TEX distributions as rather unstable because of name

changes and them either or not being included. Therefore it’s best to use the hard coded

name because that triggers the most visible error message when the font is not found.

A font like this can for instance be used with the glyph placement macros as is demon-

strated below. In the last line we see that a direct utf input also works out well.

\getglyphdirect{ZapfDingbats*dingbats}{\number "2701} ✁

\getglyphdirect{ZapfDingbats*dingbats}{\char "2701} ✁

\getnamedglyphdirect{ZapfDingbats*dingbats}{a1} ✁

\getnamedglyphdirect{ZapfDingbats*dingbats}{a11} ☛

\getglyphdirect{ZapfDingbats}{\number "2701} unknown

\getglyphdirect{ZapfDingbats}{\char "2701} unknown

\getnamedglyphdirect{ZapfDingbats}{a1} ✁

\getnamedglyphdirect{ZapfDingbats}{a11} ☛

\definedfont[ZapfDingbats*dingbats]✁ ✁

Keep in mind that fonts like Dejavu (that we use here as document font) already has

these characters which is why it shows up in the verbose part of the table.

158

Extensions

8.8 Protrusion

Protrusion is a feature that LuaTEX inherits from pdfTEX. It is sometimes referred to

as hanging punctuation but in our case any character qualifies. Also, hanging is not

frozen but can be tuned in detail. Currently the engine defines protrusion in terms of

the emwidth which is unfortunate and likely to change.13

It is sometimes believed that protrusion improves for instance narrower columns, but

I’m pretty sure that this is not the case. It is true that it is taken into account when

breaking a paragraph into lines, and that we then have a little bit more width available,

but at the same time it is an extra constraint: if we protrude we have to do it for each

line (and the whole main body of text) so it’s just a different solution space. The main

reason for applying this feature is not that the lines look better or that we get better

looking narrow lines but that the right and left margins look nicer. Personally I don’t

like half protrusion of punctuation and hyphens. Best is to have small values for regular

characters to improve the visual appearance and use full protrusion for hyphens (and

maybe punctuation).

protrusion classes

In ConTEXt we’ve always defined protrusion as a percentage of the width of a glyph.

From MkII we inherit the level of control as well as the ability to define vectors. The

shared properties are collected in so called classes and the character specific properties

in vectors. The following classes are predefined:

name vector factor left right

alpha alpha 1.00

double 2.00 1.00 1.00

preset 1.00 1.00 1.00

punctuation punctuation 1.00

pure pure 1.00

quality quality 1.00

The names are used in the definitions:

\definefontfeature[default][protrusion=quality]

Currently adding a class only has a Lua interface.

\startluacode

fonts.protrusions.classes.myown = {

vector = 'myown',

factor = 1,

}

\stopluacode

13 In general the low level implementation can be optimized as there are better mechanisms in LuaTEX.

159

Extensions

protrusion vectors

Vectors are larger but not as large as you might expect. Only a subset of characters

needs to be defined. This is because in practice only latin scripts are candidates and

these scripts have glyphs that look a lot like each other. As we only operate on the

horizontal direction characters like ‘aàáâãäå’ look the same from the left and right so

we only have to define the protrusion for ‘a’.

As with classes, you can define your own vectors:

\startluacode

fonts.protrusions.vectors.myown = table.merged (

fonts.protrusions.vectors.quality,

{

[0x002C] = { 0, 2 }, -- comma

}

)

\stopluacode

protrusion vector pure

U+0002C 0.00 , 1.00

U+0002D 0.00 - 1.00

U+0002E 0.00 . 1.00

U+0003A 0.00 : 1.00

U+0003B 0.00 ; 1.00

U+000AD 0.00 1.00

U+0060C 0.00 1.00

U+0061B 0.00 1.00

U+006D4 0.00 1.00

U+02013 0.00 – 0.50

U+02014 0.00 — 0.33

U+03001 0.00 1.00

U+03002 0.00 1.00

protrusion vector punctuation

U+00021 0.00 ! 0.20

U+00028 0.05 (0.00

U+00029 0.00) 0.05

U+0002C 0.00 , 0.70

U+0002D 0.00 - 0.70

U+0002E 0.00 . 0.70

U+0003A 0.00 : 0.50

U+0003B 0.00 ; 0.50

U+0003F 0.00 ? 0.20

U+0005B 0.05 [0.00

U+0005D 0.00] 0.05

U+000A1 0.00 ¡ 0.20

U+000AB 0.50 « 0.50

U+000AD 0.00 0.70

U+000BB 0.50 » 0.50

U+000BF 0.00 ¿ 0.20

U+0060C 0.00 0.70

U+0061B 0.00 0.50

U+0061F 0.00 0.20

U+006D4 0.00 0.70

U+02013 0.00 – 0.30

U+02014 0.00 — 0.20

U+02018 0.70 ‘ 0.70

U+02019 0.00 ’ 0.70

U+0201A 0.70 ‚ 0.00

U+0201B 0.70 ‛ 0.00

U+0201C 0.50 “ 0.50

U+0201D 0.00 ” 0.50

U+0201E 0.50 „ 0.00

U+0201F 0.50 ‟ 0.00

U+02039 0.70 ‹ 0.70

U+0203A 0.70 › 0.70

protrusion vector alpha

U+00041 0.05 A 0.05

U+00046 0.00 F 0.05

U+0004A 0.05 J 0.00

U+0004B 0.00 K 0.05

U+0004C 0.00 L 0.05

U+00054 0.05 T 0.05

U+00056 0.05 V 0.05

U+00057 0.05 W 0.05

U+00058 0.05 X 0.05

160

Extensions

U+00059 0.05 Y 0.05

U+0006B 0.00 k 0.05

U+00072 0.00 r 0.05

U+00074 0.00 t 0.05

U+00076 0.05 v 0.05

U+00077 0.05 w 0.05

U+00078 0.05 x 0.05

U+00079 0.05 y 0.05

protrusion vector quality

U+00021 0.00 ! 0.20

U+00028 0.05 (0.00

U+00029 0.00) 0.05

U+0002C 0.00 , 0.70

U+0002D 0.00 - 0.70

U+0002E 0.00 . 0.70

U+0003A 0.00 : 0.50

U+0003B 0.00 ; 0.50

U+0003F 0.00 ? 0.20

U+00041 0.05 A 0.05

U+00046 0.00 F 0.05

U+0004A 0.05 J 0.00

U+0004B 0.00 K 0.05

U+0004C 0.00 L 0.05

U+00054 0.05 T 0.05

U+00056 0.05 V 0.05

U+00057 0.05 W 0.05

U+00058 0.05 X 0.05

U+00059 0.05 Y 0.05

U+0005B 0.05 [0.00

U+0005D 0.00] 0.05

U+0006B 0.00 k 0.05

U+00072 0.00 r 0.05

U+00074 0.00 t 0.05

U+00076 0.05 v 0.05

U+00077 0.05 w 0.05

U+00078 0.05 x 0.05

U+00079 0.05 y 0.05

U+000A1 0.00 ¡ 0.20

U+000AB 0.50 « 0.50

U+000AD 0.00 0.70

U+000BB 0.50 » 0.50

U+000BF 0.00 ¿ 0.20

U+0060C 0.00 0.70

U+0061B 0.00 0.50

U+0061F 0.00 0.20

U+006D4 0.00 0.70

U+02013 0.00 – 0.30

U+02014 0.00 — 0.20

U+02018 0.70 ‘ 0.70

U+02019 0.00 ’ 0.70

U+0201A 0.70 ‚ 0.00

U+0201B 0.70 ‛ 0.00

U+0201C 0.50 “ 0.50

U+0201D 0.00 ” 0.50

U+0201E 0.50 „ 0.00

U+0201F 0.50 ‟ 0.00

U+02039 0.70 ‹ 0.70

U+0203A 0.70 › 0.70

examples of protrusion

Next we show the quality protrusion. For this we use tufte.tex as this one for sure will

result in punctuation and other candidates for protrusion.

\definefontfeature

[whatever]

[default]

[protrusion=quality]

\definefont[MyTestA][Serif*default at 10pt]

\definefont[MyTestB][Serif*whatever at 10pt]

We use the following example. The results are shown in figure 8.7. The colored text is

the protruding one.

\startoverlay

{\ruledvbox \bgroup

\hsize\textwidth

\MyTestA

\setupalign[normal]

161

Extensions

\input{tufte}

\egroup}

{\ruledvbox \bgroup

\hsize\textwidth

\MyTestB

\setupalign[hanging,normal]

\maincolor

\input{tufte}

\egroup}

\stopoverlay

We thrive in information--thick worlds because of our marvelous and everyday

capacity to select, edit, single out, structure, highlight, group, pair, merge,

harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,

categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis-

criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, in-

spect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggre-

gate, outline, summarize, itemize, review, dip into, flip through, browse, glance

into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday

capacity to select, edit, single out, structure, highlight, group, pair, merge, har-

monize, synthesize, focus, organize, condense, reduce, boil down, choose, cate-

gorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discrim-

inate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect,

filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, out-

line, summarize, itemize, review, dip into, flip through, browse, glance into, leaf

through, skim, refine, enumerate, glean, synopsize, winnow the wheat from the

chaff and separate the sheep from the goats.

Figure 8.7 The difference between no protrusion and quality protrusion.

The previously defined own class and vector is somewhat more extreme:

\definefontfeature

[whatever]

[default]

[protrusion=myown]

\definefont[MyTestA][Serif*default at 10pt]

\definefont[MyTestB][Serif*whatever at 10pt]

In figure 8.8 we see that the somewhat extreem definition of the comma also pulls the

preceding character into the margin.

We thrive in information--thick worlds because of our marvelous and everyday

capacity to select, edit, single out, structure, highlight, group, pair, merge,

harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,

categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis-

criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, in-

spect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggre-

gate, outline, summarize, itemize, review, dip into, flip through, browse, glance

into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday

capacity to select, edit, single out, structure, highlight, group, pair, merge, har-

monize, synthesize, focus, organize, condense, reduce, boil down, choose, cate-

gorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discrim-

inate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect,

filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, out-

line, summarize, itemize, review, dip into, flip through, browse, glance into, leaf

through, skim, refine, enumerate, glean, synopsize, winnow the wheat from the

chaff and separate the sheep from the goats.

Figure 8.8 The influence of extreme protrusion on preceding characters.

162

Extensions

8.9 Expansion

Expansion is also an inheritance of pdfTEX.14 This mechanism selectively expands char-

acters, normally upto 5%. One reason for applying it is that we have less visually incom-

patible spacing, especially when we have underfull or cramped lines. For each (broken)

line the badness is reconsidered with either shrink or stretch applied to all characters

in that line. So, in the worst case a shrunken line is followed by a stretched one and that

can be visible when the scaling factors are chosen wrong.

As with protrusion, the solution space is larger but so are the constraints. But contrary

to protrusion here the look and feel of the whole line can be made better but at the cost

of much more runtime and larger (pdf) files.

protrusion classes

The amount of expansion depends in the shape of the character. Vertical strokes are

more sensitive for expansion then horizontal ones. So an ‘o’ can get a different scaling

than an ‘m’. As with protrusion we have collected the properties in classes:

name vector step factor stretchshrink

preset 0.50 1.00 22

quality default 0.50 1.00 22

The smaller the step, the more instances of a font we get, the better it looks, and the

larger the files become. it’s best not to use too many stretch and shrink steps. A stretch

of 2 and shrink of 2 and step of .25 results in upto 8 instances plus the regular sized one.

expansion vectors

We only have one vector: quality:

U+00032 2 0.70

U+00033 3 0.70

U+00036 6 0.70

U+00038 8 0.70

U+00039 9 0.70

U+00041 A 0.50

U+00042 B 0.70

U+00043 C 0.70

U+00044 D 0.50

U+00045 E 0.70

U+00046 F 0.70

U+00047 G 0.50

U+00048 H 0.70

U+0004B K 0.70
14 As with protrusion the implementation in the engine is somewhat suboptimal and inefficient and will be upgraded

to a more LuaTEX-ish way.

U+0004D M 0.70

U+0004E N 0.70

U+0004F O 0.50

U+00050 P 0.70

U+00051 Q 0.50

U+00052 R 0.70

U+00053 S 0.70

U+00055 U 0.70

U+00057 W 0.70

U+0005A Z 0.70

U+00061 a 0.70

U+00062 b 0.70

U+00063 c 0.70

U+00064 d 0.70

U+00065 e 0.70

U+00067 g 0.70

U+00068 h 0.70

U+0006B k 0.70

U+0006D m 0.70

U+0006E n 0.70

U+0006F o 0.70

U+00070 p 0.70

U+00071 q 0.70

U+00073 s 0.70

U+00075 u 0.70

U+00077 w 0.70

U+0007A z 0.70

163

Extensions

an example of expansion

We use zapf.tex as example text, if only because Hermann Zapf introduced this opti-

mization. Keep in mind that you can combine expansion and protrusion.

\definefontfeature

[whatever]

[default]

[expansion=quality]

\definefont[MyTestA][Serif*default at 10pt]

\definefont[MyTestB][Serif*whatever at 10pt]

We use the following example. The results are shown in figure 8.9. The colored text is

the protruding one.

\startoverlay

{\ruledvbox \bgroup

\hsize\textwidth

\MyTestA

\setupalign[normal]

\input{tufte}

\egroup}

{\ruledvbox \bgroup

\hsize\textwidth

\MyTestB

\setupalign[hz,normal]

\maincolor

\input{tufte}

\egroup}

\stopoverlay

We thrive in information--thick worlds because of our marvelous and everyday

capacity to select, edit, single out, structure, highlight, group, pair, merge,

harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,

categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis-

criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, in-

spect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggre-

gate, outline, summarize, itemize, review, dip into, flip through, browse, glance

into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday

capacity to select, edit, single out, structure, highlight, group, pair, merge,

harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,

categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis-

criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,

inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggre-

gate, outline, summarize, itemize, review, dip into, flip through, browse, glance

into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from the goats.

Figure 8.9 The difference between no expansion and quality expansion.

Expansion and kerning

When we expand glyphs we also need to look at the font kerns between them. In the

original implementation taken from pdfTEX expansion was implemented using pseudo

164

Extensions

fonts (with expanded glyph widths) and expansion of inter-character kerns was based on

font information. In LuaTEX we have expansion factors in glyph nodes instead which is

more efficient and gives a cleaner separation between front- and backend as the backend

has no need to consult the font.

For the font kerns we set the kern compensation directly and for that we use the average

expansion factors of the neighbouring fonts so technically we support kerns between

different fonts). This also has the advantage that kerns injected in node mode are treated

well, given that they are tagged as font kern.

So what is the effect (and need) of scaling font kerns? Let’s look at an example. Kerns

can be positive but also negative:

VA

VA

II

II

negative positive

If we use a rediculous amount of stretch we get the following. In the top line we scale

the kern, in the bottom line we don’t.

VA
VA

II
II

negative positive

The reason that we mention this is that when we apply OpenType features, positioning

not necessarily result in font kerns. For instance ligatures can be the result of careful

applied kerns and in some scripts kerns are used to connect glyphs. This means that

we best cannot expand kerns by default. How bad is that? By looking at the examples

above one would say “real bad”.

But say that we have about 1pt of font kerns, then a 5% expansion (which is already a

lot) amounts to 0.05pt so to we add which is so little that it probably goes unnoticed.

Even if we use extreme kerns, as between VA, in practice the small amount of stretch

or shrink added to a font kern goes unnoticed.

In figure 8.10 we have overlayed the different strategies. The sample and width is chosen

such that we see something. On a display you can scale up these examples and inspect

if there is really something to see, but on paper zooming in helps, as in figure 8.11. Even

then the effect of expanded kerns is invisible. The used definitions are:

\setupfontexpansion

[extremehz]

[stretch=5,shrink=5,step=.5,vector=default,factor=1]

\setupfontexpansion

[regularhz]

[stretch=2,shrink=2,step=.5,vector=default,factor=1]

165

Extensions

\setupfontexpansion

[minimalhz]

[stretch=2,shrink=2,step=.5,vector=default,factor=.5]

\definefontfeature

[extremehz] [default]

[mode=node,expansion=extremehz]

\definefontfeature

[regularhz] [default]

[mode=node,expansion=regularhz]

\definefontfeature [minimalhz] [default]

[mode=node,expansion=minimalhz]

\definefont

[ExtremeHzFont]

[file:texgyrepagella-regular.otf*extremehz at 10pt]

\definefont

[RegularHzFont]

[file:texgyrepagella-regular.otf*regularhz at 10pt]

\definefont

[MinimalHzFont]

[file:texgyrepagella-regular.otf*minimalhz at 10pt]

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.
no hz & hz

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.156

h, as a habitat f
-0.156

or animal lif
-0.156

e, is in old ag
-0.207

e and has a f
-0.104

atal
illness. Se

-0.104

v
-0.400

er
-0.156

al, in f
-0.104

act. It w
-0.414

ould be happening whet
0.156

her humans
had e

-0.104

v
-0.417

er e
-0.104

v
-0.417

ol
-0.210

v
-0.417

ed or no
-0.156

t. But our presence is lik
-0.104

e t
0.156

he effect of an
old-ag

-0.207

e patient who smok
-0.104

es man
-0.365

y pack
0.104

s of cig
-0.150

arettes per da
-0.417

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.
no hz & full hz

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.156

h, as a habitat f
-0.156

or animal lif
-0.156

e, is in old ag
-0.207

e and has a f
-0.104

atal
illness. Se

-0.104

v
-0.400

er
-0.156

al, in f
-0.104

act. It w
-0.414

ould be happening whet
0.156

her humans
had e

-0.104

v
-0.417

er e
-0.104

v
-0.417

ol
-0.210

v
-0.417

ed or no
-0.156

t. But our presence is lik
-0.104

e t
0.156

he effect of an
old-ag

-0.207

e patient who smok
-0.104

es man
-0.365

y pack
0.104

s of cig
-0.150

arettes per da
-0.417

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.
hz & full hz

Figure 8.10 The two expansion methods compared.

166

Extensions

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.156

h, as a habitat f
-0.156

or animal lif
-0.156

e, is in old ag
-0.207

e and has a f
-0.104

atal
illness. Se

-0.104

v
-0.400

er
-0.156

al, in f
-0.104

act. It w
-0.414

ould be happening whet
0.156

her humans
had e

-0.104

v
-0.417

er e
-0.104

v
-0.417

ol
-0.210

v
-0.417

ed or no
-0.156

t. But our presence is lik
-0.104

e t
0.156

he effect of an
old-ag

-0.207

e patient who smok
-0.104

es man
-0.365

y pack
0.104

s of cig
-0.150

arettes per da
-0.417

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.156

h, as a habitat f
-0.156

or animal lif
-0.156

e, is in old ag
-0.207

e and has a f
-0.104

atal
illness. Se

-0.104

v
-0.400

er
-0.156

al, in f
-0.104

act. It w
-0.414

ould be happening whet
0.156

her humans
had e

-0.104

v
-0.417

er e
-0.104

v
-0.417

ol
-0.210

v
-0.417

ed or no
-0.156

t. But our presence is lik
-0.104

e t
0.156

he effect of an
old-ag

-0.207

e patient who smok
-0.104

es man
-0.365

y pack
0.104

s of cig
-0.150

arettes per da
-0.417

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

extreme: no hz & hz extreme: no

hz & full hz

extreme: hz

& full hz
The Eart

0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.153

h, as a habitat f
-0.153

or animal lif
-0.153

e, is in old ag
-0.203

e and has a f
-0.102

atal
illness. Se

-0.102

v
-0.400

er
-0.153

al, in f
-0.102

act. It w
-0.406

ould be happening whet
0.153

her humans
had e

-0.102

v
-0.407

er e
-0.102

v
-0.407

ol
-0.204

v
-0.407

ed or no
-0.153

t. But our presence is lik
-0.101

e t
0.153

he effect of an
old-ag

-0.203

e patient who smok
-0.101

es man
-0.356

y pack
0.101

s of cig
-0.150

arettes per da
-0.407

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.153

h, as a habitat f
-0.153

or animal lif
-0.153

e, is in old ag
-0.203

e and has a f
-0.102

atal
illness. Se

-0.102

v
-0.400

er
-0.153

al, in f
-0.102

act. It w
-0.406

ould be happening whet
0.153

her humans
had e

-0.102

v
-0.407

er e
-0.102

v
-0.407

ol
-0.204

v
-0.407

ed or no
-0.153

t. But our presence is lik
-0.101

e t
0.153

he effect of an
old-ag

-0.203

e patient who smok
-0.101

es man
-0.356

y pack
0.101

s of cig
-0.150

arettes per da
-0.407

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

regular: no hz & hz regular: no

hz & full hz

regular: hz & full hz

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.151

h, as a habitat f
-0.151

or animal lif
-0.151

e, is in old ag
-0.201

e and has a f
-0.101

atal
illness. Se

-0.101

v
-0.400

er
-0.151

al, in f
-0.101

act. It w
-0.403

ould be happening whet
0.151

her humans
had e

-0.101

v
-0.403

er e
-0.101

v
-0.403

ol
-0.202

v
-0.403

ed or no
-0.151

t. But our presence is lik
-0.101

e t
0.151

he effect of an
old-ag

-0.201

e patient who smok
-0.101

es man
-0.353

y pack
0.101

s of cig
-0.150

arettes per da
-0.403

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.150

h, as a habitat f
-0.150

or animal lif
-0.150

e, is in old ag
-0.200

e and has a f
-0.100

atal
illness. Se

-0.100

v
-0.400

er
-0.150

al, in f
-0.100

act. It w
-0.400

ould be happening whet
0.150

her humans
had e

-0.100

v
-0.400

er e
-0.100

v
-0.400

ol
-0.200

v
-0.400

ed or no
-0.150

t. But our presence is lik
-0.100

e t
0.150

he effect of an
old-ag

-0.200

e patient who smok
-0.100

es man
-0.350

y pack
0.100

s of cig
-0.150

arettes per da
-0.400

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

The Eart
0.151

h, as a habitat f
-0.151

or animal lif
-0.151

e, is in old ag
-0.201

e and has a f
-0.101

atal
illness. Se

-0.101

v
-0.400

er
-0.151

al, in f
-0.101

act. It w
-0.403

ould be happening whet
0.151

her humans
had e

-0.101

v
-0.403

er e
-0.101

v
-0.403

ol
-0.202

v
-0.403

ed or no
-0.151

t. But our presence is lik
-0.101

e t
0.151

he effect of an
old-ag

-0.201

e patient who smok
-0.101

es man
-0.353

y pack
0.101

s of cig
-0.150

arettes per da
-0.403

y —
and w

-0.400

e humans are t
0.150

he cig
-0.150

arettes.

minimal: no hz & hz minimal: no

hz & full hz

minimal: hz

& full hz

Figure 8.11 The two expansion methods compared (zoomed in).

In ConTEXt the hz alignment option only enables expansion of glyphs, while fullhz also

applies it to kerns. However, in the examples here we had to explicitly enable font kerns

in node mode:

\enabledirectives[fonts.injections.fontkern]

It will be clear that you can just stick to using the hz directive (if you want expansion at

all) because this directive is normally disabled and because most fonts are processed in

node mode.

8.10 Composing

This feature is seldom needed but can come in handy for old fonts or when some special

language is to be supported. When writing this section I tested this feature with Dejavu

and only two additional characters were added:

fonts > combining > Ѷ (U+00476) = Ѵ (U+00474) + ̏ (U+0030F)

fonts > combining > ѷ (U+00477) = ѵ (U+00475) + ̏ (U+0030F)

This trace showed up after giving:

\enabletrackers

[fonts.composing.define]

\definefontfeature

[default-plus-compose]

[compose=yes]

\definefont

[MyFont]

[Serif*default-plus-compose]

167

Extensions

Fonts like Latin Modern have lots of glyphs but still lack some. Although the composer

can add some of the missing, some of those new virtual glyphs probably will never look

real good. For instance, putting additional accents on top of already accented uppercase

characters will fail when that character has a rather tight (or even clipped) boundingbox

in order not to spoil the lineheight. You can get some more insight in the process by

turning on tracing:

\enabletrackers[fonts.composing.visualize]

One reason why composing can be suboptimal is that it uses the boundingbox of the

characters that are combined. If you really depend on a specific font and need some of

the missing characters it makes sense to spend some time on optimizing the rendering.

This can be done via the goodies mechanism. As an example we’ve added lm-compose-

test.lfg to the distribution. First we show how it looks at the TEX end:

\enabletrackers[fonts.composing.visualize]

\definefontfeature

[default-plus-compose]

[compose=yes]

\loadfontgoodies

[lm-compose-test] % playground

\definefont

[MyComposedSerif]

[file:lmroman10regular*default-plus-compose at 48pt]

B Ḃ Ḅ
The positions of the dot accents on top and below the capital B is defined in a goodie

file:

return {

name = "lm-compose-test",

version = "1.00",

comment = "Goodies that demonstrate composition.",

author = "Hans and Mojca",

copyright = "ConTeXt development team",

compositions = {

["lmroman12-regular"] = compose,

}

}

As this is an experimental feature there are several ways to deal with this. For instance:

168

Extensions

local defaultfraction = 10.0

local compose = {

dy = defaultfraction,

[0x1E02] = { -- B dot above

dy = 150

},

[0x1E04] = { -- B dot below

dy = 150

},

}

Here the fraction is relative to the difference between the height of the accentee and

the accent. A better solution is the following:

local compose = {

[0x1E02] = { -- B dot above

anchored = "top",

},

[0x1E04] = { -- B dot below

anchored = "bottom",

},

[0x0042] = { -- B

anchors = {

top = {

x = 300, y = 700,

},

bottom = {

x = 300, y = -30,

},

},

},

[0x0307] = {

anchors = {

top = {

x = -250, y = 550,

},

},

},

[0x0323] = {

anchors = {

bottom = {

x = -250, y = -80,

},

},

169

Extensions

},

}

This approach is more or less the same as OpenType anchoring. It takes a bit more

effort to define these tables but the result is better.

8.11 Kerning

Inter-character kerning is not supported at the font level and with good reason. The fact

that something is conceptually possible doesn’t mean that we should use or support it.

Normally proper kerning (or the lack of it) is part of a font design and for some scripts

different kerning is not even an option.

On the average TEX does a proper job on justification but not all programs are that ca-

pable. As a consequence designers (at least we ran into it) tend to stick to flush left

rendering because they don’t trust their system to do a proper job otherwise. On the

other hand they seem to have no problem with messing up the inter-character spacing

and even combine that with excessive inter-word spacing if they want to achieve jus-

tification (without hyphenation). And it can become even worse when extreme glyph

expansion (like hz) is applied.

Anyhow, it will be clear that consider messing with properties like kerning that are part

of the font design is to be done careful.

For running text addit ional kerning makes no sense. I t not only looks bad,

i t a lso spoi ls the grayness of a text . When it is appl ied we need to deal

with special cases. For instance l igatures make no sense so they should

be disabled. Addit ional kerning should relate to already present kerning

and interword spacing should be adapted accordingly. Embedded non-

characters also need to be treated wel l .

This paragraph was typeset as follows:

\definecharacterkerning [extremekerning] [factor=.125]

\setcharacterkerning[extremekerning] ... text ...

Where additional kerning can make sense, is in titles. The previous command can do

that job. In addition we have a mechanism that fills a given space. This mechanism uses

the following definition:

\setupcharacterkerning

[stretched]

[factor=max,

width=\availablehsize]

\stretched{\bfd to the limit}

170

Extensions

t o t h e l i m i t
The following does not work:

\ruledhbox to 5cm{\stretched{\bfd to the limit}}

t o t h e l i m i t
But this works ok:

\setupcharacterkerning

[stretched]

[width=]

\stretched{\bfd to the limit}

t o t h e l i m i t
You can also say this:

\stretched[width=]{\bfd to the limit}

t o t h e l i m i t
or:

\ruledhbox{\stretched[width=10cm]{\bfd to the limit}}

t o t h e l i m i t
You can get some insight in what kerning does to your font by the following command:

\usemodule[typesetting-kerning]

\starttext

\showcharacterkerningsteps

[style=Bold,

sample=how to violate a proper font design,

text=rubish,

first=0,

last=45,

step=5]

\stoptext

factor sample % text %

0.000 how to violate a proper font designhow to violate a proper font design

how to violate a proper font design

0.00 rubishrubish

rubish

0.00

171

Extensions

0.005 how to violate a proper font designhow to violate a proper font design

how to violate a proper font design

0.83 rubishrubish

rubish

0.77

0.010 how to violate a proper font designhow to violate a proper font design

how to violate a proper font design

1.64 rubishrubish

rubish

1.52

0.015 how to violate a proper font designhow to violate a proper font design

how to violate a proper font design

2.44 rubishrubish

rubish

2.26

0.020 how to violate a proper font designhow to violate a proper font design

how to violate a proper font design

3.22 rubishrubish

rubish

2.99

0.025 how to violate a proper font designhow to violate a proper font design

how to violate a proper font design

3.99 rubishrubish

rubish

3.72

0.030 how to violate a proper font designhow to violate a proper font design

how to violate a proper font design

4.76 rubishrubish

rubish

4.43

0.035 how to violate a proper font designhow to violate a proper font design

how to violate a proper font design

5.50 rubishrubish

rubish

5.13

0.040 how to violate a proper font designhow to violate a proper font design

how to violate a proper font design

6.24 rubishrubish

rubish

5.82

0.045 how to violate a proper font designhow to violate a proper font design

how to violate a proper font design

6.97 rubishrubish

rubish

6.49

8.12 Extra font kerns

Fonts are processed independent of each other. Sometimes that is unfortunate for kern-

ing, although in practice it won’t happen that often. We can enable an additional kerning

mechanism to deal with these cases. The \setextrafontkerns command takes one ar-

gument between square brackets. The effect can be seen below:

key result logic

no kerns VA va Va VA VA VA VA VA no kerns at all

kerns V
-0.611

A va V
-0.826

a V
-0.611

A V
-0.699

A VA VA VA kerns within a font (feature) run

none V
-0.611

A va V
-0.826

a V
-0.611

A V
-0.699

A VA VA VA only extra kerns within fonts

min V
-0.611

A va V
-0.826

a V
-0.611

A V
-0.699

A V
-0.699

A V
-0.699

A V
-0.611

A minimal kerns within and across fonts

max V
-0.611

A va V
-0.826

a V
-0.611

A V
-0.699

A V
-0.611

A V
-0.611

A V
-0.611

A maximum kerns within and across fonts

mixed V
-0.611

A va V
-0.826

a V
-0.611

A V
-0.699

A V
-0.655

A V
-0.655

A V
-0.611

A averaged kerns within and across fonts

The content is defined as:

VA {\smallcaps va} V{\smallcaps a}

VA {\bf VA} V{\bf A} {\bf V}A

V{\it A}

This mechanism obeys grouping so you have complete control over where and when it

gets applied. The \showfontkerns command can be used to trace the injection of (font)

kerns.

172

Extensions

8.13 Ligatures

For some Latin fonts ligature building is quite advanced, take Unifraktur. I have no

problem admitting that I find fraktur hard to read, but this one actually is sort of an

exception. It’s also a good candidate for a screen presentation where you mainly made

notes for yourself: no one has to read it, but it looks great, especially if you consider it

to be drawn by a pen.

Anyway, we will use the following code as example (based on some remarks on the fonts

website).

sitzen / ſitzen / effe fietsen / ch ck ſt tz ſi fi

Some ligatures are implemented in the usual way, using the liga and dlig features, oth-

ers kick in thanks to ccmp. This fact alone is an illustration that the low level OpenType

ligature feature is not related to ligatures at all but a more generic mechanism: you can

basically combine multiple shapes into one in all features exposed to the user.

We define a bunch of specific feature sets:

\definefontfeature

[unifraktur-a]

[default]

\definefontfeature

[unifraktur-b]

[default]

[goodies=unifraktur,keepligatures=yes]

\definefontfeature

[unifraktur-c]

[default]

[ccmp=yes]

\definefontfeature

[unifraktur-d]

[default]

[ccmp=yes,goodies=unifraktur,keepligatures=yes]

\definefontfeature

[unifraktur-e]

[default]

[liga=no,rlig=no,clig=no,dlig=no,ccmp=yes,keepligatures=auto]

and also some fonts:

\definefont[TestA][UnifrakturCook*unifraktur-a sa 0.9]

\definefont[TestB][UnifrakturCook*unifraktur-b sa 0.9]

\definefont[TestC][UnifrakturCook*unifraktur-c sa 0.9]

\definefont[TestD][UnifrakturCook*unifraktur-d sa 0.9]

\definefont[TestE][UnifrakturCook*unifraktur-e sa 0.9]

173

Extensions

We show these five alternatives here:

liga siüen / ÿüen / effe fietsen / ā Ā st ü ÿ fi

liga + keepligatures siüen / ÿüen / effe fietsen / ā Ā st ü ÿ fi

liga + ccmp siüen / ÿüen / effe fietsen / ā Ā st ü ÿ fi

liga + ccmp + keepligatures siüen / ÿüen / effe fietsen / ā Ā st ü ÿ fi

ccmp + keepligatures siüen / ſiüen / effe fietsen / ā Ā st ü ſi fi

The real fun starts when we want to add extra spacing between characters. Some liga-

tures need to get broken and some kept.

\setupcharacterkerning[kerncharacters][factor=0.5]

\setupcharacterkerning[letterspacing] [factor=0.5]

Next we will see how ligatures behave depending on how the mechanisms are set up.

The colors indicate what trickery is used:

red kept by dynamic feature

green kept by static feature

blue keep by goodie

First we use \kerncharacters:

liga s i t z e n / ſ i t z e n / e f f e f i e t s e n / c h c k ſ t t z ſ i f i

liga + keepligatures s i t z e n / ſ i t z e n / e f f e f i e t s e n / c h c k ſ t t z ſ i f i

liga + ccmp s i t z e n / ſ i t z e n / e f f e f i e t s e n / c h c k ſ t t z ſ i f i

liga + ccmp + keepligatures s i t z e n / ſ i t z e n / e f f e f i e t s e n / c h c k ſ t t z ſ i f i

ccmp + keepligatures s i ü e n / ſ i ü e n / e f f e f i e t s e n / ā Ā st ü ſ i f i

In the next example we use \letterspacing:

liga s i ü e n / ſ i ü e n / e f f e f i e t s e n / ā Ā st ü ſ i f i

liga + keepligatures s i ü e n / ſ i ü e n / e f f e f i e t s e n / ā Ā st ü ſ i f i

liga + ccmp s i ü e n / ſ i ü e n / e f f e f i e t s e n / ā Ā st ü ſ i f i

liga + ccmp + keepligatures s i ü e n / ſ i ü e n / e f f e f i e t s e n / ā Ā st ü ſ i f i

ccmp + keepligatures s i ü e n / ſ i ü e n / e f f e f i e t s e n / ā Ā st ü ſ i f i

The difference is that the letterspacing variant dynamically adds the predefined feature-

set letterspacing which is defined in a similar way as unifraktur-e. In the case of

this font, this variant is the better one to use. In fact, this variant probably works okay

with most fonts. However, by not hard coding this behaviour we keep control, as one

never knows what the demands are. When no features are used, information from the

(given) goodie file unifraktur.lfg is consulted:

letterspacing = {

-- watch it: zwnj's are used (in the tounicodes too)

keptligatures = {

["c_afii301_k.ccmp"] = true, -- ck

174

Extensions

["c_afii301_h.ccmp"] = true, -- ch

["t_afii301_z.ccmp"] = true, -- tz

["uniFB05"] = true, -- ſt

},

}

These kick in when we don’t disable ligatures by setting features (case e).

There are two pseudo features that can help us out when a font doesn’t provide the

wanted ligatures but has the right glyphs for building them. The Unicode database

has some information about how characters can be (de)composed and we can use that

information to create virtual glyphs:

\definefontfeature

[default] [default]

[char-ligatures=yes,mode=node]

and:

\definefontfeature

[default] [default]

[compat-ligatures=yes,mode=node]

This feature was added after some discussion on the ConTEXt mailing list about the

following use case.

\definefontfeature

[default-l] [default]

[char-ligatures=yes,

compat-ligatures=yes,

mode=node]

\definefont[LigCd][cambria*default]

\definefont[LigPd][texgyrepagellaregular*default]

\definefont[LigCl][cambria*default-l]

\definefont[LigPl][texgyrepagellaregular*default-l]

These definitions result in:

\LigCd \LigPd \LigCl \LigPl

PEL·LÍCULES PEL·LÍCULES PEL·LÍCULES PEĿLÍCULES PEĿLÍCULES
pel·lícules pel·lícules pel·lícules peŀlícules peŀlícules
PEĿLÍCULES PEĿLÍCULES PEĿLÍCULES PEĿLÍCULES PEĿLÍCULES
peŀlícules peŀlícules peŀlícules peŀlícules peŀlícules

Of course one can wonder is this is the right approach and if it’s not better to use a font

that provides the needed characters in the first place.

175

Extensions

8.14 New features

8.14.1 Substitution

It is possible to add new features via Lua. Here is an example of a single substitution:

\startluacode

fonts.handlers.otf.addfeature {

name = "stest",

type = "substitution",

data = {

a = "X",

b = "P",

}

}

\stopluacode

We show an overview at the end of this section, but here is a simple example already.

You need to define the feature before defining a font because otherwise the font will not

know about it.

\definefontfeature[stest][stest=yes]

\definedfont[file:dejavu-serifbold.ttf*default]

abracadabra: \addff{stest}abracadabra

abracadabra: XPrXcXdXPrX

Instead of (more readable) glyph names you can also give Unicode numbers:

\startluacode

fonts.handlers.otf.addfeature {

name = "stest",

type = "substitution",

data = {

[0x61] = 0x58

[0x62] = 0x50

}

}

\stopluacode

The definition is quite simple: we just map glyph names (or unicodes) onto other ones.

An alternate is also possible:

\startluacode

fonts.handlers.otf.addfeature {

name = "atest",

type = "alternate",

176

Extensions

data = {

a = { "X", "Y" },

b = { "P", "Q" },

}

}

\stopluacode

Less useful is a multiple substitution. Normally this one is part of a chain of replace-

ments.

\startluacode

fonts.handlers.otf.addfeature {

name = "mtest",

type = "multiple",

data = {

a = { "X", "Y" },

b = { "P", "Q" },

}

}

\stopluacode

A ligature (or multiple to one) is also possible but normally only makes sense when there

is indeed a ligature. We use a similar definition for mapping the TEX input sequence ---

onto an —.

\startluacode

fonts.handlers.otf.addfeature {

name = "ltest",

type = "ligature",

data = {

['1'] = { "a", "b" },

['2'] = { "d", "a" },

}

}

\stopluacode

8.14.2 Positioning

You can define a kern feature too but when doing so you need to use measures in font

units.

\startluacode

fonts.handlers.otf.addfeature {

name = "ktest",

type = "kern",

data = {

a = { b = -500 },

177

Extensions

}

}

\stopluacode

Pairwise positioning is more complex and involves two (optional) arrays that specify {dx

dy wd ht} for each of the two glyphs. In the next example we only displace the second

glyph.

\startluacode

fonts.handlers.otf.addfeature {

name = "ptest",

type = "pair",

data = {

["a"] = { ["b"] = { false, { -1000, 1200, 0, 0 } } },

}

}

\stopluacode

Of course you need to know a bit about the metrics of the glyphs involved so in practice

this boils down to trial and error.

8.14.3 Examples

We didn’t show usage yet. This is because we need to define a feature before we define

a font. New features will be added to a font when it gets defined.

\definefontfeature[stest][stest=yes]

\definefontfeature[atest][atest=2]

\definefontfeature[mtest][mtest=yes]

\definefontfeature[ltest][ltest=yes]

\definefontfeature[ktest][ktest=yes]

\definefontfeature[ptest][ptest=yes]

\definefontfeature[ctest][ctest=yes]

\definedfont[file:dejavu-serif.ttf*default]

\starttabulate[|l|l|l|]

\NC operation \NC feature \NC abracadabra \NC \NR

\HL

\NC substitution \NC \type {stest} \NC \addff{stest}abracadabra \NC \NR

\NC alternate \NC \type {atest} \NC \addff{atest}abracadabra \NC \NR

\NC multiple \NC \type {mtest} \NC \addff{mtest}abracadabra \NC \NR

\NC ligature \NC \type {ltest} \NC \addff{ltest}abracadabra \NC \NR

\NC kern \NC \type {ktest} \NC \addff{ktest}abracadabra \NC \NR

\NC pair \NC \type {ptest} \NC \addff{ptest}abracadabra \NC \NR

\NC chain sub \NC \type {ctest} \NC \addff{ctest}abracadabra \NC \NR

178

Extensions

\stoptabulate

operation feature abracadabra

substitution stest abracadabra

alternate atest abracadabra

multiple mtest abracadabra

ligature ltest abracadabra

kern ktest abracadabra

pair ptest abracadabra

chain sub ctest abracadabra

8.14.4 Contexts

A more complex substitution is the following:

\startluacode

fonts.handlers.otf.addfeature {

name = "ytest",

type = "chainsubstitution",

lookups = {

{

type = "substitution",

data = {

["b"] = "B",

["c"] = "C",

},

},

},

data = {

rules = {

{

before = { { "a" } },

current = { { "b", "c" } },

lookups = { 1 },

},

},

},

}

\stopluacode

Here the dataset is a sequence of rules. There can be a before, current and after

match. The replacements are specified with the lookups entry and the numbers are

indices in the provided lookups table.

8.14.5 Language dependencies

When OpenType was not around we only had to deal with ligatures, smallcaps and old-

179

Extensions

style and of course kerns. Their number was so small that the term ‘features’ was not

even used. In practice one just loaded a font that had oldstyle or smallcaps or none of

that and was done. There were different fonts and sold separately.

In OpenType we have more variation and although these fonts can be much more ad-

vanced the lack of standardization (for instance what gets initialized, or what shapes

are in the default slots) can lead to messy setups. Some fonts bind features to scripts,

some don’t, which means that:

\definefontfeature[smallcaps][smcp=yes,script=dflt]

\definefontfeature[smallcaps][smcp=yes,script=latn]

\definefontfeature[smallcaps][smcp=yes,script=cyrl]

are in fact different and you don’t know in advance if you need to specify dflt or latn.

In practice for a feature like smallcaps there is no difference between languages, but

for ligatures there can be.

When we extend an existing feature we can think of:

\definefontfeature[smallcaps][default][smcp=yes,script=auto]

\definefontfeature[smallcaps][default][smcp=yes,script=*]

but that can have side effects too (for instance disabling language specific features).

The easiest way to explore this language dependency is to make a feature of our own.

\startluacode

fonts.handlers.otf.addfeature {

name = "simplify",

type = "multiple",

prepend = true,

features = {

["*"] = {

["deu"] = true

}

},

data = {

[utf.byte("ä")] = { "a", "e" },

[utf.byte("Ä")] = { "A", "E" },

[utf.byte("ü")] = { "u", "e" },

[utf.byte("Ü")] = { "U", "E" },

[utf.byte("ö")] = { "o", "e" },

[utf.byte("Ö")] = { "O", "E" },

[utf.byte("ß")] = { "s", "z" },

[utf.byte("")] = { "S", "Z" },

},

}

\stopluacode

180

Extensions

Here we implement a language specific feature that we use at the TEX end:

\definefontfeature

[simplify-de]

[simplify=yes,

language=deu]

that we can use as:

\definedfont[Serif*default,simplify-de]%

äüöß

{\de äüöß}

{\nl äüöß}

and get: aeueoesz aeueoesz aeueoesz, but as you see, both German and Dutch get the

same treatment, which might not be what you want, because in Dutch the diearesis has

a different meaning.

\definedfont[Serif*default]%

äüöß

{\de\addff{simplify-de}äüöß}

{\nl äüöß}

The above is restricts the usage so now we get: äüöß aeueoesz äüöß, which is more

language bound. You don’t need much imagination for extending this:

\definefontfeature

[simplify]

[simplify=yes,

language=deu]

So what do we expect with the next?

\definedfont[Serif*default]%

äüöß

{\de\addff{simplify}äüöß}

{\nl\addff{simplify}äüöß}

We get: äüöß aeueoesz aeueoesz, and we see that the language setting is not taken into

account! This is because the font already has been set up with a script and language

combination. The solution is to temporary set the font related language explicitly:

\definedfont[Serif*default]%

äüöß

{\de\addfflanguage\addff{simplify}äüöß}

{\nl\addfflanguage\addff{simplify}äüöß}

So we can automatically switch to language specific features if we want to: äüöß aeueoesz

äüöß.

181

Extensions

Let’s now move to another level of complexity: support for more than one language as

in fact this example was made for Dutch in the first place, but the German outcome is a

bit more visible.

\startluacode

fonts.handlers.otf.addfeature {

name = "simplify",

type = "multiple",

prepend = true,

-- prepend = "smcp",

dataset =

{

{

features = {

["*"] = {

["nld"] = true

}

},

data = {

-- [utf.byte("ä")] = { "a" },

-- [utf.byte("Ä")] = { "A" },

-- [utf.byte("ü")] = { "u" },

-- [utf.byte("Ü")] = { "U" },

-- [utf.byte("ö")] = { "o" },

-- [utf.byte("Ö")] = { "O" },

[utf.byte("ij")] = { "i", "j" },

[utf.byte("IJ")] = { "I", "J" },

[utf.byte("æ")] = { "a", "e" },

[utf.byte("Æ")] = { "A", "E" },

},

},

{

-- type = "multiple", -- local values possible

features = {

["*"] = {

["deu"] = true

}

},

data = {

[utf.byte("ä")] = { "a", "e" },

[utf.byte("Ä")] = { "A", "E" },

[utf.byte("ü")] = { "u", "e" },

[utf.byte("Ü")] = { "U", "E" },

[utf.byte("ö")] = { "o", "e" },

[utf.byte("Ö")] = { "O", "E" },

182

Extensions

[utf.byte("ß")] = { "s", "z" },

[utf.byte("")] = { "S", "Z" },

},

}

}

}

\stopluacode

For this we use the following example:

\definedfont[Serif*default,simplify]%

äüöß ijæ

{\de\addfflanguage äüöß ijæ}

{\nl\addfflanguage äüöß ijæ}

Because the Dutch is hard to check we use an æ replacement too and commented the

similarities with German: äüöß ijæ aeueoesz ijæ äüöß ijae. But still we’re not done, say

that we want smallcaps too:

\definefontfeature[alwayssmcp][smcp=always]%

\definedfont[Serif*default,simplify,alwayssmcp]%

äüöß ijæ

{\de\addfflanguage äüöß ijæ}

{\nl\addfflanguage äüöß ijæ}

This comes out as: äüöß ijæ aeueoesz ijæ äüöß ijae.

The reason for specifying smcp as always is that otherwise we get language specific

smallcaps while often they are not bound to a language but to the defaults. The good

news is that we can do this automatically:

\setupfonts[language=auto]%

\definefontfeature[alwayssmcp][smcp=always]%

\definedfont[Serif*default,simplify,alwayssmcp]%

äüöß ijæ

{\de äüöß ijæ}

{\nl äüöß ijæ}

But be aware that this applies to all situations. Here we get: äüöß ijæ aeueoesz ijæ äüöß

ijae.

8.14.6 Syntax summary

In the examples we have seen several ways to define features. One of the differences

is that you either set a data field directly, or that you specify a dataset. The fields in a

dataset entry overload the ones given at the top level or when not set the top level value

will be taken. There is a bit of (downward compatibility) tolerance built in, but best not

depend on that.

183

Extensions

fonts.handlers.otf.addfeature {

name = "demo",

features = {

[<script>] = {

[<language>] = true

}

},

prepend = true | featurename | position,

dataset = {

{

type = "substitution",

data = {

[<char|code>] = <char|code>,

}

},

{

type = "alternate",

data = {

[<char|code>] = { <char|code>, <char|code>, ... },

}

},

{

type = "multiple",

data = {

[<char|code>] = { <char|code>, <char|code>, ... },

}

},

{

type = "ligature",

data = {

[<char|code>] = { <char|code>, <char|code>, ... },

}

},

{

type = "kern",

data = {

[<char|code>] = { [<char|code>] = <value> },

}

},

{

type = "pair",

data = {

[<char|code>] = { [<char|code>] = {

false | { <value>, <value>, <value>, <value> },

184

Extensions

false | { <value>, <value>, <value>, <value> }

}

}

},

{

type = "chainsubstitution",

lookups = {

{

type = <typename>,

data = <mapping>,

},

},

data = {

rules = {

{

before = { { [<char|code>], ... } },

current = { { [<char|code>], ... } },

after = { { [<char|code>], ... } },

lookups = { <index>, ... },

},

},

},

},

},

}

8.14.7 Extra characters

You can add virtual characters to fonts. Here we give an example that is derived from

an example posted on the mailing list. By default, when we hyphenated a word, we get

this:

av-

ery-

long-

word

The default character that is appended at the end and beginning of a line can be specified

as follows:

\setuplanguage

[en]

[righthyphenchar=45,

lefthyphenchar=45]

So now we get:

185

Extensions

av-

-ery-

-long-

-word

Say that we want a different signal, for instance some rule. Here is how that can be

done:

\startluacode

local privateslots = fonts.constructors.privateslots

local function addspecialhyphen(tfmdata)

local exheight = tfmdata.parameters.xheight

local emwidth = tfmdata.parameters.quad

local width = emwidth / 4

local height = exheight / 10

local depth = exheight / 2

local offset = emwidth / 6

tfmdata.characters[privateslots.righthyphenchar] = {

-- no dimensions

commands = {

{ "right", offset },

{ "push" },

{ "right", -width },

{ "down", depth },

{ "rule", height, width },

{ "pop" },

{ "right", -width/5 },

{ "down", depth + height },

{ "rule", 3*height, width/5 },

}

}

tfmdata.characters[privateslots.lefthyphenchar] = {

-- no dimensions

commands = {

{ "right", -offset },

186

Extensions

{ "push" },

{ "down", depth + height },

{ "rule", 3*height, width/5 },

{ "pop" },

{ "down", depth },

{ "rule", height, width },

}

}

end

fonts.constructors.features.otf.register {

name = "specialhyphen",

description = "special hyphen",

manipulators = {

base = addspecialhyphen,

node = addspecialhyphen,

}

}

\stopluacode

Watch the way we use private slots. You can best use a unique glyph name as these

numbers are shared between fonts. With:

\definefontfeature

[default]

[default]

[specialhyphen=yes]

\definefont

[DemoFont]

[Serif*default at 24pt]

\setuplanguage

[en]

[righthyphenchar=\getprivateglyphslot{righthyphenchar},

lefthyphenchar=\getprivateglyphslot{lefthyphenchar}]

We get:

187

Extensions

av

ery

long

word
You need to keep in mind that some of these settings are global but in practice that is

not a real problem. Here is how you reset:

\definefontfeature

[default]

[default]

[specialhyphen=no]

\setuplanguage

[en]

[righthyphenchar=45,

lefthyphenchar=0]

8.14.8 Goodies

The examples above extend a font in the TEX document (normally a style) but you can

use a goodies file too, for instance cambria.lfg.

return {

name = "cambria",

version = "1.00",

comment = "Goodies that complement cambria.",

author = "Hans Hagen",

copyright = "ConTeXt development team",

extensions = {

{

name = "kern", -- adds to kerns

type = "pair",

data = {

[0x0153] = { -- combining acute

[0x0301] = { -- aeligature

false,

{ -500, 0, 0, 0 }

}

},

}

}

188

Extensions

}

}

Here we use the feature name kern and therefore we don’t have to define a specific

(new) feature for it. Such a goodie is then used as follows:

\definefontsynonym

[Serif]

[cambria]

[features=default,

goodies=cambria]

You can find such definitions in the type-imp-*.mkiv files.

8.15 Spacing

As you probably know, TEX has no space character. When the input is read, characters

tagged as space are intercepted and become glue. Compare this:

test test test

test test
test test test test test

text test... text\char32test...

Most fonts have a space character and you can actually use it and indeed a space char-

acter will be injected but as it is not glue, the line break algorithm will not see it as

space.

Al the magic done with space characters other than the native space character (decimal

32) are at some point translated into glue.

command Unicode width

\nobreakspace \nbsp U+00A0 space

\ideographicspace U+2000 quad/2

\ideographichalffillspace U+2001 quad

\twoperemspace \enspace U+2002 quad/2

\emspace \quad U+2003 quad

\threeperemspace U+2004 quad/3

\fourperemspace U+2005 quad/4

\fiveperemspace quad/5

\sixperemspace U+2006 quad/6

\figurespace U+2007 width of zero

\punctuationspace U+2008 width of period

\breakablethinspace U+2009 quad/8

\hairspace U+200A quad/8

189

Extensions

\zerowidthspace U+200B 0

\zerowidthnonjoiner \zwnj U+200C 0

\zerowidthjoiner \zwj U+200D 0

\narrownobreakspace U+202F quad/8

\zerowidthnobreakspace U+FEFF

\optionalspace space when not followed by punctuation

The last one is not un Unicode and the fifths of an emspace is not in Unicode either.

This emspace (or quad in TEX speak) is a font property. The width of the space used by

ConTEXt is dreived form this value. In case of a monospace fonts, the following logic is

applied:

• When there is a space character, the width of that character is used.

• Otherwise, when there is an emdash present, the width if that character is used.

• Otherwise, when there is an charwidth property available (the average width), that

valua is used.

When a proportional font is used, we do as follows:

• When there is a space character, the width of that character is used.

• Otherwise, when there is an emdash present, the width of that character divided by

two is used.

• Otherwise, when there is an charwidth property available (the average width), that

value is used.

In both cases, when no value is set we use the units of the font (often 1000 or 2048). In

TEX a space glue also has stretch and shrink. Here we follow the traditional TEX logic:

• The stretch is set to half the width of a space but to zero with a mono spaced font.

• The shrink is set to one third of the width of a space but to zero with a mono spaced

font.

The xheight is set to the values specified by the font and when this is unset the height

of the character x will be used but when this character is not in the font, we use two

fifths of the font’s units (normally the same as the emwidth). The italic angle is also

taken from the font (and is of course zero for a not italic font). Most fonts have these

properties set so we seldom have to fall back to a guess.

8.16 Collections

Todo.

190

Extensions

191

Hooks

9 Hooks

9.1 Introduction

One of the virtues of TEX is its flexibility. Because we cannot predict what users want

to mess around with, much of the underlying code has hooks. And because it’s not too

hard to add functionality that will break things we will not advocate all of it. Of course

you can study the code and figure out what can be done and there is no problem with

that. It’s just that you shouldn’t expect much support.

In this chapter we collect some of these hooks. If you run into interesting ones that are

worth mentioning, you can always ask us to add description here.

9.2 Safe hooks

9.2.1 Trimming fonts

Because we store font related information in Lua tables there can be situations where

the resources used outgrow memory. An example of such a font is lastresort that

basically defined the whole Unicode range. The font is actually not that large as it uses

similar placeholders for glyphs in a range, but it has rather verbose (redundant) names.

As we normally don’t need these, you can decide to strip them away.

\startluacode

fonts.handlers.otf.readers.registerextender {

name = "remove names from lastresort",

action = function(fontdata)

if fontdata.metadata.fullname == "LastResort" then

for k, v in next, fontdata.descriptions do

v.name = nil

end

end

end

}

\stopluacode

\definedfont[LastResort][lastresort*default sa 1]

This will result in a much smaller font, one that has less change to crash the engine due

to lack of memory. Extenders like this are applied once the font has been loaded but

before it gets saved.

192

Hooks

9.3 Loading

9.3.1 Introduction

We basically have to deal with three font formats that can easily be recognized by the

suffix of the files involved: tfm and vf files that describe 8 bit fonts, traditionally bitmap

fonts, but as they carry only metric information, any 8 bit font can be described. Then

there are afm files that contain metrics related to Type1 fonts (stored in pfb files).

Although such fonts could contain more than 256 shapes, the implementation was lim-

ited to 8 bits too. By converting afm files to tfm files, traditional TEX can deal with Type1

given that the backend can include them in the final result.

In this section we will discuss some aspects of the OpenType font reader. As TEX only

deals with metrics (in the frontend) we need to parse them, filter information from it

and pass the metrics to TEX. In addition, we can use all kind of extra information to

manipulate the so called node list but in the end TEX is only interested in font id’s (that

point to a font resource) and glyph indexes.

To overcome the 256 limitation of Type1 fonts, in ConTEXt we moved away from tfm

files (we can of course still deal with them) and turn afm files into so called wide fonts.

Basically we turn them in a more rich format that looks similar to the internal OpenType

format we use. We will not go into much detail about that because Type1 is kind of

obsolete and being replaced by OpenType, but we will of course support the old formats

simply because we have all these fonts around.

Already early in the development of LuaTEX a font loader library was created that can

turn an OpenType (but also a Type1) font into a Lua table. This library is derived from

FontForge which makes it possible to look into a font using that editor and at the same

time get a similar view on the font in Lua, which is quite handy. However, at some

point in ConTEXt we wanted to play with outlines in MetaPost and for that purpose an

OpenType reader was written in Lua that could extract the data. Because Type1 fonts

already were done in Lua it was a logical step to also do OpenType in Lua so now we use

an alternative loader that doesn’t depend in the FontForge library. This not only gives

more flexibility but also makes it possible to avoid some conversions needed to provide

the ConTEXt font handler with the needed information in an efficient way.

9.3.2 Loading OpenType fonts

As with most binary media formats today an OpenType font file is a linked list of records.

The top level structure is called table. There are two flavours of OpenType where the

main difference is in the way the shapes are defined: they can be TrueType outlines

using quadratric bezier curves or cff files using cubic bezier curves. The last variant is

the same as PostScript Type1 fonts. Simplified, a quadratic curve defines the shape in

points with a control point in between, while a quadratic one also has points but each

with two control points (as in MetaPost).

193

Hooks

An OpenType font can be large: there can be upto 65536 glyphs and lots of extra prop-

erties and features. In order to save space the data is rather packed using different

numeric data types. Of course one can wonder if size really matters now that most

bandwidth is taken by audio, video and pictures but we have to live with it.

The definition of OpenType can be found on the Microsoft website: https://www.microsoft

.com/typography/otspec. Most tables then could make sense for us are mentioned in the

following list:

required cmap character to glyph mapping

head font header

hhea horizontal header

hmtx horizontal metrics

maxp maximum profile

name naming table

os/2 os/2 and windows specific metrics

post postScript information

truetype glyf glyph data

loca index to location

postscript cff compact font format

vorg vertical origin

typographic base baseline data

gdef glyph definition data

gpos glyph positioning data

gsub glyph substitution data

jstf justification data

math math layout data

extras kern kerning

ltsh linear threshold data

vhea vertical metrics header

vmtx vertical metrics

colr color table

cpal color palette table

When we read these tables it depends on what we want to do with the result how much

we will really read. For instance when we only want to identify a font and get some

basic information we don’t need to read all tables and certainly don’t need to read them

completely. If we want to have the outlines we need to read the glyf or cff table. If we

also want to boundingbox of PostScript shapes we even need to process the shapes so

that we know the dimensions of the result. There is no need to summarize the format

here in detail because you can find it on the Microsoft site. Here I only cover some

aspects that influence the way TEX can use the fonts.

One of the main differences between the readers is that the FontForge reader has a lot

of (recovery) heuristics for bad fonts. Nowadays most fonts are quite okay, and in Con-

TEXt we prefer to just reject bad ones. In the process of loading the built-in loader gives

194

Hooks

each glyph a name (it makes them up for variants needed for features). It also tries to

figure out some font properties, like the weight. If does a pretty good job on that but it

is also hard to repair at the Lua end when it makes a bad guess. The Lua variants stays

closer to the specification, but delegates more to the final user, which is good because

we need and want that level of control as controls is what TEX is about. It also made it

possible to support for instance colored fonts without too much effort.

So what data needs to be collected? If we look at what we get eventually the list of

glyphs is the bulk. For each glyph we collect some metric information. For instance we

fetch the (advance) width of the glyph but also the boundingbox, which gives us the the

height and depth.

In the font file the list of glyphs starts at zero and runs up tot the total number of glyphs.

The index in this table is used in for instance the tables that define the font features,

for instance kerning between glyphs, or multiple glyphs that are turned into ligatures.

Each glyph gets a name. That can be a meaningful one but also a rather dumb one, for

instance the index number.

Eventually (at least in ConTEXt) we don’t order by glyph index but by Unicode. The font

file contains information about the mapping from index to Unicode. In principle other

encodings are possible but we stick to Unicode. But, because many glyphs can refer to

one Unicode slot, for instance a regular shape as well as a smallcaps or oldstyle variant.

These extra glyphs we let end up in the private Unicode areas. This also means that

with each glyph in the final table there is also a field that has the Unicode. Because we

order by Unicode we also need to store the index. An example from a Latin Modern font

is:

[97] = {

boundingbox = { 34, -10, 474, 446 },

index = 28,

name = "a",

unicode = 97,

width = 490,

}

Another example is the following. Here we end up in private space:

[983059] = {

boundingbox = { 30, -10, 734, 446 },

index = 19,

name = "oe.dup",

unicode = 339,

width = 762,

}

Yet another entry is:

195

Hooks

[306] = {

boundingbox = { 28, -22, 790, 683 },

index = 357,

name = "I_J",

unicode = { 73, 74 },

width = 839,

},

Here you see two Unicode numbers. That kind of information is deduced from the name

of the glyph, using knowledge on how such names are supposed to be constructed, or,

when that is not possible, from ligature information in the fonts.

It makes no sense to discuss the whole font table in detail, if only because most users

will never (need to) see it. But if your curious you can have a look at the fonts in the

cache tree, in the ConTEXt distribution from the ConTEXt garden this is

.../tex/texmf-cache/luatex-cache/context/<somehash>/fonts/otl

There can be three kind of files there, with suffixes tma, tmc and tmb. The first one is

the table as converted from the binary font file. The second and third variants are just

bytecode compilations of this file (for LuaTEX and/or LuajitTEX). The bytecode variants

are smaller but more important, they load a bit faster. On my disk the largest tma file

is just below 10 MByte (an extensive cjk font) but normally they are in the few hundred

KByte range (some are real small), with the bytecode files of course being relatively

small to their original.

However, there is a bit of cheating here. If we run the command:

mtxrun --script font --convert lmroman10-regular.otf

A Lua file is generated: lmroman10-regular.lua. This file is much larger than the tma

file in the cache:

643.924 lmroman10-regular.lua0.029

209.950 lmroman10-regular.tma0.010

121.541 lmroman10-regular.tmb

134.564 lmroman10-regular.tmc0.003

The reason for this is the following. Most information is stored in tables. Especially

tables that describe font features can be the same all over the place. This is why we pack

the table in a more compact format before saving it in the cache, and unpack it after

loading. The effects on loading are neglectable but and it has the benefit that it saves a

lot of memory. By looking at such numbers one should be careful with conclusions, but

(assuming proper garbage collection) we see a memory footprint of the lua file of 2836

Kbyte, while the unpacked variant takes 704 Kbyte. You can imagine what happens with

large cjk fonts. Loading the (larger unpacked) lua file currently costs me 0.029 seconds,

while loading and unpacking the tma file takes 0.010 seconds and the bytecode variant

tmc 0.003 seconds.

196

Hooks

9.3.3 Loading Type1 fonts

When we started with ConTEXt MkIV (which is shortly after we started with LuaTEX) the

only tfm files that were loaded, were those to make virtual Unicode math fonts, awaiting

real OpenType math fonts. Math fonts are kind of special with respect to metrics and

such.

For Type1 text fonts we didn’t use the tfm files but went for parsing afm files. That

way we could use all the glyphs provided by fonts and not be limited to 256 slots. So,

effectively we made them Unicode and similar to OpenType. Of course the only features

were ligatures, kerns and some special ones like TEX ligatures and replacements. With

the old loader code, we always made them base mode fonts, which means that processing

was delegated to TEX. In the new loader we implement ligatures and kerns as node mode

features, which means that we can use those fonts in base mode as well as node mode.

The last options therefore permits to add or adapt features to Type1 fonts as well.

In the next sections we will focus on OpenType but as the Type1 fonts are organized in

a similar way, some of it also applies to this older type. The most important to keep in

mind is that we only have liga, kern and a few ConTEXt specific features.

9.4 The tables

9.4.1 Structure

Getting a font read for TEX happens in stages. The original OpenType file is read only

once. At that moment the shapes are described in the descriptions subtable while by

the time that we pass the information to TEX they are in characters. The reason is that

we go from dimensions in font units to dimensions in scaled points. We start with the

following table:

t={

["cache_uuid"]="<string>",

["cache_version"]="<float>",

["compacted"]="<boolean>",

["creator"]="<string>",

["descriptions"]={

{

["boundingbox"]={ "<units>", "<units>", "<units>", "<units>" },

["depth"]="<units>",

["height"]="<units>",

["index"]="<index>",

["italic"]="<units>",

["math"]={

["accent"]="<units>",

["hparts"]={

197

Hooks

{

["advance"]="<scaled>",

["end"]="<scaled>",

["extender"]="<scaled>",

["glyph"]="<unicode>",

["start"]="<scaled>",

},

},

["hvariants"]={ "<array>" },

["kerns"]={

["bottomleft"]={

{

["height"]="<scaled>",

["kern"]="<scaled>",

},

},

["bottomright"]={

{

["height"]="<scaled>",

["kern"]="<scaled>",

},

},

["topleft"]={

{

["height"]="<scaled>",

["kern"]="<scaled>",

},

},

["topright"]={

{

["height"]="<scaled>",

["kern"]="<scaled>",

},

},

},

["vparts"]={

{

["advance"]="<scaled>",

["end"]="<scaled>",

["extender"]="<scaled>",

["glyph"]="<unicode>",

["start"]="<scaled>",

},

},

198

Hooks

["vvariants"]={ "<array>" },

},

["unicode"]="<unispec>",

["width"]="<units>",

},

},

["format"]="<string>",

["goodies"]="<hash>",

["metadata"]={

["ascender"]="<units>",

["averagewidth"]="<units>",

["capheight"]="<units>",

["descender"]="<units>",

["family"]="<string>",

["familyname"]="<string>",

["fontname"]="<string>",

["fullname"]="<string>",

["italicangle"]="<float>",

["monospaced"]="<boolean>",

["panoseweight"]="<string>",

["panosewidth"]="<string>",

["pfmweight"]="<units>",

["pfmwidth"]="<units>",

["subfamily"]="<string>",

["subfamilyname"]="<string>",

["subfontindex"]="<index>",

["units"]="<cardinal>",

["version"]="<string>",

["weight"]="<string>",

["width"]="<string>",

["xheight"]="<units>",

},

["private"]="<unicode>",

["properties"]={

["hascolor"]="<boolean>",

["hasitalics"]="<boolean>",

["hasspacekerns"]="<boolean>",

},

["resources"]={

["duplicates"]="<hash>",

["features"]={

["gpos"]="<hash>",

["gsub"]="<hash>",

},

199

Hooks

["filename"]="<string>",

["markclasses"]="<hash>",

["marks"]="<hash>",

["marksets"]="<hash>",

["mathconstants"]="<hash>",

["private"]="<cardinal>",

["sequences"]="<array>",

["version"]="<string>",

},

["size"]="<cardinal>",

["tableversion"]="<float>",

["time"]="<cardinal>",

}

The table passed TEX is constructed from this one and looks like:

t={

["characters"]={

{

["accent"]="<scaled>",

["commands"]={

{ "<keyword>", "<value>" },

},

["depth"]="<scaled>",

["expansion_factor"]="<scaled>",

["height"]="<scaled>",

["hvariants"]={ "<array>" },

["index"]="<index>",

["italic"]="<scaled>",

["kerns"]="<hash>",

["left_protruding"]="<scaled>",

["ligatures"]="<hash>",

["next"]="<array>",

["right_protruding"]="<scaled>",

["tounicode"]="<string>",

["unicode"]="<unispec>",

["vvariants"]={ "<array>" },

["width"]="<scaled>",

},

},

["descriptions"]={

{

["boundingbox"]={ "<units>", "<units>", "<units>", "<units>" },

["depth"]="<units>",

["height"]="<units>",

200

Hooks

["index"]="<index>",

["italic"]="<units>",

["math"]={

["accent"]="<units>",

["hparts"]={

{

["advance"]="<scaled>",

["end"]="<scaled>",

["extender"]="<scaled>",

["glyph"]="<unicode>",

["start"]="<scaled>",

},

},

["hvariants"]={ "<array>" },

["kerns"]={

["bottomleft"]={

{

["height"]="<scaled>",

["kern"]="<scaled>",

},

},

["bottomright"]={

{

["height"]="<scaled>",

["kern"]="<scaled>",

},

},

["topleft"]={

{

["height"]="<scaled>",

["kern"]="<scaled>",

},

},

["topright"]={

{

["height"]="<scaled>",

["kern"]="<scaled>",

},

},

},

["vparts"]={

{

["advance"]="<scaled>",

["end"]="<scaled>",

201

Hooks

["extender"]="<scaled>",

["glyph"]="<unicode>",

["start"]="<scaled>",

},

},

["vvariants"]={ "<array>" },

},

["unicode"]="<unispec>",

["width"]="<units>",

},

},

["parameters"]={

["ascender"]="<scaled>",

["descender"]="<scaled>",

["designsize"]="<scaled>",

["expansion"]={

["auto"]="<boolean>",

["shrink"]="<scale>",

["step"]="<scale>",

["stretch"]="<scale>",

},

["extendfactor"]="<float>",

["factor"]="<float>",

["hfactor"]="<float>",

["mathsize"]="<cardinal>",

["protrusion"]={

["auto"]="<boolean>",

},

["quad"]="<scaled>",

["scaledpoints"]="<scaled>",

["scriptpercentage"]="<float>",

["scriptscriptpercentage"]="<float>",

["size"]="<scaled>",

["slantfactor"]="<float>",

["slantperpoint"]="<scaled>",

["spacing"]={

["extra"]="<scaled>",

["shrink"]="<scaled>",

["stretch"]="<scaled>",

["width"]="<scaled>",

},

["units"]="<scaled>",

["vfactor"]="<float>",

["xheight"]="<scaled>",

202

Hooks

},

["properties"]={

["autoitalicamount"]="<float>",

["cidinfo"]="<hash>",

["embedding"]="<cardinal>",

["encodingbytes"]="<cardinal>",

["filename"]="<string>",

["finalized"]="<boolean>",

["fontname"]="<string>",

["format"]="<string>",

["fullname"]="<string>",

["hasitalics"]="<boolean>",

["hasmath"]="<boolean>",

["mathitalics"]="<boolean>",

["mode"]="<string>",

["name"]="<string>",

["noglyphnames"]="<boolean>",

["nostackmath"]="<boolean>",

["psname"]="<string>",

["textitalics"]="<boolean>",

["virtualized"]="<boolean>",

},

}

There might be a few more (often obscure) fields for special purposes. The characters

subtable conforms to what TEX expects, while the descriptions stays closer to OpenType.

The kerns and ligatures subtables are there for base mode and are not present in node

mode. The commands and fonts subtables relate to virtual fonts.

• Start with the (already) loaded OpenType table.

• Copy relevant information from descriptions to characters etc.

• Construct properties and parameters tables.

• Apply additional manipulators, for instance extend the characters table, with expan-

sion and protrusion.

• Scale the characters, properties and parameters.

• Apply additional manipulators.

• Pass the table to TEX, but keep it around for later access.

One of the things you need to be aware of is that all references to glyphs are Unicode

slots, either natural ones (representing a character) or a private one (representing an

alternative representation). In OpenType features are defined in terms of glyph indices

but we prefer Unicode because that is easier to deal with when we run over the node

list. Before font processing the character field in a glyph node is a Unicode slot and

afterwards it’s still a Unicode but when it’s a private one it can always be resolved to a

non private slot of sequence of slots. Of course that could also be done with indices but

it’s just more natural this way.

203

Hooks

Another thing to note is that in the descriptions we’re still working with font units rang-

ing from −1000 to +1000, −2048 to +2048 or similar ranges. At the TEX end we need

scaled points which are much larger numbers.

The question is: how often do users need to access the raw data in a font? After a decade

of MkIV and LuaTEX hardly any user has requested such access, probably because when

needed easier interfaces were provided. Also, in the ConTEXt distrubution there are

some examples of manipulations that can be copied and adapted to personal use. There’s

also a danger is messing with the fonts (similar messing with the node lists): you never

know how it interferes with other (maybe future) features.

If you still want to do it, best is probably to start with saving the to-be-passed-to-TEX

table in a file and have a look at it. The most prominent subtable is the characters

table and messing a bit with dimensions is rather harmless. You could add characters,

for instance virtual ones, which again is harmless unless you use invalid commands.

You probably want to stay away from the resources subtable, if only because some of its

subtables are shared and therefore adapting them can have side effects. The top level

shared and unscaled subtable are off limits as is the specification.

You can save a font by consulting one of the hashes but for a specific font you need to

know its id. You can do this by using low level accessors but better is to use the helpers

made for this, because they prevent saving redundant data.

\startluacode

fonts.tables.save {

filename = "temp-font-scaled.lua",

fontname = "dejavusansmono*default",

method = "original",

}

\stopluacode

At the TEX end you can use:

\savefont

[name=dejavusansmono*default,

file=temp-o.lua,

method=original]

\savefont

[name=dejavusansmono*default,

file=temp-s.lua,

method=scaled]

When no name is given, the current font is used and when no file is given a filename is

made up. The default method is scaled. The saved name is reported.

204

Hooks

9.4.2 Plug-ins

There are several places where you can hook in code: before scaling (initalizers), after

scaling (manipulators) and while processing (processors). Only the first two are meant

for tweaks.

local do_something = {

name = "something",

description = "doing something",

initializers = {

-- position = 1,

base = function(tfmdata,value,features) ... end,

node = function(tfmdata,value,features) ... end,

},

manipulators = {

-- position = 1,

base = function(tfmdata,feature,value) ... end,

node = function(tfmdata,feature,value) ... end,

},

processors = {

-- position = 1,

base = function(tfmdata,font,attr) ... end,

node = function(tfmdata,font,attr) ... end,

}

}

fonts.constructors.features.register.otf(so_something)

fonts.constructors.features.register.afm(so_something)

A initializer is applied just before the font gets scaled. This means that the charac-

term properties and parameters are unscaled! Initializers can for instance be used to

add extra features to fonts. You can provide an position key with a number to force a

place in the list of initializers but of course you can never be sure of interference.

A manipulator is applied when the font is scaled but before it gets passed to TEX. It’s a

good place to tweak dimensions. Here you can also probide a position.

The processors are applied when the node list gets processed, hence the font and op-

tional attr arguments. The action is only applied to the specified font (id) and when

an attribute gets passed, this is tested for a value. When an attribute is used, an unset

attribute on the node will skip the action.

If adapting characters and their properties is your main objetive, then there is a better

plugin mechanism using sequencers. We illustrate this with a fake example:

\startluacode

205

Hooks

function document.b_copying(tfmdata)

logs.report("fonts","before copying: %s",tfmdata.properties.filename)

end

function document.a_copying(tfmdata)

logs.report("fonts","after copying: %s",tfmdata.properties.filename)

end

function document.b_math(tfmdata)

logs.report("fonts","before math: %s",tfmdata.properties.filename)

end

function document.a_math(tfmdata)

logs.report("fonts","after math: %s",tfmdata.properties.filename)

end

utilities.sequencers.appendaction(

"beforecopyingcharacters",

"before",

"document.a_copying"

)

utilities.sequencers.appendaction(

"aftercopyingcharacters",

"after",

"document.b_copying"

)

utilities.sequencers.appendaction(

"mathparameters",

"before",

"document.b_math"

)

utilities.sequencers.appendaction(

"mathparameters",

"after",

"document.a_math"

)

\stopluacode

When we call the next command:

\definedfont[MathRoman at 3pt]

we get this reported:

fonts > before math:/public/dejavu/texgyredejavu-math.otf

206

Hooks

fonts > after math:/public/dejavu/texgyredejavu-math.otf

fonts > after copying:/public/dejavu/texgyredejavu-math.otf

fonts > before copying:/public/dejavu/texgyredejavu-math.otf

In between before and after we have system which is reserved for ConTEXt actions.

These actions are executed in the scaler function. The function get two tables passed:

the original data as well as the target. If you ever need these hooks, you can probably

best run an inspect on these arguments to see what you’re dealing with.

Fonts get reused when possible and for that a hash is calculated depending on the en-

abled features and size. If for some reason you want to adapt that hash you can use

postprocessors. When the tfmdata table has a subtable postprocessors, then the ac-

tions in that subtable will be applied. When an action returns a string, the string will

be combined with the hash. You can set (o rextend) the postprocessors table using the

previopusly mentioned commands. However, in ConTEXt you can best stay away from

this as it might interfere. This mechanism is mostly provided for generic use.

9.5 Goodies

The font goodies are already discussed as an official mechanism to extend or enhance

fonts with additional features. There are quite some goodies defined and for sure more

will show up. Here is the full repertoire:

t={

["author"]="<string>",

["colorschemes"]={

["default"]={

{ "<string>" },

},

},

["comment"]="<string>",

["compositions"]={

["<string>"]={

["<unicode>"]={

["anchors"]={

["bottom"]={},

["top"]={},

},

},

},

},

["copyright"]="<string>",

["designsizes"]={

["<string>"]={

["<string>"]="<string>",

207

Hooks

["default"]="<string>",

},

},

["featuresets"]={

["<string>"]={

"<string>",

["<keyword>"]="<value>",

},

},

["filenames"]={

["<string>"]={ "<string>" },

},

["files"]={

["list"]={

["<string>"]={

["name"]="<string>",

["style"]="<string>",

["weight"]="<string>",

["width"]="<string>",

},

},

["name"]="<string>",

},

["mathematics"]={

["alternates"]={

["<string>"]={

["comment"]="<string>",

["feature"]="<hash>",

["value"]="<float>",

},

},

["dimensions"]={

["<string>"]={

["<unicode>"]={

["depth"]="<units>",

["height"]="<units>",

["width"]="<units>",

["xoffset"]="<units>",

["yoffset"]="<units>",

},

},

},

["italics"]={

["<string>"]={

208

Hooks

["corrections"]={

["<unicode>"]="<float>",

},

["defaultfactor"]="<float>",

["disableengine"]="<boolean>",

},

},

["kerns"]={

["<unicode>"]={},

},

["mapfiles"]={ "<string>" },

["parameters"]={

["<string>"]="<function>",

},

["variables"]={

["<string>"]="<value>",

},

["virtuals"]={

["<string>"]={

{

["extension"]="<boolean>",

["features"]="<hash>",

["main"]="<boolean>",

["name"]="<string>",

["parameters"]="<boolean>",

["skewchar"]="<unicode>",

["vector"]="<string>",

},

},

},

},

["name"]="<string>",

["postprocessors"]={

["<string>"]="<function>",

},

["remapping"]={

["tounicode"]="<boolean>",

["unicodes"]={

["<string>"]="<index>",

},

},

["solutions"]={

["experimental"]={

["less"]={ "<string>" },

209

Hooks

["more"]={ "<string>" },

},

},

["stylistics"]={

["<string>"]="<string>",

},

["typefaces"]={

["<string>"]={

["boldweight"]="<string>",

["features"]="<string>",

["fontname"]="<string>",

["normalweight"]="<string>",

["shape"]="<string>",

["shortcut"]="<string>",

["size"]="<string>",

["width"]="<string>",

},

},

["version"]="<string>",

}

Of course you will never use all the options at the same time. The best place to look for

examples are the lfg files in the ConTEXt distribution.15

15 At some point we might decide to also support goodies in the generic version.

210

Hooks

211

Appendix

A Appendix

A.1 The tfm file

The (binary) tfm file is not human readable but can be turned into a verbose property

list which is not that hard to understand.

tftopl texnansi-lmr10.tfm

Here is an excerpt from the data file. It starts with some general properties of the font.

The O means that the value is in octal while the R is a real. Keep in mind that TEX has no

datatype ‘real’ so internally it is just integers representing scaled points.

(FAMILY LMROMAN10)

(FACE O 352)

(CODINGSCHEME LY1 ENCODING /TEX'N'ANSI, Y&Y/)

(DESIGNSIZE R 10.0)

(COMMENT DESIGNSIZE IS IN POINTS)

(COMMENT OTHER SIZES ARE MULTIPLES OF DESIGNSIZE)

(CHECKSUM O 4720464277)

A text font has the following font dimensions:

(FONTDIMEN

(SLANT R 0.0)

(SPACE R 0.333333)

(STRETCH R 0.166667)

(SHRINK R 0.111112)

(XHEIGHT R 0.43055)

(QUAD R 1.0)

(EXTRASPACE R 0.111112)

...

)

Kerns and ligatures are packed into a table that is basically a sequence of labelled en-

tries. Here we see the entry for the character f which has three ligatures: ff, fi and

fl. Because ligatures can be chained, octal slot 13 will have ligature entries for ffl and

ffi.

(LIGTABLE

...

(LABEL C f)

(LIG C f O 13)

(LIG C i O 14)

(LIG C l O 10)

212

Appendix

(KRN O 135 R 0.027779)

(KRN O 41 R 0.027779)

(KRN O 51 R 0.027779)

(KRN O 77 R 0.027779)

(KRN O 223 R 0.027779)

(KRN O 224 R 0.027779)

(KRN O 140 R 0.027779)

(KRN O 47 R 0.027779)

(STOP)

...

)

Each character gets its own entry. In this case there is no depth involved so it is not

shown. The comment is just a repetition of the entry in the ligtable.

(CHARACTER C f

(CHARWD R 0.30555)

(CHARHT R 0.688875)

(CHARIC R 0.079222)

(COMMENT

(LIG C f O 13)

(LIG C i O 14)

(LIG C l O 10)

(KRN O 135 R 0.027779)

(KRN O 41 R 0.027779)

(KRN O 51 R 0.027779)

(KRN O 77 R 0.027779)

(KRN O 223 R 0.027779)

(KRN O 224 R 0.027779)

(KRN O 140 R 0.027779)

(KRN O 47 R 0.027779)

)

)

A.2 The vf file

A virtual font specification file can be converted to a more readable format with vftovp,

for instance:

vftovp eurm10.vf

The information in a vf file will be combined with the data in the accompanying tfm file

so the output looks similar:

(VTITLE)

213

Appendix

(FAMILY UNSPECIFIED)

(FACE F MRR)

(CODINGSCHEME TEX MATH ITALIC)

(DESIGNSIZE R 10.0)

(COMMENT DESIGNSIZE IS IN POINTS)

(COMMENT OTHER SIZES ARE MULTIPLES OF DESIGNSIZE)

(CHECKSUM O 24401046203)

(SEVENBITSAFEFLAG TRUE)

Because this font is a math font there is no space defined.

(FONTDIMEN

(SLANT R 0.0)

(SPACE R 0.0)

(STRETCH R 0.0)

(SHRINK R 0.0)

(XHEIGHT R 0.459)

(QUAD R 1.0)

(EXTRASPACE R 0.0)

)

A virtual font will take glyphs from another font and therefore there are entries that refer

to these fonts. In the following definition index 0 is created (the D specifies a decimal

entry).

(MAPFONT D 0

(FONTNAME eurm10)

(FONTCHECKSUM O 4276740471)

(FONTAT R 1.0)

(FONTDSIZE R 10.0)

)

(MAPFONT D 1

(FONTNAME cmmi10)

(FONTCHECKSUM O 1350061076)

(FONTAT R 1.0)

(FONTDSIZE R 10.0)

)

The zero indexed font is the default, so in the following entry this font is taken:

(CHARACTER C W

(CHARWD R 0.986)

(CHARHT R 0.691)

(CHARIC R 0.056)

(COMMENT

(KRN O 177 R 0.056)

214

Appendix

(KRN O 75 R -0.056)

(KRN O 73 R -0.083)

(KRN O 72 R -0.083)

)

(MAP

(SETCHAR C W)

)

)

The next specification is a combination of two other glyphs becoming a new glyph. We

see here that the MAP table is actually a sort of program:

(CHARACTER O 200

(CHARWD R 0.622)

(CHARHT R 0.691)

(MAP

(PUSH)

(MOVEDOWN R -0.18)

(MOVERIGHT R 0.015)

(SELECTFONT D 2)

(SETCHAR O 40)

(POP)

(SELECTFONT D 0)

(SETCHAR C h)

)

)

The character information is also in the tfm companion and that is what TEX uses. The

virtual information kicks in when the backend is creating the page stream and embed-

ding the fonts.

A.3 The map file

In a map file each line maps a font name onto a file that contains the font shapes in

bitmap or outline format. For instance in the file lm-texnansi.map we find the line:

texnansi-lmr10 LMRoman10-Regular "enclmtexnansi ReEncodeFont" <lm-texnansi.enc <lmr10.pfb

The backend will fetch the glyph data from lmf10.pfb and use the given encoding file to

resolve indices to glyph names. A pfb file can contain more than 256 entries so names

are used to access the data. The string between quotes is used for the encoding vector

in the resulting file.

The second entry in the line is the font name that will be used. This name is also used

to control subset behaviour. Multiple references to this name will be collapsed into one

215

Appendix

inclusion when possible, thereby making the file as small as possible. You better make

sure that the names are unique for a specific font.

In addition to this, there can be directives for extending the font (horizontal stretch) and

transforming it into a slanted variant. Both are to be used with care.

In MkIV map files are only used for virtual math fonts and just as in MkII we load such

files selectively. Users don’t have to worry about this.

A.4 The enc file

For historic reasons, an encoding file is a blob of PostScript, probably because it can be

copied into the final output directly. Given that TEX got extended anyway, you can won-

der why this information never ended up in an extended tfm or vf file. It had definitely

made the traditional process much more robust.

/enclmtexnansi[

/.notdef

/Euro

...

/dotaccent

/hungarumlaut

/ogonek

...

/ffi

/ffl

/dotlessi

/dotlessj

/grave

...

/thorn

/ydieresis

] def

There are excactly 256 entries in such a vector and the names should match those in a

pfb file.

A.5 The afm file

Here we show an excerpt from an afm file that comes with Latin Modern Roman. Just

as with a tfm file we start with some general information. However we don’t need to

convert the file as is it already in human readable format.

StartFontMetrics 2.0

Comment Generated by MetaType1 (a MetaPost-based engine)

216

Appendix

Comment Creation Date: 7th October 2009

Notice Copyright 2003--2009 by B. Jackowski and J.M. Nowacki (on behalf of TeX USERS GROUPS).

Comment Supported by CSTUG, DANTE eV, GUST, GUTenberg, NTG, and TUG.

Comment METATYPE1/Type 1 version by B. Jackowski & J. M. Nowacki

Comment from GUST (http://www.gust.org.pl).

Comment This work is released under the GUST Font License.

Comment For the most recent version of this license see

Comment This work has the LPPL maintenance status `maintained'.

Comment The Current Maintainer of this work is Bogus\l{}aw Jackowski and Janusz M. Nowacki.

Comment This work consists of the files listed in the MANIFEST-Latin-Modern.txt file.

FontName LMRoman10-Regular

FullName LMRoman10-Regular

FamilyName LMRoman10

Weight Normal

ItalicAngle 0

IsFixedPitch false

UnderlinePosition -146

UnderlineThickness 40

Version 2.004

EncodingScheme FontSpecific

FontBBox -430 -290 1417 1127

CapHeight 683.33333

XHeight 430.55556

Descender -194.44444

Ascender 694.44444

Comment PFM parameters: LMRoman10 0 0 0xEE

Comment TFM designsize: 10 (in points)

Comment TFM fontdimen 1: 0 (slant)

Comment TFM fontdimen 2: 3.33333 (space)

Comment TFM fontdimen 3: 1.66667 (space stretch)

Comment TFM fontdimen 4: 1.11111 (space shrink)

Comment TFM fontdimen 5: 4.3055 (xheight)

Comment TFM fontdimen 6: 10 (quad)

Comment TFM fontdimen 7: 1.11111 (extra space)

Comment TFM fontdimen 8: 6.833 (non-standard: uc height)

Comment TFM fontdimen 9: 6.9445 (non-standard: ascender)

Comment TFM fontdimen 10: 11.27 (non-standard: accented cap height)

Comment TFM fontdimen 11: 1.94443 (non-standard: descender depth)

Comment TFM fontdimen 12: 11.27 (non-standard: max height)

Comment TFM fontdimen 13: 2.9 (non-standard: max depth)

Comment TFM fontdimen 14: 5 (non-standard: digit width)

Comment TFM fontdimen 15: 0.88889 (non-standard: uc stem)

Comment TFM fontdimen 16: 12 (non-standard: baselineskip)

Comment TFM fontdimen 17: 0.69444 (non-standard: lc stem)

217

Appendix

Comment TFM fontdimen 18: 0.55556 (non-standard: u, i.e., font unit)

Comment TFM fontdimen 19: 0.22223 (non-standard: overshoot)

Comment TFM fontdimen 20: 0.25 (non-standard: thin stem, hair)

Comment TFM fontdimen 21: 0.30556 (non-standard: cap thin stem, i.e., cap_hair)

Comment TFM headerbyte 9: FontSpecific

Comment TFM headerbyte 49: LMRoman10

Comment TFM headerbyte 72: 234

Watch the comments! Because TEX needs a couple of so called fontdimens to be set,

the comments list the appropriate values. When a tfm file is generated from an afm file,

these values have to be used.

Each character (or glyph) gets an entry. When we run out of indices i.e. pass the 255

boundary (we start at 0) the index becomes -1. Only the width is specified. The height

and depth have to be derived from the bounding box for which the specification starts

with key B.

StartCharMetrics 821

...

C 32 ; WX 333.33333 ; N space ; B 0 0 0 0 ;

...

C 102 ; WX 305.55556 ; N f ; B 33 0 357 705 ; L f ff ; L i fi ; L k f_k ; L l fl ;

C 105 ; WX 277.77777 ; N i ; B 33 0 247 657 ;

C 108 ; WX 277.77777 ; N l ; B 33 0 255 694 ;

...

C -1 ; WX 500 ; N Acute ; B 181 493 388 656 ;

C -1 ; WX 500 ; N acute ; B 188 510 374 698 ;

C -1 ; WX 500 ; N acute.ts1 ; B 208 513 392 699 ;

...

EndCharMetrics

Watch how this font defines a space character and keep in mind that these fonts date

from the time that there was only one kind of space. The L entry specifies a ligature.

The names of glyphs are standardized, and even the f_k is conforming to standards. This

standardization makes it possible to go back from glyphs to characters when copying

text from a typeset document.

The kern table is pretty large here and for a reason. First of all the file defines 821

glyphs so the average amount of kerns per glyph is not that large. But take a look at

the A. Because the Aacute has the same shape it kerns in a similar way. This means

that ideally all combined characters end up with the same value as their base glyph.

However, in our case a bit more selective approach is taken. The Adieresis has a

different set of kerns, probably to save space. It is for this reason that OpenType fonts

have a model of kern classes so that similar shapes can be treated as one when setting

kerns. You see a similar issue with ligatures, where often the right part of the shape

kerns the same as the (stand alone) first part of the shape does.

218

Appendix

StartKernData

StartKernPairs 9230

...

KPX seven.prop hyphen.prop -37

KPX seven.prop four.prop -74

KPX seven.prop six.prop -18.5

KPX hyphen.prop one.prop -37

KPX hyphen.prop two.prop -18.5

KPX hyphen.prop seven.prop -55.5

KPX seven.oldstyle four.oldstyle -74

KPX A T -83.333

KPX Aacute T -83.333

KPX Abreve T -83.333

KPX Acircumflex T -83.333

...

KPX Adieresis C -27.778

...

KPX f bracketright 27.778

KPX f exclam 27.778

KPX f parenright 27.778

KPX f question 27.778

KPX f quotedblleft 27.778

KPX f quotedblleft.cm 27.778

KPX f quotedblright 27.778

KPX f quotedblright.cm 27.778

KPX f quoteleft 27.778

KPX f quoteright 27.778

...

KPX ff bracketright 27.778

KPX ff exclam 27.778

KPX ff parenright 27.778

KPX ff question 27.778

KPX ff quotedblleft 27.778

KPX ff quotedblleft.cm 27.778

KPX ff quotedblright 27.778

KPX ff quotedblright.cm 27.778

KPX ff quoteleft 27.778

KPX ff quoteright 27.778

...

EndKernPairs

EndKernData

If you look closely at the names, you will notice that some glyphs have a variant. In

OpenType fonts these variants are grouped in features like oldstyle. The first part of

such a name is still part of the standardization, but the second part is up to the font

219

Appendix

designer.

The file ends with:

EndFontMetrics

A.6 The otf file

In the LuaTEX manual you can find an overview of the raw otf format as exposed in a Lua

table. The first decade of LuaTEX we used the built-in loader but even then in ConTEXt

we didn’t use that format directly but used it to create a more compact and efficient

table instead. The current release of ConTEXt uses its own loader written in Lua, but the

fundamentals have not changed much. The tables are cached and can be read in at high

speed. The structure of the tables is unlikely to change much although more data might

get added. Although you can access the data it seldom makes sense to do so. Where

needed interfaces are provided.

A.7 The lfg file

We use the goodies file control what gets added, replaced, patched or manipulated in a

font. A goodie file permits us to go beyond what font provide by default. The content

of a goodie file differs per font. As we also use this for experiments, not all entries that

you find in such files are meant for users.

A.8 Used fonts

The examples in the document depend on the fonts used. Here is a list of fonts used to

render this version. Because fonts might have changed in the meantime, some examples

might come out other than intended.

filename lmtypewriter10-regular.ttf

instances 2

filesize 128.34 Kb

version version 1.011;ps 0.99.3;core 1.0.38;makeotf.lib1.6.5960

filename cambria.ttf

instances 5

filesize 927.28 Kb

version version 5.02a

filename lucidabrightmathot-demi.otf

instances 3

filesize 166.688 Kb

version version 1.801

220

Appendix

filename lucidabrightmathot.otf

instances 3

filesize 354.176 Kb

version version 1.801

filename lucidabrightot.otf

instances 3

filesize 73.284 Kb

version version 1.801

filename emojionecolor-svginot.ttf

instances 1

filesize 6686.876 Kb

version 1.0 20160505

filename ebgaramond12-regular.otf

instances 2

filesize 495.3 Kb

version version 0.016

filename hanbatang-lvt.ttf

instances 1

filesize 28032.396 Kb

version version 1.936; kts build 20131029

filename husayni.ttf

instances 2

filesize 781.544 Kb

version version 1.000

filename ipaexm.ttf

instances 1

filesize 7835.464 Kb

version version 002.01

filename punknova-regular.otf

instances 4

filesize 453.944 Kb

version version 001.003

filename unifrakturcook.ttf

instances 5

filesize 70.324 Kb

version version 2012-07-21 ; ttfautohint (v0.9)

filename uzdr.pfb

instances 2

221

Appendix

filesize 9.381 Kb

version 001.005

filename logo10.pfb

instances 2

filesize 0.992 Kb

version 001.002

filename lmmonoltcond10-regular.otf

instances 1

filesize 64.16 Kb

version version 2.004;ps 2.004;hotconv 1.0.49;makeotf.lib2.0.14853

filename lmroman10-bold.otf

instances 2

filesize 111.24 Kb

version version 2.004;ps 2.004;hotconv 1.0.49;makeotf.lib2.0.14853

filename lmroman10-italic.otf

instances 3

filesize 118.828 Kb

version version 2.004;ps 2.004;hotconv 1.0.49;makeotf.lib2.0.14853

filename lmroman10-regular.otf

instances 16

filesize 111.536 Kb

version version 2.004;ps 2.004;hotconv 1.0.49;makeotf.lib2.0.14853

filename texgyredejavu-math.otf

instances 7

filesize 525.008 Kb

version version 1.106

filename texgyrepagella-math.otf

instances 3

filesize 601.22 Kb

version version 1.632

filename texgyrepagella-regular.otf

instances 15

filesize 144.472 Kb

version version 2.004;ps 2.004;hotconv 1.0.49;makeotf.lib2.0.14853

filename xits-math.otf

instances 6

filesize 538.696 Kb

version version 1.108

222

Appendix

filename xits-mathbold.otf

instances 6

filesize 252.74 Kb

version version 1.108

filename xits-regular.otf

instances 1

filesize 253.556 Kb

version version 1.108

filename dejavusans.ttf

instances 1

filesize 741.536 Kb

version version 2.34

filename dejavusansmono-bold.ttf

instances 5

filesize 318.392 Kb

version version 2.34

filename dejavusansmono.ttf

instances 6

filesize 335.068 Kb

version version 2.34

filename dejavuserif-bold.ttf

instances 6

filesize 345.364 Kb

version version 2.34

filename dejavuserif-bolditalic.ttf

instances 1

filesize 336.884 Kb

version version 2.34

filename dejavuserif-italic.ttf

instances 5

filesize 343.388 Kb

version version 2.34

filename dejavuserif.ttf

instances 40

filesize 367.26 Kb

version version 2.34

filename dejavuserifcondensed.ttf

instances 1

223

Appendix

filesize 334.04 Kb

version version 2.34

filename seguiemj.ttf

instances 1

filesize 978.292 Kb

version version 1.05

224

Appendix

Fo
n
ts
ou
t
of
C
on
TE
X
t

ex
p
la
in
in
g
lu
at
ex
an
d
m
ki
v

H
an
s
H
ag
en

P
R
A
G
M
A
A
D
E

work in progress

T
h
is
b
oo
k
is
ab
ou
t
fo
n
ts
an
d
h
ow
th
ey
ar
e

d
ea
lt
w
it
h
in
C
on
TE
X
t
M
kI
V
an
d
L
u
aT
E
X
.

A
lt
h
ou
g
h
w
e
u
se
C
on
TE
X
t a
s
st
ar
ti
n
g
p
oi
n
t,

m
u
ch
ap
p
li
es
to
th
e
g
en
er
ic
fo
n
t
h
an
d
le
r

th
at
sh
ip
s
as
p
ar
t
of
th
is
m
ac
ro
p
ac
k-

ag
e.
W
e
d
is
cu
ss
th
e
w
ay
fo
n
ts
ar
e
d
ea
lt

w
it
h
in
th
e
en
g
in
e,
fo
n
t
fo
rm
at
s,
st
an
d
ar
d

fe
at
u
re
s
an
d
ad
d
it
io
n
al
g
oo
d
ie
s.
Tr
ac
in
g

an
d
th
e
ex
te
n
si
b
il
it
y
of
co
d
e
ar
e
al
so
d
is
-

cu
ss
ed
.
T
h
is
b
oo
k
is
th
e
m
or
e
te
ch
n
i-

ca
l c
om
p
an
io
n
of
th
e
re
g
u
la
r
C
on
TE
X
t
fo
n
t

m
an
u
al
.

