fun with
luametatex
and context

Table of contents

10

11

12

13

14

Introduction

TgX and Pi

Modern Type 3 fonts
ThreeSix, Don Knuths first colorfont?
Normalization
Expansion

Macros

Libraries

Is LUAMETATEX still TEX?
Numbers

Parameters

Parsing

Tokens

Keywords

20

32

44

48

50

54

58

64

72

78

90

1 Introduction

After five collections of ‘articles’ about the development of LuaTgX, ConTgXt MkIV, LuaMetaTgX and Con-
TEXt Imtx, there is even more to tell so here is number six. Wrapping up not only serves to inform the
users but for me it is also a way to get things right: if you cannot write it down it’s no good. It forces me to
(re)consider interfaces and also test new code but of course it comes with no guarantees.

When writing this introduction I just finished the first chapter, about some new font stuff, as follow up on
the (again) nice ConTgXt meeting in 2019. It’s always inspiring to meet and talk with my TgX friends and
see what they’re doing. It keeps me going.

Some chapters end up in user group journals first so they will be added once they have been published and
are available. The advantage is that these are then copy-edited. Many texts, also in previous development
updates, got better because Karl Berry checked them thoroughly for TUGboat, for which I'm grateful.

Hopefully, this document serves a purpose.

Hans Hagen
PRAGMA ADE, Hasselt NL
Started in October 2019

Introduction 4

5 Introduction

2 TgX and Pi

This is a short status report* on Pi, not the famous version number of TgX (among other things), but the
small machine, meant for education but nowadays also used for Internet Of Things projects, process con-
trol and toy projects. While the majority of TgX installations run on an Intel processor, the Raspberry Pi
has an arm central processing unit. In fact, its main chip has the same foundation as those found in settop
boxes all around the world. It’s made for entertainment, not for number crunching.

At the ConTgXt meetings, it has become tradition to play with electronic gadgets. Every year we are cu-
rious what Harald Konig might bring this time. The last couple of meetings we also had talks about us-
ing TgX and MetaPost for designing (home-scale, automated) railroad systems, using LuaTgX for running
domotica applications, using MetaPost for rendering high quality graphics from data from appliances,
presenting TgX at computer and electronics bootcamps, and more. This year Frans Goddijn also brought
back memories of low speed modem sounds, from the early days of TgX support. It is these things that
make the meetings fun.

This year the meeting was in Belgium, close to the border of the Netherlands, and on the way there Mojca
Miklavec traveled via my home, where the contextgarden compile farm runs on a server with plenty of
cores, lots of memory and big disks. But the farm also has an old Mac connected as well as a tiny under-
powered Raspberry Pi 2 for arm binaries that we had to fix: the small micro ssd card in it had finally given
up. This is no surprise if you realize that it does a daily compilation of the whole TgX Live setup and also
compiles LuaTgX, LuaMetaTgX and pplib when changes occur. Replacing the card worked out but never-
theless we decided to take the small machine with us to the meeting. We also took an external (2.5 inch)
ssd box with us. The idea was to order a Raspberry Pi 4 on location, the much praised successor of the
older models, the one with 4 GB of memory, real usb 3 ports and proper Ethernet.

At the meeting Harald showed us that he had version 1, 3 and 4 machines with him because he waslooking
into an energy control setup based on Zighee devices. So we had the full range of Pi’s there to play with.

This is a long introduction but the message is that we are dealing with a small but popular device with up
to now four generations, using an architecture supported in TgX distributions. So how does that relate to
ConTgXt? One of the reasons for LuaMetaTgX going lean and mean is that computers are no longer getting
much faster and ‘multiple small’ energy-wise has more appeal than ‘one large’. So then the question is:
how can we make TgX run fast on small instead of gambling on big becoming even bigger (which does not
seem to be happening anyway).

At the meeting Harald gave a talk “Which Raspberry Pi is the best for ConTgXt?” and [will use his data to
give an overview: see Table ??rpispec.

model 1 2 3 4
chipset BCM2835 BCM2835 BCM2835 BCM2835
CPUcore véblrev7 v7lrevs v7lrev4 v7lrev 3

cores 1 4 4 4

free mem 443080 948308 948304 3999784
idlemips 997.08 38.40 38.40 108.00
bogomips 997.08 57.60 76.80 270.00
readSD 23.0MB/s 23.2MB/s 23.2MB/s 45.1 MB/s
read USB 30.0 MB/s 30.0 MB/s 320.0 MB/s

1 This chapter appeared in TugBoat 40:3. Thanks to Karl Berry for corrections.

TgXandPi 6

After some discussion at the presentation we decided to discard the (absurd) bogomips value for the tiny
Pi 1 computing board and not take the values for the others too seriously. But it will be clear that, espe-
cially when we consider the external drive that things have improved. The table doesn’t mention Ethernet
speed but because the 4 now has real support for it (instead of sharing the usb bus) we get close to 1 GB/s
there.

The real performance test is of course processing a TgX document and what better to test than the TgX
book. The processing time in seconds, after initial caching of files and fonts is:

model 1 2 3 4
TgXbook 13.649 7.023 4.553 1.694
context --make 19.949 11.796 6.034

context --make TL 89.454 46.578 29.256 14.146

The test of making the ConTgXt format using LuaTgX gives an indication of how well the io performs:
it loads the file database, some 460 Lua modules and 355 TgX source files. On my laptop with Intel
i7-3840QM with 16GB memory and decent ssd it takes 3.5 seconds (and 1 second less for LuaMetaTgX be-
cause there we don’t compress the format file). Somehow a regular TgXLive installation performs much
worse than the one from the contextgarden.

We didn’t test real ConTgXt documents at the meeting but when I came home the Pi 4 was bound again to
the compile farm. Harald and Mojca had prepared the machine to boot from the internal micro ssd and
use the external disk for the rest. So, when we could compile LuaMetaTgX again, I made an arm installer
for Imtx, and after that could not resist doing a simple test. First of course came generating the format.
It took 6.3 seconds to make one, which is a bit more than Harald measured. I see a hiccup at the end so
I guess that it has to do with the (external) disk or maybe there is some throttling going on because the
machine sits on top of a (warm) server.

More interesting was testing a real document: the upcoming LuaMetaTgX manual. It has 226 pages, uses
21 font files, processes 225 MetaPost graphics, and in order to get it LuaMetaTgX does more than 50% of
the workin Lua, including all font and backend-related operations. On my laptop it needs 9.5 seconds and
on the Pi4 it uses 33 seconds. Of course, if I take a more modern machine than this 8-year-old workhorse,
I probably need half the time, but still the performance of the Raspberry Pi 4 is quite impressive. It uses
hardly any energy and can probably compete rather well with a virtual machine on a heavily loaded ma-
chine. It means that when we ever have to upgrade the server, I can consider replacement by an Ethernet
switch, with power over Ethernet, connected to a bunch of small Raspberries, also because normally one
would connect to some shared storage medium.

Because I was curious how the dedicated small Fitlet that I use for controlling my lights and heating per-
forms I also processed the manual there. After making the format, which takes 6 seconds, processing
the manual took a little less than 30 seconds. In that respect it performs the same as a Raspberry Pi 4.
But, inside that small (way more expensive) computer is an dual core AMD A10 Micro-6700T APU (with
AMD Radeon R6 Graphics), running a recent 64-bit Ubuntu. It does some 2400 bogomips (compare that
to the values of the Pi). I was a bit surprised that it didn’t outperform the Raspberry because the (fast ssd)
disk is connected to the main board and it has more memory and horsepower. It might be that in the end
an arm processor is simply better suited for the kind of byte juggling that TgX does, where special cpu
features and multiple cores don’t contribute much. It definitely demonstrates that we cannot neglect this
platform.

7 TgX and Pi

3 Modern Type 3 fonts

Support for Type3 fonts has been on my agenda for a couple of years now. Here [will take a look at them
from the perspective of LuaMetaTgX.? The reason is that they might be useful for embedding (for instance)
runtime graphics (such as symbols) in an efficient way. In TgX systems Type3 fonts are normally used for
bitmap fonts, the pk output that comes via METAFONT. Where for instance Typel fonts are defined using
a set of font specific rendering operators, a Type3 font can contain arbitrary code, in pdf files these are
pdf (graphic and text) operators.

A program like LuaTgX supports embedding of several font formats natively. A quick summary of relevant
formats is the following:?

« Typel: these are outline fonts using c £ f descriptions, a compact format for storing outlines. Normally
up to 256 characters are accessible but a font can have many more (as Latin Modern and TgX Gyre
demonstrate).

« OpenType: these also use the cff format. As with Typel the outlines are mostly cubic Bezier curves.
Because there is no bounding box data stored in the format the engine has to pseudo-render the glyphs
to get that information. When embedding a subset the backend code has to flatten the subroutine calls,
which is another reason the cff blob has to be disassembled.

- TrueType: these use the ttf format which uses quadratic B-splines. The font can have a separate
kerning table and stores information about the bounding box (which is then used by TgX to get the
right heights and depths of glyphs). Of course those details never make it into the pdf file as such.

- Type3: as mentioned this format is (traditionally) used to store bitmap fonts but as we will see it can
do more. It is actually the easiest format to deal with.

In LuaTgX any font can be a “wide” font, therefore in ConTgXt a Typel fontis not treated differently than an
OpenType font. The LuaTgX backend can even disguise a Typel font as an OpenType font. In the end, as
not that much information ends up in the pdffile, the differences are not that large for the first three types.
The content of a Type3 font is less predictable but even then it can have for instance a ToUnicode vector
so it has noreal disadvantages in, say, accessibility. In ConTgXt Imtx, which uses LuaMetaTgX without any
backend, all is dealt with in Lua: loading, tweaking, applying and embedding.

The difference between OpenType and TrueType is mostly in the kind of curves and specific data ta-
bles. Both formats are nowadays covered by the OpenType specification. If you Google for the differ-
ence between these formats you can easily end up with rather bad (or even nonsense) descriptions.
The best references are https://en.wikipedia.org/wiki/Bézier_curve and the ever-improving
https://docs.microsoft.com/en-us/typography website.

Support for so-called variable fonts is mostly demanding of the front-end because in the backend it is just
an instance of an OpenType or TrueType font being embedded. In this case the instance is generated by
the ConTgXt font machinery which interprets the cff and ttf binary formats in doing so. This feature is
not widely used but has been present from the moment these fonts showed up.

Type3 fonts don’t have a particularly good reputation, which is mainly due to the fact that viewers pay
less attention in displaying them, at least that was the case in the past. If they describe outlines, then

2 This chapter appeared in TugBoat 40:3. Thanks to Karl Berry for corrections.
3 Technically one can embed anything in the pdf file.

Modern Type 3 fonts 8

all is okay, apart from the fact that there is no anti-aliasing or hinting but on modern computers that is
hardly an issue. For bitmaps the quality depends on the resolution and traditionally TgX bitmap fonts are
generated for a specific device, but if you use a decent resolution (say 1200 dpi) then all should be okay.
The main drawback is that viewers will render such a font and cache the (then available) bitmap which in
some cases can have a speed penalty.

Using Type3 fonts in a pdf backend is not something new. Already in the pdf TgX era we were playing with
so-called pdf glyph containers. In practice that worked okay but not so much for MetaPost output from
METAFONT fonts. As a side note: it might actually work better now that in MetaFun we have some exten-
sions for rendering the kind of paths used in fonts. But glyph containers were dropped long ago already
and Type3 was limited to traditional TgX bitmap inclusion. However, in LuaMetaTgX it is easier to mess
around with fonts because we no longer need to worry about side effects of patching font related inclusion
(embedding) for other macro packages. All is now under Lua control: there is no backend included and
therefore no awareness of something built-in as Type3.

So, as aprelude to the 2019 ConTgXt meeting, I picked up this thread and turned some earlier experiments
into production code. Originally I meant to provide support for MetaPost graphics but that is still locked
in experiments. I do have an idea for its interface, now that we have more control over user interfaces in
MetaFun.

In addition to ‘just graphics’ there is another candidate for Type3 fonts — extensions to OpenType fonts:

1. Color fonts where stacked glyphs are used (a nice method).
2. Fonts where svg images are used.
3. Fonts that come with bitmap representations in png format.

It will be no surprise that we’re talking of emoji fonts here although the second category is now also used
for regular text fonts. When these fonts showed up support for them was not that hard to implement and
(as often) we could make TgX be among the first to support them in print (often such fonts are meant for
the web).

For category one, the stacked shapes, the approach was to define a virtual font where glyphs are flushed
while backtracking over the width in order to get the overlay. Of course color directives have to be injected
too. Thewholelotis wrappedin a container that tells a pdf handler what character actually is represented.
Due to the way virtual fonts work, every reference to a character results in the same sequence of glyph
references, (negative) kern operations and color directives plus the wrapper in the page stream. This is
not really an issue for emoji because these are seldom used and even then in small quantities. But it can
explode a pdf page stream for a color text font. All happens at runtime and because we use virtual fonts,
the commands are assembled beforehand for each glyph.

For the second category, svg images, we used a different approach. Each symbol was converted to pdf
using Inkscape and cached for later use. Instead of injecting a glyph reference, a reference to a so-called
XFormis injected, again with a wrapper to indicate what character we deal with. Here the overhead is not
that large but still present as we need the so-called ‘actual text’ wrapper.

The third category is done in a similar way but this time we use GraphicsMagick to convert the images
beforehand. The drawbacks are the same.

In ConTEXt Imtx a different approach is followed. The pdf stream that stacks the glyphs of category one
makes a perfect stream for a Type3 character. Apart from some juggling to relate a Type3 font to an
OpenType font, the page stream just contains references to glyphs (with the proper related Unicode slot).
The overhead is minimal.

9 Modern Type 3 fonts

For the second category ConTgXt Imtx uses its built-in svg converter. The xml code of the shape is con-
verted to (surprise): MetaPost. We could go directly to pdf but the MetaPost route is cheap and we can
then get support for color spaces, transformations, efficient paths and high quality all for free. It also
opens up the possibility for future manipulations. The Type3 font eventually has a sequence of drawing
operations, mixed with transformations and color switches, but only once. Most of the embedded code is
shared with the other categories (a plug-in model is used).

The third category follows a similar route but this time we use the built-in png inclusion code. Just like
the other categories, the page stream only contains references to glyphs.

It was interesting to find that most of the time related to the inclusion went into figuring out why viewers
don’tlike these fonts. For instance, in Acrobat there needs to be a glyph at index zero and all viewers seem
to be able to handle at most 255 additional characters in a font. But once that, and a few more tricks, had
become clear, it worked out quite well. It also helps to set the font bounding box to all zero values so
that no rendering optimizations kick in. Also, some dimensions can are best used consistently. With svg
there were some issues with reference points and bounding boxes but these could be dealt with. A later
implementation followed a slightly different route anyway.

The implementation is reasonably efficient because most work is delayed till a glyph (shape) is actually
injected (and most shapes in these fonts aren’t used at all). The viewers that I have installed, Acrobat
Reader, Acrobat X, and the mupdf-based Sumatrapdf viewer can all handle the current implementation.

An example of a category one font is Microsoft’s seguiemij. I have no clue about the result in the future
because some of these emoji fonts change every now and then, depending also on social developments.
This is a category one font which not only has emoji symbols but also normal glyphs:

\definefontfeature[colored] [default] [colr=yes]
\definefont[TestA][file:seguiemj.ttf*colored]
\definesymbol[bugl][\getglyphdirect{file:seguiemj.ttfxcolored}? {\char"1F41C%]
\definesymbol[bug2][\getglyphdirect{file:seguiemj.ttfxcolored}? {\char"1F41B%]

The example below demonstrates this by showing the graphic glyph surrounded by the x from the emoji
font, and from a regular text font.

$\TestA x\char"1F41C x\char"1F41B x3}%

\quad

ix\symbhol[bugl]x\symbol[bug2]x3%

\quad

1\showglyphs x\symbol[bugl]x\symbol[bug2]x%%

xJaxox xPaxhx xFpxdhx

In this mix we don’t use a Type3 font for the characters that don’t need stacked (colorful) glyphs, which is
more efficient. So the x characters are references to a regular (embedded) OpenType font.

The next example comes from a manual and demonstrates that we can (still) manipulate colors as we
wish.

\definecoloxr[emoji-red] [r=.4]
\definecolor[emoji-blue] [b=.4]
\definecolor[emoji-green] [g=.4]

Modern Type 3 fonts 10

\definecolor[emoji-yellow] [r=.4,g=.5]
\definecolor[emoji-gray] [s=1,t=.5,a=1]

\definefontcolorpalette
[emoji-red]
[emoji-red,emoji-gray]

\definefontcolorpalette
[emoji-green]
[emoji-green,emoji-gray]

\definefontcolorpalette
[emoji-blue]
[emoji-blue,emoji-gray]

\definefontcolorpalette
[emoji-yellow]
[emoji-yellow,emoji-gray]

\definefontfeature[seguiemj-x][default] [ccmp=yes,dist=yes,colr=emoji-red]
\definefontfeature[seguiemj-g][default] [ccmp=yes,dist=yes,colr=emoji-green]
\definefontfeature[seguiemj-b][default] [ccmp=yes,dist=yes,colr=emoji-blue]
\definefontfeature[seguiemj-y][default] [ccmp=yes,dist=yes,colr=emoji-yellow]

\definefont[MyColoredEmojiR] [seguiemj*seguiemj-xr]
\definefont[MyColoredEmojiG] [seguiemj*seguiemj-¢g]
\definefont[MyColoredEmojiB] [seguiemj*seguiemj-b]
\definefont[MyColoredEmojiY] [seguiemj*seguiemj-y]

©A0AeAdM

Let’s look in more detail at the woman emoji. On the left we see the default colors, and on the right we see
our own:

S8

The multi-color variant in ConTgXt MKIV ends up as follows in the page stream:

/Span << /ActualText <feffD83DDC69> >> BDC
q

0.000 g

BT

/F8 11.955168 Tf

10010 2.51596 Tm [<045B>]TJ

0.557 0.337 0.180 rg

10010 2.51596 Tm [<045C>]TJ

11 Modern Type 3 fonts

1.000 0.784 0.239 Ig
10010 2.51596 Tm [<045D>]T3J
0.000 g

10010 2.51596 Tm [<O45E>]TJ
0.969 0.537 0.290 rg

10010 2.51596 Tm [<O45F>]TJ
0.941 0.227 0.090 rg

10010 2.51596 Tm [<0460>]TJ
ET

Q

EMC

and the reddish one becomes:

/Span << /ActualText <feffD83DDC69> >> BDC

q

0.400 0 0 rg 0.400 0 O RG

BT

/F8 11.955168 Tf

10010 2.51596 Tm [<B45B>]TJ

1g1G /Txl gs

10010 2.51596 Tm [<045C>1373<045D>1373<045E>1373<045F>1373<0460>]T3J
ET

Q
EMC

Each time this shape is typeset these sequences are injected. In ConTgXt Imtx we get this in the page
stream:

BT

/F2 11.955168 Tf

10010 2.515956 Tm [<C8>] TJ
ET

This time the composed shape ends up in the Type3 character procedure. In the colorful case (reformat-
ted because it actually is a one-liner):

2812 0 do

0.000 g BT /v8 1 Tf [<045B>] TJ ET
0.557 0.337 0.180 rg BT /V8 1 Tf [<045C>] TJ ET
1.000 0.784 0.239 rg BT /V8 1 Tf [<045D>] TJ ET
0.000 g BT /v8 1 Tf [<Q45E>] TJ ET
0.969 0.537 0.290 rg BT /Vv8 1 Tf [<045F>] TJ ET
0.941 0.227 0.090 rg BT /Vv8 1 Tf [<0460>] TJ ET

and in the reddish case (where we have a gray transparent color):

2812 0 do

0.400 0 0 rg 0.400 O O RG
BT /v8 1 Tf [<045B>] TJ ET
1¢g1G /Trl gs

BT /v8 1 Tf [<045C>] TJ ET

Modern Type 3 fonts 12

BT /v8 1 Tf [<045D>] TJ ET
BT /v8 1 Tf [<045E>] TJ ET
BT /v8 1 Tf [<045F>] TJ ET
BT /v8 1 Tf [<0460>] TJ ET

but this time we only get these verbose compositions once in the pdf file. We could optimize the last
variant by a sequence ofindices and negative kerns but it hardly pays off. Thereis noneed forActualText
here because we have an entry in the ToUnicode vector:

<C8> <D83DDC69>

To be clear, the /V8 is a sort of local reference to a font which can have an /F8 counterpart elsewhere.
These Type3 fonts have their own resource references and I found it more clear to use a different prefix
in that case. If we only use a few characters of this kind, of course the overhead of extra fonts has a penalty
but as soon we refer to more characters we gain a lot.

When we have svg fonts, the gain is a bit less. The pdf resulting from the MetaPost run can of course be
large but they are included only once. In MKIV these would be (shared) so-called XForms. In the page
stream we then see a simple reference to such an XForm but again wrapped into an ActualText. In Imtx
we get just a reference to a Type3 character plus of course an extra font.

The emojionecolor-svginot font is somewhat problematic (although maybe in the meantime it has
become obsolete). As usual with new functionality, specifications are not always available or complete
(especially when they are application specs turned into standards). This is also true with for instance
svg fonts. The current documentation on the Microsoft website is reasonable and explains how to deal
with the viewport but when I first implemented support for svg it was more trial and error. The original
implementation in ConTgXt used Inkscape to generate pdf files with a tight bounding box and mix that
with information from the font (in MKIV and the generic loader we still use this method). This results
in a reasonable placement for emoji (that often sit on top of the baseline) but not for characters. More
accurate treatment, using the origin and bounding box, fail for graphics with bad viewports and strange
transform attributes. Now one can of course argue that I read the specs wrong, but inconsistencies are
hard to deal with. Even worse is that successive versions of a font can demand different hacks. (I would
not be surprised if some programs have built-in heuristics for some fonts that apply fixes.) Here is an
example:

<svg transform="translate(® -1788) scale(2.048)" viewBox="0 0 64 64" ...>
<path d="... all within the viewBox ..." ... />
</svg>

It is no problem to scale up the image to normal dimensions, often 1000, or 2048 but I've also seen 512.
The 2.048 suggests a 2048 unit approach, as does the 1788 shift. Now, we could scale up all dimensions
by 1000/64 and then multiply by 2.048 and eventually shift over 1788, but why not scale the 1788 by 2.048
or scale 64 by 2.048? Even if we can read the standard to suit this specification it’s just a bit too messy for
my taste. In fact I tried all reasonable combinations and didn’t (yet) get the right result. In that case it’s
easier to just discard the font. If a user complains that it (kind of) worked in the past, a counter-argument
can be that other (more recent) fonts don’t work otherwise. In the end we ended up with an option: when
the svg feature value is £ixdepth the vertical position will be fixed.

\definefontfeature[whatever] [default] [color=yes,svg=fixdepth]
\definefont[TestB] [file:emojionecolor-svginot.ttfxwhatever]

X

. 2

=

13 Modern Type 3 fonts

The newer emojionecolor font doesn’t need this because it hasa viewBox of 0 54.4 64 64 which fixes
the baseline.

\definefontfeature[whatever] [default] [color=yes, svg=yes]
\definefont[TestB] [file:emojionecolor.otf*whatever]

Another example of a pitfall is running into category one glyphs made from several pieces that all have
the same color. If that color is black, one starts to wonder what is wrong. In the end the ConTgXt code
was doing the right thing after all, and I would not be surprised if that glyph gets colors in an update
of the font. For that reason it makes no sense to include them as examples here. After all, we can hardly
complain about free fonts (and I'm also guilty of imposing bugs on users). By the way, for the font referred
to here (twemojimozilla), another pitfall was that all shapes in my copy had a zero bounding box which
means that although a width is specified, rendering in documents can give weird side effects. This can
be corrected by the dimensions feature that forces the ascender and descender values to be used.

\definefontfeature[colored:x] [default] [colr=yes]
\definefontfeature[colored:y] [default] [colr=yes,dimensions={1,max,max}]
\definefont[TestC][file:twemojimozilla.ttfxcolored:x]
\definefont[TestD] [file:twemojimozilla.ttfxcolored:y]

R R KRR

An example of a png-enhanced font is the applecoloremoji font. The bitmaps are relatively large for
the quality they provide and some look like scans.

\definefontfeature[sbix] [default] [sbix=yes]
\definefont[TestE][file:applecoloremoji.ttcxsbix at 10bp]

#

)
As mentioned above, there are fonts that color characters other than emoji. We give two examples (some-
times fonts are mentioned on the ConTgXt mailing list).

\definefontfeature
[whatever]
[default,color:svg]
[script=1atn,

language=dflt]

\definefont[TestF] [file:Abelone-FREE.otfxwhatever @ 13bp]
\definefont[TestG][file:Gilbert-ColorBoldPreview5+whatever @ 13bp]
\definefont[TestH] [file:ColorTube-Regular*whatever @ 13bp]

Of course one can wonder about the readability of these fonts and unless one used random colors (which
bloats the file immensely) it might become boring, but typically such fonts are only meant for special

Modern Type 3 fonts 14

purposes.

COUNING BACK TO THE USE OF TYPEFACES IN BLECTPONIC PUBLISH-
ING: NANY OF THE NEW TYPOUGPAPHERS PECEIVE THEIP UNOWLEDGE
AND INCOPN ATION ABROQUT THE PULES OF TYPUGPRAPHY FRPON BOUI’S,
FRON CONPUTER NAGAZINES OF THE INSTRUCTION NANVALS VWHICH
THEY GEBT WITH THE PUPCHASE OF APC UPR SUFTVWARE, THERE 18 NOT
€0 NUCH PASIC INSTPRUCTION, AS OF NOV, AS THERPE WAS IN THE OLD
DAYSES, SHOWING THE DIFFERPENCES BETWEEN GOUD AND BAD TYP0~-
GPRAPHIC DESIGN. NANY PEOPLE APE JUST FASCINATED BY THEIP °C'S
IRICKS, AND THING THAT A VWIDEBLY=="PRAISED "RPOGRAN, CALLED UP
ON THE SCPEEN, VWILL NAIE BVERYTHING AVTONATICTFRPON NOW ON.

The previous font is the largest and as a consequence also puts some strain on the viewer, especially when
zooming in. But, because viewers cache Type3 shapes it’s a one-time penalty.

Coming bacs to the use of tyoetaces in electronic publishing: many ot the new tyoographers
receive their anowledge and in‘ormation about the rules of tyoograchy from booss, from comouter
magazines or the instruction manuals which they get with the ourchase ot a PC or software. There
is not so much basic instruction, as of now, as there was in the cld days, showing the dif*erences
between good and bad tyoographic design. Tllany pecple are just tascinated by their PC's tricas,
and thina that a widely—praised orogram, called up on the screen, will mare everything automatic
from now on.

This font is rather lightweight. Contrary to what one might expect, there is no transparency used (but of
course we do support that when needed).

coming back to the use of typefaces in elec
tronic publishing many of the new typogra
phers receive their knowledge and information
about the rules of typography from books from
computer magazines or the instruction manuals
‘which they get ‘with the purchase of a pc or
software. there is not so much basic instruc
tion as of now as there ‘was in the old days
sho'wing the differences bet'ween good and bad
typographic design. many people are just fas
cinated by their pcs tricks and think that a
‘widelypraised program called up on the screen
will make everything automatic from now on.

15 Modern Type 3 fonts

This third example is again rather lightweight. Such fonts normally have a rather limited repertoire al-
though there are some accented characters included. But they are not really meant for novels anyway. If
you look closely you will also notice that some characters are missing and kerning is suboptimal.

I considered testing some more fonts but when trying to download some interesting looking ones I got a
popup asking me for my email address in order to subscribe me to something: a definite no-go.

Ialready mentioned that we have a built-in converter that goes from svg to MetaPost. Although this article
deals with fonts, the following code demonstrates that we can also access such graphics in MetaFun itself.
The nice thing is that because we get pictures, they can be manipulated.

\startMPcode{doublefun}
picture p ; p := 1Imt_svg [filename = "mozilla-svg-001l.svg"] ;
numeric w ; w := bbwidth(p) ;
draw p ;
draw p xscaled -1 shifted (2.5%w,0);
draw p rotatedaround(center p,45) shifted (3.0xw,0) ;
draw image (
for i within p : if filled i :
draw pathpart i withcolor green ;
fi endfor ;
) shifted (4.5xw,0);
draw image (
for i within p : if filled i :
fill pathpart i withcolor red withtransparency (1,.25) ;
fi endfor ;
) shifted (6%w,0);
\stopMPcode

This graphic is a copy from a glyph from an emoji font, so we have plenty of such images to play with. The
above manipulations result in:

A
LA~/ | G~/ ’ .
< - < - ﬁl‘OJ ~ -
ON© O O N " @
" k' u‘o‘\ v|e

Ly LNy

Now that we’re working with MetaPost we may as well see if we can also load a specific glyph, and indeed
this is possible.

\startMPcode{idoublefun}
picture 1lb, rb ;
1b := 1Imt_svg [fontname = "Gilbert-ColorBoldPreview5", unicode 123 1 ;
rb := Imt_svg [fontname = "Gilbert-ColorBoldPreview5", unicode = 125] ;
numeric dx ; dx := 1.25 % bbwidth(1lb) ;
draw 1b ;
draw rb shifted (dx,0) ;
pickup pencircle scaled 2mm ;
for i within 1b :
draw 1Imt_arrow [
path = pathpart 1,

Modern Type 3 fonts 16

pen = "auto",

alternative = "curved",
penscale =8
]
shifted (3dx,0)
withcolor "darkblue"
withtransparency (1,.5)
endfor ;

for i within rb :
draw 1Imt_arrow [

path = pathpart 1,
pen = "auto",
alternative = "curved",
penscale =8
]
shifted (4dx,0)
withcolor "darkred"
withtransparency (1,.5)
endfor ;
\stopMPcode

Here we first load two character shapes from a font. The Unicode slots (which here are the same as the
ascii slots) might look familiar: they indicate the curly brace characters. We get two pictures and use the
withinloop torun over the paths within these shapes. Each shape is made from three curves. As a bonus
a few more characters are shown.

Nt

Itis not hard to imagine that a collection of such graphics could be made into a font (at runtime). One only
needs to find the motivation. Of course one can always use a font editor (or Inkscape) and tweak there,
which probably makes more sense, but sometimes a bit of MetaPost hackery is a nice distraction. Editing
the svg code directly is not that much fun. The overall structure often doesn’t look that bad (apart from
often rather redundant grouping):

<svg xmlns="http://www.w3.0xrg/2000/svg">
<path fill="4d87512" d="..."/>
<g £ill="4bc600d">
<path d="..."/>
</g>
<g f£ill="4d87512">
<path d="..."/>
<path d="..."/>
</g>
<g £ill="4tbc600d">

17 Modern Type 3 fonts

<path d="..."/>
</g>

</svg>

In addition to paths there can be 1ine, circle and similar elements but often fonts just use the path
element. This element has a d attribute that holds a sequence of one character commands that each can
be followed by numbers. Here are the start characters of four such attributes:

M11.585 43.742s.387 1.248.104 3.05c0 0 2.045-.466 1.898-2.27 ...
M53.33 39.37c0-4.484-35.622-4.484-35.622 0 0 10.16.05

M42.645 56.04c1.688 2.02 9.275.043 10.504-2.28 5.01-9.482-.006
M54.2 41.496s-.336 4.246-4.657 9.573c0 0 4.38-1.7 5.808-4.3

Indeed, numbers can be pasted together, also with the operators, which doesn’t help with see-
ing at a glance what happens. Probably the best reference can be found at https://devel-
oper.mozilla.org/en-US/docs/Web/SVG where it is explained that a path can have move, line, curve,
arc and other operators, as well use absolute and relative coordinates. How that works is for another
article.

How would the TgX world look like today if Don Knuth had made METAFONT support colors? Of course one
can argue that it is a bitmap font generator, but in our case using high resolution bitmaps might even work
out better. In the example above the first text fragment uses a font that is very inefficient: it overlays many
circles in different colors with slight displacements. Here a bitmap font would not only give similar effects
but probably also be more efficient in terms of storage as well as rendering. The MetaPost successor does
support color and with mplib in LuaTgX we can keep up quite well . . . as hopefully has been demonstrated
here.

Modern Type 3 fonts 18

19 Modern Type 3 fonts

4 ThreeSix, Don Knuths first colorfont?

In the process of reaching completion and perfection Don Knuth occasionally posts links to upcoming
parts of the TAOCP series on his web pages. Now, I admit that much is way beyond me but I do understand
(andlike) the graphics and I know that Don uses MetaPost. The next example code is just a proof of concept
but might eventually become a decent module (with helpers) for making (runtime) fonts. After all, we need
to adapt to current developments and TgXies always are willing to adapt and experiment. This chapter
was written at the same time as the previous one on Type3 fonts so you might want to read that first.

The font explored here is FONT36, used in “A potpourri of puzzles” and flagged as “a special font designed
for dissection puzzles” (in fascicle 9b for Volume 4). Playing with and visualizing for me often works better
than formulas, which then distracts me from the original purpose, but let’s have a closer look anyway.

0000000 VO00000 V000000 O OO0 000000) 000000 00000000 0000000 0000001 000000
000000 000000 000 00 O L0000 000000 L0 00 00000000 00) 00 0000000
(11 0/ [@00 || 00 | 00006 | 006 | 0 | 00 000000 | 000006 000 /1o | 00 O 0000 | | 0000
eoee | oeoooeee I o6 [[| Lo, oo ([l ee (o o6 ooe [606 [] 06e [o6 [[[000 |
eoee | oeoeee | eoecee (e [11 o 000 | L Lo [eoee | | o0 [e0ee [o [l e [! 0006 |
ooce. L oeoe [000 [lo0 [[(11111, 900000 | | 6000 | 0606 | | O | 0000 | 900006 | [0006 | |
00000000 00000) eoe. . | @O0 ol .90 o000 ‘o o0 ool (11l
0000000000000 008 000000 O 0000 0000000 ..000000 . 00000 . . 000000 000000_0 0000 0O

>4 = >4
e ae8, 923 o8 3300 933822 388
0o | @ | o000 OO 0000 o | 000 OO
[0 [(00, [| o0 | @0 00000 | 000 o 0]
O e | o0 00000 | 000 e o]
[0 0000 . 6 I o0 000 0] O0®
000 OO0 O0®
[[oo0® | © 0 OO 000000000000
)¢ OO
W bh - WL # SR
)¢ OO0 ‘000000
0/ 00 [|16 | 0000 . o | 00000 [06 | | 60 | 00 00 | QO O4 o, . 9 | 0 000000 6 | 00000006 | 0000 | | 0000)
[l 900 [e | @000 000 [000 |6 . 00 © | 0006 | 500 0000 | 0000 00000 | 0 00000 . 6 . 0 0000 (0600 (. 00 ' e ! ee0e]
[1 oee 60 OOCO e .l o0 | @ DOO® eeeee | | [' ocee0e | | 000000 . ¢ | 0000 o0 [00 0000000

The font has a fixed maximum height of 8 quantities. There is no depth in the characters. Some characters
are wider. In this example we use a tight bounding box. In ConTgXt speak this font is just a regular font
but with a special feature enabled.

\definefontfeature
[fontthreesix]
[default]
[metapost=fontthreesix]

\definefont[DEKFontA] [Serifxfontthreesix]

After this the \DEKFontA command will set this font as current font. The definition mentions Serif as
font name. In ConTgXt this name will resolve in the currently defined Serif, so when your document uses
Latin Modern that will be the one. The fontthreesix will make this instance use that feature set, and the
feature definition has the defaults as parent (so we get kerning, ligatures, etc.) but as extra feature also
metapost. This means that the new glyphs that are about to be defined will actually be injected in the
Serif! We will replace characters in that instance. So, the following:

This font is used in \quotation {The Art O0f Computer Programming} by
Don Knuth, not in volume~1, 2 or~3, but in number~4!

comes out as:

EEhis font is used in “BZhe Zrt Bf Bomputer Brogramming” by Eon Enuth, not in volume &, & or &,
but in number &!

But that doesn’t look too good, so we will tweak the font a bit:

ThreeSix, Don Knuths first colorfont? 20

\definefontfeature
[fontthreesix-coloxr]
[default]
[metapost={category=fontthreesix,spread=.1%]

\definefont[DEKFontD] [Serifxfontthreesix]

The spread (multiplied by the font unit, which is 12 basepoints here) will add a bit more spacing around
the blob:

Bhis fontis used in “B@he Ert Bf Bomputer Brogramming” by Hion Enuth, notin volume &, & or &,
but in number &!

Now, keep in mind that we’re talking of a real font here. You can cut and paste these characters. It’s just
the default uppercase Latin alphabet plus digits.

Before we go and look at some of the code needed to render this, a few more examples will be given.

4 &> < 6064 8000 0o ¢ 66666685% 6666688% 6 0008 6664
2999)& ¢ ©66.6.6.4¢ 56.6%6%. ¢ 666666 4¢ 008800 [o¢ 99 9999
Q9904 -d 0&800 > > 222 ERD 922 2 223 *9 06 22 &

ol 4 s 232 04» 0 6.6¢ & 9% .6.6.4 L 6%%oodd e ¢
2 24 094 6666 4¢ 0 668D 66 6%%.64¢ [o¢ > 64 L 606% o db 6 ¢ 2 2 ¢
o< > .4 .66 6.4 9 96 064 L & ¢ > 64 9 96 9
66666664 > ¢ 22 ¢ 56 68% ¢ ¢ 9 9 > 6. 80% &4¢ 008 96900
122222 222 06060 4 L2222 22 ¥ 222 22 2% (e 2222 2 S0l 22 222 ¢ 9099
LI2ETLEO0 8 >990 9 * M:::: 2L $ITLROLC $2200EEE $298828 2280888 $2800890 $282EHCO0 $$X0ON0OCES
LI & 328 33953 23328838 3{5188338 F322IT ST LBETITT T3THELL SIS $234393282
s 2588808 - STEETT SETERECE $8RCLCCE CTRRIRAS SCIRASS S5 3 SEITLLST STISIILY SE3IELES
00899995 O4 $9393 b ASOEE SERSEAEE SIS SESELERS SOBIGES GEROSPRS SEIORISL SOIEEEE SOOI
193 6%%%% ¢ 2D & %% 0%% % ED 666 60%%%00 66 %%% h ¢ ¢ e%% o6 db o o4 <>00<><><m<> D 60%% 6% 66 6%%%% o db 6 ettt 2 4
08835000 @ o 222222 2IW 2L L2 IR L2 L2 2022 P22 2IR2 L 22222 PR 22 2222 ML 222IW L2222 22N 2L 2L 2L IV 222 Te k020021
D 0o b 55564 CL999800 & 5000555080 66556055080 669066604 22383 $2IR828238S 23328832 $32833388 22828822
D 666%%% 68D ¢ 0%%%% 6 .66 020°%% 6 & ¢ %%% ¢ % 04»4 L 06 ¢%0%%% ¢ 0000000000 L 6666%6664 0%6%6.66-8b ¢ 6-6%% % €. 6%6%%% ¢ 6.4
383 :
3 I8 3
48382 33333 L% KR8284

In the above example we not only use color, but also a different shape and random colors (that is: random
per TgX job). The feature definition for this is:

\definefontfeature
[fontthreesix-color]
[default]
[metapost=1{%
category=fontthreesix, shape=diamond, %
color=random, pen=fancy, spread=.1%

£]

Possible shapes are circle, diamond and square and instead of a random color one can give a known
color name. Using transparency makes no sense in this font.

A nice usage for this font are initials:

\setupinitial[font=Serifxfontthreesix-initial sa 5]
{\DEKFontB \placeinitial \input zapf\par?}

The initial feature is defined as:

\definefontfeature
[fontthreesix-initial]
[metapost={category=fontthreesix,color=random,shape=circle}]

We use this in quoting Hermann Zapf, one that for sure is very applicable in a case like this:

21 ThreeSix, Don Knuths first colorfont?

their knowledge and information about the rules of typography from books, from computer mag-

x%%éé oming back to the use of typefaces in electronic publishing: many of the new typographers receive
% azines or the instruction manuals which they get with the purchase of a &# or software. Eihere

is not so much basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Eany people are just fascinated by their &#&'’s tricks,
and think that a widely—praised program, called up on the screen, will make everything automatic
from now on.

Some combinations of sub-features are shown in figure 4.1. We blow up the diamond with fancy pen
example in figure 4.2. Alas, the TgX logo doesn’t look that good in such a font. Using it for acronyms is not
a good idea anyway, but maybe you can figure out figure 4.3.

0000000 0000000 HENEEN | EeEEEE 1666660000 66666684 56 66%
00000000 0000000 || ||| ® 195% & ¢ Q0 @ 95 e %%
Q000000 00VOVO®) 1966 020°0% ¢ €52 ¢ 0 0% 0% ¢ %% %%
Q000000 0000) 1966 626%% ¢ ¢ & 6%0% p &% 0% %
Q000000 @0V 19 ¢ 6%%% ¢ €% ¢ 0% %% . 66%0%%
o) oo | Ne | 000] (92 6 6%%% 6. 40% ¢ ¢%%% 5% ¢ ¢% & ¢ %%
(1l ooe ON || 000] ® 5%% 2D ¢ %% &b < % & 0%
00000000 0000000 122 22 2 OClE 22222 2 2R 4 000

shape=cizrcle shape=diamond

6666

od

28355088

*6
4

shape=circle, pen=fancy

00000000 0000000 90000000 833229358 2382228 So8008e8
000 OO0 0000000 @000 V800 & 285 TSGR 2ISSTLS
0! T o0 I e 1o, o We. | o /00 ETEILT ITTLELL 23S
QO8C0000 Q088) Qe NN 2 SN2 2 ? O b e%e%e
o] T l0/0'0! . Je! I o] (oole! I 11 e/0/® 22 223 oooéggg S $3XS
008C0000 00000 OO 880N S0 * 2085 3320855
00000080 8000000 00000080 ¢ 0 3885338 ¢
00000500 0000080 00000000 222222 IWL L2222 IR 4 2222
shape=circle, random=yes shape=square, random=yes shape=diamond, random=yes

Figure 4.1

190959%%% & ¢
5 6 6%%%% & ¢
) 6.6%%%% & ¢
.6%.6%% 6.6 ¢
196%% & & ¢ %%
9% & & &% %%
) 66.6%%.¢% ¢
3 66%%%% & ¢
) & 6%%%% & ¢
OO0

Figure 4.2

You can quit reading now or expose yourself to how this is coded. We use a combination of Lua and Meta-
Post, but different solutions are possible. The shapes are entered (or course) with zeros and ones.

\startluacode
local font36 = %
["0"] = "00111160 01111110 11600011 11006011 110600011 ...",

ThreeSix, Don Knuths first colorfont? 22

0000000000 OO0 00 V000000 V0000000 00000000
0000000 000 OOV VOO 00000 00 00000000 9000000
(o0 L o0 (Moo [[l OON | 0000 LI | [0000 MO [006, [
0000 | ooo0Noe. [o I OON | 0000 ' I [l 0000 MO/ [1@
o000 | cooome. | o0 | I ON | 0000 ' N | | OOOOONO. | 00000
oo, cooome [[l 1l . O (0000 | I [[OOOOONE | 00000
QOO0 0) OOV @000 00000000 00000000
0000000000 000000000 0000000 (0000000 000000 0

Figure 4.3

["1"] = "00011100 11111100 11101100 00001100 00001160 ...",
= "11111100 11100010 01100011 011600011 01106011 ...",
= "1111111 1110001 0110101 0111100 0110100 60110001 ...",

["K"] = "11101110 11100100 01101000 01110000 01111000 ...",

\stopluacode

We also use Lua to register this font. The actual code looks slightly different because it uses some helpers
from the ConTgXt Lua libraries. We remap the bits pattern onto MetaPost macro calls.

\startluacode

local replace = %
["0"] = "N;",
["1"] = "Y;",
[" "1 = "L,

function MP.registerthreesix(name)
fonts.dropins.registerglyphs 1§

name = name,
units =12,
usecolor = true,
k
for u, v in table.sortedhash(font36) do
local ny =8
local nx = (kv - ny + 1) // ny
local height = ny « 1.1 - 0.1
local width = nx x 1.1 - 0.1
local code = string.gsub(v,".",replace)
fonts.dropins.registerglyph {
category = name,
unicode = utf.byte(u),
width = width,
height = height,
code = string.format("ThreeSix(%s);",code),
§
end

end

MP.registerthreesix("fontthreesix")

23 ThreeSix, Don Knuths first colorfont?

\stopluacode

So, after this the font fontthreesix is known to the system but we still need to provide MetaPost code to
generate it. The glyphs themselves are now just sequences of N, Y and L with some wrapper code around
it. The definitions are put in the MP namespace simply because a first version initialized in MetaPost, and
there could create variants, but in the end I settled on the parameter interface at the TgX end.

The next definition looks a bit complex but normally such a macro is stepwise constructed. Notice how
we can query the sub features. In order to make that possible the regular MetaFun parameter handling
code is used. We just push the sub-features into to mpsfont namespace.

\startMPcalculation{simplefun}

def InitializeThreeSix =
save Y, N, L, S ; save dx, dy, nx, ny ; save currentpen ;
save shape, fillcolor, mypen, random, spread, hoffset ;
string shape, fillcolor, mypen ; boolean random ;
pen currentpen ;

dx := 11/10 ;

dy := - 11/10 ;

nx := - dx ;

ny := 0 ;

shape = getparameterdefault "mpsfont" "shape" "circle" ;
random = hasoption "mpsfont" "random" "true" ;
fillcolor := getparameterdefault "mpsfont" "color" "" ;
mypen := getparameterdefault "mpsfont" "pen" "" ;

spread = getparameterdefault "mpsfont" "spread" 0 ;
hoffset = 12 * spread / 2 ;

currentpen := pencizrcle

if mypen = "fancy"
xscaled 1/20 yscaled 2/20 rotated 45
else :
scaled 1/20
fi ;
if shape == "square"
def S =
unitsquare if random : randomized 1/10 fi
shifted (nx,ny)
enddef ;
elseif shape = "diamond"
def S =
unitdiamond if random : randomized 1/10 fi
shifted (nx,ny)
enddef ;
else :
def S =
unitcircle if random : randomizedcontrols 1/20 fi
shifted (nx,ny)
enddef ;
fi ;
def N =

ThreeSix, Don Knuths first colorfont? 24

nx := nx + dx ;

draw S ;
enddef ;
if fillcolor = "random"
def Y =
nx := nx + dx ;
fillup S withcolor white randomized (2/3,2/3,2/3) ;
enddef ;
elseif fillcolor = ""
def Y =
nx := nx + dx ;
fillup S ;
enddef ;
else
def Y =
nx := nx + dx ;
fillup S withcolor fillcolor ;
enddef ;
fi ;
def L =
nx := - dx ;
ny :=ny + dy ;
enddef ;
enddef ;

vardef ThreeSix (text code) =
InitializeThreeSix ; % todo: once per instance run
draw image (code) shifted (hoffset,-ny) ;

enddef ;

\stopMPcalculation

This code is not that efficient in the sense that there’s quite some MetaPost-Lua-MetaPost traffic going on,
for instance each parameter check involves this, but in practice performance is quite okay, certainly for
such a small font. There will be an initializer option some day soon. The simplefun is a reference to an
mplib instance that does load MetaFun but only the modules that make no sense for this kind of usage.
It also enforces double mode. The calculations wrapper just executes the code and does not place some
(otherwise empty) graphic.

Those who have seen (and/or read) “Concrete Mathematics” will have noticed the use of inline images,
like dice. Dice are also used in “pre-fascicle 5a” (I need a few more lives to grasp that, so I stick to the
images for now!). So, to compensate the somewhat complex code above, I will show how to accomplish
that. This time we do all in MetaPost:

This is not that hard to follow. We define some shapes first. These could have been assigned to the code
parameter directly but this is nicer. Next we register the font itself and after that we set glyphs. We also
set the official Unicode slots. So, copying a dice can either result in a digit or in a Unicode slot for a dice.
In the example below we switch to a color which demonstrates that our dice can be colored at the TgX
end. It’s either that or coloring at the MetaPost end as both demand a different kind of Type3 embedding
trickery.

25 ThreeSix, Don Knuths first colorfont?

We actually predefine three features. The digits one will map regular digit in the input to dice. We accom-
plish that via a font feature:

\startluacode
fonts.handlers.otf.addfeature("dice:digits", %
type = "substitution",
order = { "dice:digits" },
nocheck = true,
data =9

[Ox30] = "invaliddice",
[0x31] = 0x2680,
[0x32] = 0x2681,
[0x33] = 0x2682,
[0x34] = 0x2683,
[Ox35] = 0x2684,
[0x36] = 0x2685,
[0x37] = "invaliddice",
[0x38] = "invaliddice",
[6x39] = "invaliddice",
[
£)

\stopluacode

This kind of trickery is part of the font machinery used in ConTgXt and permits runtime adaption of fonts,
so we just use the same mechanism. The nocheck is needed to avoid this feature not kicking in due to
lack of (at the time of checking) yet undefined dice.

\definefontfeature
[dice:normal]
[default]
[metapost={category=dicet]
\definefontfeature
[dice:reverse]
[default]
[metapost={category=dice,option=reverse}]
\definefontfeature
[dice:digits]
[dice:digits=yes]

\definefont[DiceN] [Serifxdice:normall]
\definefont[DiceD] [Serifxdice:normal,dice:digits]
\definefont[DiceR] [Serifxdice:reverse,dice:digits]

+\DiceD Does 1 it 4 work? And {\darkgreen 3% too?} {\DiceR And how about
$\darkred 3% then? But 8 should sort of fail!t?

Does[HitEwork? AndEdtoo? And how about [then? But X should sort of fail!
The six digits and Unicode characters come out the same:

\red \DiceD \dostepwiserecurse {13 {1 63{1t$\char#l\quadi%

ThreeSix, Don Knuths first colorfont? 26

\blue \DiceN \dostepwiserecurse{"2680%{"2685%{1}t{\char#l\quad}¥

It is tempting to implement for instance 7 as two dice (a one to multi mapping in OpenType speak) but
then one has to decide what combination is taken. One can also implement ligatures so that for instance
12 results in two six dice. But I think that’s over the top and only showing TgX muscles. It is anyway not
that hard to do as we have an interface for that already.

So why not do the dominos as well? Because there are so many dominos we predefine the shapes and then
register the lotin aloop. We have horizontal and vertical variants. Beinglazy Ijust made two helpers while
one could have done but with some rotation and shifting of the horizontal one. The loop could be a macro
but we don’t save much code that way.

\startMPcalculation{simplefun}

picture Dominos[] ;

Dominos[0] image() ;

Dominos[1] := image(draw(4,4);) ;

Dominos[2] := image(draw(2,6);draw(6,2););

Dominos[3] := image(draw(2,6);draw(4,4);draw(6,2););

Dominos[4] := image(draw(2,6);draw(6,6);draw(2,2);draw(6,2););

Dominos[5] := image(draw(2,6);draw(6,6);draw(4,4);draw(2,2);draw(6,2););
Dominos[6] := image(draw(2,6);draw(4,6);draw(6,6);draw(2,2);draw(4,2);draw(6,2););

Imt_registerglyphs [

name = "dominos",
units =12,

width = 16,

height = 8,

depth =0,
usecolor = true,

def DrawDominoH(expr a, b) =
draw image (
pickup pencircle scaled 1/2 ;
if (getparameterdefault "mpsfont" "coloxr" "") = "black"
fillup unitsquare xyscaled (16,8) ;
draw (8,.5) -- (8,7.5) withcolor white ;
pickup pencircle scaled 3/2 ;
draw Dominos[al]
withpen currentpen
withcolor white ;
draw Dominos[b] shifted (8,0)
withpen currentpen
withcolor white ;
else :
draw unitsquare xyscaled (16,8) ;

27 ThreeSix, Don Knuths first colorfont?

draw (8,0) -- (8,8) ;
pickup pencircle scaled 3/2 ;
draw Dominos[a]
withpen currentpen ;
draw Dominos[b] shifted (8,0)
withpen currentpen ;
fi ;
)
enddef ;

def DrawDominoV(expr a, b) = % is H rotated and shifted
draw image (
pickup pencircle scaled 1/2 ;
if (getparameterdefault "mpsfont" "coloxr" "") = "black"
fillup unitsquare xyscaled (8,16) ;
draw (.5,8) -- (7.5,8) withcolor white ;
pickup pencircle scaled 3/2 ;
draw Dominos[a] rotatedaround(center Dominos[a],90)
withpen currentpen
withcolor white ;
draw Dominos[b] rotatedaround(center Dominos[b],90) shifted (0,8)
withpen currentpen
withcolor white ;
else :
draw unitsquare xyscaled (8,16) ;
draw (0,8) -- (8,8) ;
pickup pencircle scaled 3/2 ;
draw Dominos[a] rotatedaround(center Dominos[a],90)
withpen currentpen ;
draw Dominos[b] rotatedaround(center Dominos[b],90) shifted (0,8)
withpen currentpen ;
fi ;
)
enddef ;

begingroup
save unicode ; numeric unicode ; unicode := 127025 ; % 1F031

for i=0 upto 6 :
for j=0 upto 6 :
Imt_registerglyph [

category = "dominos",
unicode = unicode,
code = "DrawDominoH(" & decimal i & "," & decimal j & ");",
width = 16,
height = 8,

1

unicode := unicode + 1 ;

endfor ;

endfor ;

ThreeSix, Don Knuths first colorfont?

28

save unicode ; numeric unicode ; unicode := 127075 ;

for i=0 upto 6 :
for j=0 upto 6 :
Imt_registerglyph [

category = "dominos",
unicode = unicode,
code = "DrawDominoV(" & decimal i & "," & decimal § & ");",
width = 8,
height = 16,
1
unicode := unicode + 1 ;
endfor ;
endfor ;
endgroup ;
\stopMPcalculation

Again we predefine a couple of features:

\definefontfeature
[dominos:white]
[default]
[metapost={category=dominost]

\definefontfeature
[dominos:black]
[default]
[metapost={category=dominos,color=black}]

\definefontfeature
[dominos:digits]
[dominos:digits=yes]

This last feature is yet to be defined. We could deal with the invalid dominos with some substitution
trickery but let’s keep it simple.

\startluacode
local ligatures = { %
local unicode 127025

for i=0x30,0x36 do
for j=0x30,0x36 do
ligatures[unicode] = { i, j }
unicode = unicode + 1 ;
end
end

fonts.handlers.otf.addfeature("dominos:digits", %

type = "ligature",
order = { "dominos:digits" %,

29 ThreeSix, Don Knuths first colorfont?

nocheck = true,
data ligatures,

£)
\stopluacode

That leaves showing an example. We define a few fonts and again we just extend the Serif:

\definefont[DominoW] [Serifxdominos:white]
\definefont[DominoB] [Serifxdominos:black]
\definefont[DominoD] [Serifxdominos:white,dominos:digits]

The example is:

\DominoW
\char"1F043\quad \quad
\char"1F052\quad \quad
\char"1F038\quad \quad
\darkgreen\char"1F049\quad \char"1F07B\quad
\DominoB
\char"1F087\quad
\char"1F088\quad
\char"1F089\quad
\DominoD
\darkred 12\quad56\quad64

Watch the ligatures in action:

2B B
L] | B

To what extent the usage of symbols like dice and dominos as characters in the mentioned book are re-
sponsible for them being in Unicode, I don’t know. Now with all these emoji showing up one can wonder
about graphics in such a standard anyway. But for sure, even after more than three decades, Don still
makes nice fonts.

Atreasure of tiny graphics can be found in “pre-fascicle 5¢” and many are in color! In fact, it has dominos
too. It must have been a lot of fun writing this! I'm thinking of turning the pentominoes into a font where
a GPOS feature can deal with the inter-pentomino kerning (which mighty work out okay for example 36.
The windmill dominos also make a nice example for a font where ligatures will boil down to the base form
and the (one or more) blades are laid over. It’s definitely an inspiring read.

ThreeSix, Don Knuths first colorfont? 30

31 ThreeSix, Don Knuths first colorfont?

5 Normalization

What I describe here was long due. I delayed it because when enabled it had best also be used and I need
to (check and) adapt some code to it in order to profit from it. So, if used at all, it will take some time to
have an effect on the ConTgXt code base. But first some background information.

When TgX builds a paragraph it splits the current text stream (that makes up the paragraph) into lines
where each line becomes an horizontal box. In LuaTgX, this process is split into distinctive steps, contrary
to regular TgX where the splitting is combined with hyphenation, ligature construction and font kerning.
But what all engines have in common is that after the decision is made about what a line is, the result gets
packages into the horizontal box.

The decision making is influenced by quite some factors, like:

- The indentation of the first line, driven by the presence of a box of with a certain width and no height
and depth (its always there, also when the indentation is zero).

- Hanging indentation, which can happen at each corner of the paragraph, or alternatively a specific
parshape.

- Left and/or right margins, aka left skip and right skip. A right skip is always present, even when zero.

- The way the last line gets aligns, aka parfill skip.

- Directional changes that need to be carries over to the next line.

- Optional protrusion of characters to the left of right of the line, something that is sensitive for direc-
tional changes.

- Expansion of characters in order to get better inter-word spacing and/or to prevent lines being too
bad. There can be stretch as well as shrink but on a per line basis. Inter-character kerns can also get
that treatment.

« The penalties associated to hyphenation: the pre-last line, the last two lines, a list of penalties (e-TgX),
specific penalties bound to hyphenation pints (LuaTgX).

« The wish to have more or less lines than optimal, aka looseness. I have to admit that I never use that
feature.

In traditional TgX it doesn’t really matter how the resulting boxes look like, as long as the following steps
can handle them, and those steps don’t look into those boxes. In fact, unless you unpack a box, only the
backend deals with the content. Butin LuaTgX we have callbacks that hook into several stages and can look
into the constructed boxes. In LuaTgX these boxes also have embedded directional information (needed
by the backend) and (although that is seldom used) left or right boxed material, a features inherited from
Aleph/Omega. And when messing around with the content of boxes one has to know what can be seen
there. In principle the code can be reorganized a it but adding additional functionality is not that triv-
ial because we want to stay close to the original implementation, even if it has been messed up a bit by
successive additions. Eventually I might give it a try to integrate all these features a bit better, but on the
other hand: it works.

In the next examples we show how the result of typesetting a paragraph looks like. We use the Sapolsky
quote from the distribution. The cyan glue nodes are the left and right skip nodes, and the gray one at
the end of the last line represents the parfill skip. The magenta ones at the edge are baseline skips. An
indentation is shown in gray too. As experiment we have four normalization levels but in the end only
the highest level makes sense, simply because normalization makes no sense unless one consistently
normalizes all. We just keep the granularity because it makes it possible to explain what gets done.

Normalization 32

1111

normalization 0, sample-1

\parindent = 20pt
\leftskip = 40pt
\rightskip = 50pt
\hangindent = Opt
\hangafter = 0

,,,,,,,,,,,,, . Agriculturesissasairlyzecenthumansdnvention,anddnsmanywaysstswassoneofdthessm

. greatsstupid-movessof-allstime..Hunter-gatherers:havesthousandssofswild-sourcessofssm

@u ,,,,,,,,,,,,,,,, foodstessubsistson..Agriculture.changedsthat.all,sgeneratingsanseverwhelmingseliancesss

L

L

onsasfew.dozen.domesticated-feod:sources,smaking:yousextremely.suilnerablestosthesss

next:famine,thesnextlacust.infestation,.the.next.potatosblight..:Agriculture.allowedssm

normalization 0, sample-2

\parindent = Opt
\leftskip = 0Opt
\rightskip = Opt
\hangindent =-20pt
\hangafter = -3

JAgriculturedssadairlysecenthumandnvention sanddnsnanywayssitswassonesofthesgreatsstupidanove Sk
ofiall-time...Hunter-gatherers-have.thousands-oef:wild-sources:of:food:to.s11bsist=on ... Agriculturesm
changedsthatsall .generating.an.overwhelmingsreliance.on.asfew.dozen.domesticated-feod:sources,sm
_makingsyousextremelysvallnerablestasthe-nextfamine,sthesnextdacustdinfestation sthesnextspotatosblight

(Agriculturesallowedsforsstockpilingsefssurplussresources:andsthus,sinevitably,sthesunequalsstockpilingse

.000

theme=stratificationsefisocietysandsthesinventionseficlasses..Ehus,sitsalloweddfortheinventionefpoverty.

Ighinkdthatthespunchdineoftheprimate-humansdifferencesissthatashenshumans.inventedspoverty,sthey
Icamesupwith-aswaysefssubjugatingthedew-rankinglikesnothing.eversseenshefore.dintheprimatesworld. ...

s:

normalization 0, sample-3

\parindent = Opt
\leftskip = O0pt
\rightskip = Opt
\hangindent = 20pt
\hangafter = 3

33 Normalization

.000

\oriculture-issa-fairly.recent:hiimansinvention sand-in.many-wayssit-was-one-of-the.great-stupid=move Sk
lofialltime.-Hunter-gatherersshavesthousands.efswild:sourcessef-foodsta.subsistson..Agriculturesehangedsm
. that.all sgeneratinganoverwhelmingzelianceonasfew.dozendomesticatedsfeod.seurces,;makingyou.ex-
= tremelyszulnerabledadhemnextfamine,shemnextdocustinfestation, themnextpotatohlight..Agricultures
= allowedfarsstockpilingsefssurplussresourcessandsthus,sinevitably,.;thesunequalsstockpiling.efihemmmsum
. + stratification.ef.seciety.and.the.invention.of-classes...khus,itsallowed.fer-the.invention.ef.poverty..ls
« thinkethatsthespunch.linesofithesprimate-humane.differencesissthatswhen-humanssinventedspoverty,sm
e . theyseamesapswi thsaswaysofssubjugatingsthedew-rankingdikesnothingeversseenheforednstheprimatess
L world.swe

2

z

normalization 0, sample-4

\parindent = Opt
\leftskip = 10pt
\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

L,,F,!@ldﬂmoyesmm;aulhumemlﬂunteizmgather,,er,smay,espmo,us,andsmfspwaldmsourc,essgouﬂyf@,Q,dsemmszubSJStwon‘mm ,,,,,,,,,
mmhgricultureschangedsthat.all s;generating.anseverwhelmingsseliancesonsasfew.dozen.domesticatedssm
. sed00dsspurces,.making.yousextremely.vailnerable:te-the.next-famine,-the.nextdecust-infes-
= =mtationsthesnextspotato:blight..Agriculturesallowed.fer:stockpiling.ef-suirplus.resources:an dsus
= swihusdnevitablystheanequalstockpilingefithemenstiratificationefsociety.and.;theinventionsus
= swOfselasses.s.Thus,siteallowed.for.the.inventionsofspoverty...sthink.thatsthespunchelinesof.th esum
s smpTimate-humansdifferencesissthatswhenshumans.inventedspoverty,they.camesup:with.aswaysum
| ussofssubjugatingsthedew-rankingdlikesnothingeverseensheforesdindhesprimatesworld.iss

You might have noticed that the right skip is always there but the left skip is absent when it is zero. As
said, as long as the result is okay, it does not really matter. But ... in LuaTgX (and therefore ConTgXt) it
can have consequences because there we can kick in a callback that does something with lines. Such a
callback often has to deal with these specific glues and them being optional makes for more testing. The
more predictable the order is, the better. Although we can easily normalize lines (in a callback) to always
have a left skip too it is also an option in the engine.

normalization 1, sample-1

\parindent = 20pt
\leftskip = 40pt
\rightskip = 50pt
\hangindent = Opt
\hangafter = 0

Normalization 34

,,,,,,,,,,,,, . Agriculturesissasdairlyszecenthumansnvention,anddnsmanywaysit=wassoneofthess

. greatsstupidsmovessofsallstime..Hunter-gatherersshavesthousandssofswildssourcessofssm

. foodstessubsistson.sAgricultureschangedsthatsall sgeneratingsanseverwhelmingzeliancessm

. onsasfew.dozen.domesticated-foods-sources,-making-yousextremelysviillnerablesto:thessm

. next:famine,thesnextlacust.infestation,.the.next.potatosblight...Agriculture.allowedsss

forsstockpiling.of-surplussresourcessandsthus,-inevitably.thesunequalsstockpiling-ofssm

.
=1
9]
2
:
=
o
=]
e
5
%
3
Q
@
<
]
B
=
o
5
o)
=}
o
g
>
1)
@
gl
=
=
c
EIJ
E;r
)
o
=
o©
&
5§
g
=
)
E

1

o inventionsefspoverty..dsthinksthat.the.punchsline.ofsthe.primate-humansdifferencesigesss
. thatswhenshumanssinventedspoverty,stheyscamesupswith-aswaysefisubjugatingsthedow-

TEEEEEREE

normalization 1, sample-2

\parindent = Opt
\leftskip = O0pt
\rightskip = Opt
\hangindent =-20pt
\hangafter = -3

. Agricultureds:adairlysrecenthuimandnvention andinsmanyswayssitswas:oneofthegreatsstupid«amove g
. @fsallstime.«.Hunter-gatherersshavesthousandssofswildssources«of:food«te:s11bsist-on.c.Agriculturess
.ghanged.thatsall,sgenerating.an.overwhelming.reliancesonsasfew.dozen.domesticated-feodssources, s

. makingyousextremelysvallnerableste-the:next-famine sthesnextdacustinfestation sthe.nextspotatosblight.
. Agriculturesallowedfar:stockpiling.ef-surplusscesourcessandsthus,sinevitablysthesunequalsstockpiling:of
. thems=stratificationsefssocietysandsthesinventionsefsclasses..Ehus, itsallowedferithednventionefpoverty.:
L,Munkﬂthatspjsheypunchsimemthesppzmmate,mhumampdﬁferenc,esplzsﬂtha,tsywhe,nsrhumansﬂmvenI,e,dsgpﬁver,tv,yﬁh,ev,

eameupsithasway.efssubjugatingthedew-rankingdikesnothing.eversseensheforedin.theprimatesorld...d

normalization 1, sample-3

\parindent = Opt
\leftskip = Opt
\rightskip = Opt
\hangindent = 20pt
\hangafter = 3

L,,Mrlc,ult,uremissyamfalﬂysa'ﬁcentsgh,umansymy,ention,ﬂandsymsymanysgmaysmuwassy_mleszgi;ymeﬂgr,eatﬂs]mp,1dsgmoye,s,
L,m;&llsytLme,.syk{un,te,ltmgathe,r,e,rssyhavesythousandssgafsgwaldsym,urc,e,sym;yfmod&mﬂssubmstsx(an&Agmcultureyﬁhanged

. thatall sgeneratinganweverwhelmingsselianceonasfews.dozensdomesticatedfeodsseurces,;makingyou.ex-

LM@ I'ld PE-47 560

normalization 1, sample-4

\parindent = Opt
\leftskip 10pt

35 Normalization

= tremelyazulnerabledasthemnextfamine,shemextdacustinfestation,shenextspotatohlight..Agriculture;
= +allowedsfer:stockpilingsefssurplussresources.andsthus,inevitably,sthesunequalsstockpilingsef:thems=
- stratificationsefsseciety.and.the.invention.ef.elasses..Ehus,itsallowed.fer.thesinvention.ef:poverty.-dss
= tRinksthatsthe.punchdline.of:the.primate-humansdifference:is.that-when-humanssinvented.poverty,sss
- theyeamesupswith.asvay.ofisubjugatingthedew-rankingdlikesnothingeversseensheforedn.theprimatel

\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

L,mep1ds,m,o,yessgu.fmallsyfmmem]ﬂ,unteI,:mgathererssﬁnuay,espf[lmo,u.:s,a_ndsﬂQ]fsp_vml,ds,;sm,ur,(:essganfﬂ)fmo,dsgmﬂl_saab51sts,;oummm ,,,,,,,,,
LA griculture.changed:that.all,sgenerating.ansoverwhelmingsrelianceonafew.dozen.domesticatedssm
w =wioodssources,smakingsyousextremely.uvulnerablesto-the.next.faminethe:nextlocustsdinfes-
= swiation,thesnextspotatosblight..Agriculture.allowed.for.stockpilingsefssurplussresourcessandssm
= swthusdnevitablysheunequalstockpilingefithemsesstratificationsefssociety.andsthednventionsss
= swOfeclasses.s:Thus,sif-allowed.for.the.invention.ofspoverty...lsthink.that.the.punch.line-ofithesss
= smprimate-humansdifferenceds.thatsmhenhumans<dnventedspoverty,theyscamemp:with.aswayses
w0fisubjugatingdhedow-rankingdikesnothing.ever:seen:beforedndheprimatesnorld.sse

In the previous examples there are always left skips as well as right skips. It makes no sense to have an
option to omit both zero left and right skips, because that again is unpredictable. But we can go further.

normalization 2, sample-1

\parindent = 20pt

\leftskip = 40pt

\rightskip = 50pt

\hangindent = Opt

\hangafter = 0

k%ﬂu ,,,,,,,,,,,,,,,, o Agriculturedssasfairly.recenthumansinvention,anddnmanyswayssit-wasoneofthess
g greatsstupidsmovessofsallstime..sHunter-gatherers-havesthousands.ofswildssourcessofssm

,,,,,,,,,,,,,,,, foodstessubsistson.sAgricultureschangedsthatsall sgeneratingsanseverwhelmingeliancessm
_onsasfew.dozensdomesticated:food:sources,smaking:yousextremelysvallnerable:tosthessem

b

=
LEO ,,,,,,,,,,,,,,,, next:famine,thesnextlacust.infestation,.the.nextspotatosblight...Agriculture.allowedsss
; F’”ﬂ ,,,,,,,,,,,,,,,, forsstockpiling.ofsstirplussresourcessand.thus,inevitablysthesunequalsstockpiling-ofssm
. Fm ,,,,,,,,,,,,,,,, thems==westratificationsefssocietysandsthesinventionsefsclasses.«.Ehussitsallowedsforsthess
Fm ,,,,,,,,,,,,,,,, inventionsefspoverty..dsthinksthat.the.punchsline.ofsthe.primate-humansdifferencesigesss
Fm ,,,,,,,,,,,,,,,, thatswhenshumanssinventedspoverty,stheyscamesupswith-aswaysefisubjugatingsdhedow-
e rankinglikesnothingeversseensbeforedndhesprimatesworldoese |

normalization 2, sample-2

\parindent = Opt
\leftskip = 0Opt
\rightskip = Opt
\hangindent =-20pt
\hangafter = -3

JAgriculturedssadairlyscecenthumansdnvention sandinmanywayssitswasoneofithegreatstupid«smove Ssom
. @fpall:time...Hunter-gatherers:haves.thousands:of-wild-sources-of.food-te-subsist:on ... Agriculturesm
L,,@ange,dmthatszal1,syge,nera,t1ngﬂagnﬂmzerwhelmmgyr@hanc,emanﬂamfﬁwmdnzensgdaomesn,catedspmo,dsys,@,urc,es,ks ™
L,,Wk1ngsgmusgextr,emelvﬂy&11nerablesemspﬂaesgnsextspfamm,e,,sgtheﬂnse,x,tsyl@,cus,tspmf,estatlon,spﬂa,esynextmpﬁtatoyhshght.m :
L,,}égmc,ulturemallowedgpfarysﬁmckpll1ngsemfsgs,,urplusymso,urc,essyandmmus,spm,eyltablv,sgmemne,qualse&to,ckpmngsp s
L,,Qgemmﬂsﬂat1ﬁcat10n$p@fysm,c1,e,tv5pazndsg1;he5pmvenn,om@£s&lsasses,s,,_l‘shus,sazt&ailowedspf@rﬂtheymventlonsmf@sypﬁvertv.,g
. mmkﬂthatwtheypunchsimemmesgpnma,temhumamdzlfferenc,esplzsmthatsywﬁhenyhumansﬂlzmvente,dsypﬂv,er,tv,ymem
seameupswithsaswaysefssubjugatingsthedew-rankinglikesnothingseversseensheforesinthesprimatesmor]d. s

Normalization 36

normalization 2, sample-3

\parindent = 0Opt
\leftskip = Opt
\rightskip = 0pt
\hangindent = 20pt
\hangafter = 3

JAgriculturesissasfairlysrecentshumansinvention sandsin-many.wayssit:wassone-ofsthesgreat.stupid-movesk
L,,P&asllymne.sdzlun,te,mgather,erssgkhayesythousandssy.afsewaldspmur,c,e,smfyfﬂod@mﬂsmb51stszan,y;Agrlcultureﬂ&hangedm ™
. thatall sgeneratingsanseverwhelmingseliancesonafew.dozendomesticatedsfeodsseurces,smakingyou.ex-
.« iremely~vulnerabledadhemnextfamine shesnextdocustinfestation, themnextpotatohlight..Agricultures.
= adowedfarsstockpiling.efssurplussresourcessandsthus,sinevitably,.;thesunequalsstockpiling.efithems«
. +stratification.ef.seciety.and.the.invention.of.classes...khus,.itsallowed.fer.the.nvention.ef.poverty..ds:
e - thinksthatsthespunch.linesef:thesprimate-human.differencesissthatswthenshumanssinventedspoverty,s
e EREYseamedapswi thaaswaysofssubjugatingsthedew-rankingdikesnothingeversseensheforednstheprimatess
Orld.sww

normalization 2, sample-4

\parindent = Opt
\leftskip = 10pt
\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

L,,Fﬁ@ldymoyesmﬂiéyaﬂmmemlﬂuntel:mgath,er,er,sma,v,espAtho,us,andssp&fspmldmsmurc,essaanﬂyf@,Q,dsemsyszubSJStwﬂnmm ,,,,,,,,,
g gricultureschangedsthat.all s;generating.anseverwhelmingseliancesonsasfew.dozendomesticatedssm
= suio0dssources,.making.you.extremely.uailnerable.to.the.next.famine,the.next.locust.infes-
= =mtation,sthesnext:potatosblight..Agriculturesallowed.fersstockpiling:efssuirplus.:resourcessandsom
= swihusdnevitablytheanequalsstockpilingefthemensiratificationsef.society.andthednventionuss
= swOfsclasses.s.Thus,siteallowed.for.the.inventionsofspoverty...sthink.thatsthespunchelinesof.th esum
e - smbrimate-humansdifferencesdssthatssahenshimanssdnventedspoverty,they.camesip-with.aswayus
Jsm0fssubjugatingsthedew-rankingilikesnothingseversseensheforednstheprimatesnorld e

In these examples the indentation has been turned into a glue as well (actually it is more a kern but using
a glue makes more sense). The hanging indentation however is not seen here: it is not represented by
glue but instead sort of hidden in the width of the box and a shift of its content.

normalization 3, sample-1

\parindent = 20pt
\leftskip = 40pt
\rightskip = 50pt
\hangindent = Opt
\hangafter = 0

37 Normalization

@ ,,,,,,,,,,,,,,,, we Agriculturesdssasfairlysecenthumansdnvention andinmanywaysdit-wasoneofthess oo
R greatsstupidsmovessofsallstime..sHunter-gatherers-havesthousands.ofswildssources:ofssm b
@ ,,,,,,,,,,,,,,,, foodstessubsistson..Agriculture.changedsthat.all sgeneratingsanseverwhelmingseliancesss b

normalization 3, sample-2

\parindent = Opt
\leftskip = O0pt
\rightskip = Opt
\hangindent =-20pt
\hangafter = -3

Agriculturedssasdfairly.;recentshumansdnvention andinimanywaysstswasoneofithegreat.stupid«move Sem
. @fpallstime...Hunter-gatherersshavesthousandssofswildssources«of:food«te:s1ubsist-on ... Agriculturesms
.@hanged.thatsall,sgenerating.an.overwhelming.reliancesonsasfew.dozen.domesticated-foodssources sm
. makingsyousextremelysvallnerablestesthesnextfamine thesnextdecust.dinfestation sthe:nextspotatosblight mm
] nc,ult,ur,esgasllowedsyfmrﬂsﬁmckpllingsz(afsyssurplussymso,urcessymndmthus,gpmemtably,sgmemnequalsgsﬁlaﬁ,ckpﬂingsy_af‘-
. mmﬂs&rat1ﬁcat10nsmfsm,c1,e,tyszagndﬂtheymvennomm£@eiasses.sp_';l;;hus,splmzlﬁlowedspf@rmtheﬂmventlonmypﬂv,erty.‘h
L,Munkﬂthatwmeypunchmnemthesgpnma,teghumansm&er,enc,esylzsﬂthatsywhemhumansﬂlzmyen,te,dsgpaver,tv,wm,e,vL

|
eameupsithaway-efssubjugatingtheldew-rankinglikesnothing.eversseensheforesinthesprimatesmor]d.dmm

normalization 3, sample-3

\parindent = Opt
\leftskip = Opt
\rightskip = Opt
\hangindent = 20pt
\hangafter = 3

L,,Mrlc,ult,uresgissyamfalﬂysmﬁcentsglmmanspmy,ention,ﬂandﬂmsgmanysgmaysmuwassy_mlesgoi;ymeﬂ_gmeatsps]mpldsgmQy,e,s‘h
L,@&llsytune,.sdﬂun,tel:mgathe,r,e,rssghavesgthousandssgafszwaldym,urc,e,sym&fﬁodymsgsmbmstsn(an&Agmculturey&hangedh
L,ﬁatsa]sl,ﬂgeneratmg@mmerwhelmlngsmhancesmnsyamiawsgdﬂzensdnmestlc,atedspﬁaodsﬁ@,urc,es,spmaklngﬂy@u@e&mw
T,@,,,,memelvﬂv&ﬂnerableymﬂthesmexts.famme,,ﬂtheﬂnextsy]z@cusmmfe,stano,n,ﬂthe@nextsppmatosyhhgh,t.sgAgmcultur,eF
J#w,,,,allow,e,dsgfmrﬂssno,ckp,lhn&m;psmrplus@msour,cesﬂaﬁndspthus,,ﬂmemtablv,ﬁthesguun,e,q,ualsgsslzo,ckpﬂmgyﬂfymemm‘h
@,,,,suiara,tlﬁc,atlonsnafsesametyﬁandsp_theﬂmyennon@gfsgelasses.m;];;h,us,,satsgallowedsyf@mheﬁpmyennonsgafsgpgoyertv,ml%_
T,@,,,,ﬂmnkﬂmaﬁmemunchmlmey_aiﬂtheﬂgmma,temhumanspmffer,e,nc,esplsspmaﬁwh,ensyhzumansﬂmyentedsp;mverty,‘h
@,,,,ﬂmvs@ameﬂupsa&lﬂlsmavmﬂmmuganngythes&awjjrankmgsp]zﬂ&esymthmgﬁezy,ermsﬁenybefor,eymsgtheypﬁmmate‘h
immm WOTTd o [

normalization 3, sample-4

\parindent = Opt
\leftskip 10pt

Normalization 38

\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

:0.000

L,@ldymoyesﬂoi;yaallmme,mﬂunteltmgatherersmavespmo,us,andsmﬂpwuldy_sour,cessganfsymo,dsgmﬂmabsmt&onmm ,,,,,,,,,

:0.000

:0.000

x,FAgm,c,ulturesghangedyma&a.u,wgeneratmgsansmerwhelmmgspmhancesmnsyamﬁawsgd@ze,md@mestlc,atedmm ,,,,,,,,,
s sud00dssources,smakingsyousextremelys:utilnerablestosthe:nexts-famine,sthe.nextslocustsdinfes-
s sutation,sthesnextspotatosblight..Agriculturesallowedsforsstockpiling-efssuirplusscesourcessan dssm
s suthus,snevitably,shesanequalsstockpilingsefthememstratificationsofssecietyandsthednventionsem
L,,@,,,,m@fyﬁlas,s,es.sp:;_l",hus,mlzmallowedsyi'@rsemespmyennomufﬁpoyer,tv.ﬂJm_thmksp,.thatsgIhesgpunchyhnesgaﬁnthemm ,,,,,,,,,
L,,}m;,,,,mpmm,at@mhumansgdafferenc,eyl&gmatﬂwhenmhumanssmventedypﬁyert,V,s.;thevspmm,eseuspspwslthﬂ&wavmAm,,,,,,,,,
e sn0fssubjugatingsthedew-rankingdlikesnothingeversseenbeforedndheprimatesworld. s |

In the previous examples the hanging indentation is turned into left and right hang skips. These cannot
be set at the TgX end, but are injected when we instruct the normalizer to do so.

normalization 4, sample-1

\parindent = 20pt

\leftskip = 40pt

\rightskip = 50pt

\hangindent = Opt

\hangafter = 0
. }w ,,,,,,,,,,,,,,,, me_ Agriculturesissasfairlyssecentshumansdnvention,andsdnsmanywayssitswassone.ofthesms
. greatsstupid.movessof-allstime..:Hunter-gatherersshavesthousandssofswildssources:ofssm
; F”“ ,,,,,,,,,,,,,,,, feodstessubsiston.sAgricultureschangedsthatsall sgenerating-anseverwhelmingseliancesss
; }ﬁu ,,,,,,,,,,,,,,,, ensasfew-.dozen-domesticated:food:sources,making:yousextremelysvilnerable:.to-themsm
; }ﬁu ,,,,,,,,,,,,,,,, nexto-famine,.the.nextlacust.infestation,.thesnext.potatosblight...Agriculture-allowedsss
; }ﬁu ,,,,,,,,,,,,,,,, fer-stockpiling.ofssuirplussresources=andsthus,sinevitably,.thesunequalsstockpiling-ofsss
; Fm ,,,,,,,,,,,,,,,, thems=stratificationsofs:society.andsthesinventionsefsclasses...Ehus,sitsallowedsforsthesss
; Fm ,,,,,,,,,,,,,,,, inventionsofspoverty..dsthinksthat:thespunch.line.ef-thesprimate-human.differencesissss
. thatawhenshumanssdinventedspoverty,stheyscamesupswithsasway.ofssubjugatingsthedowrgs
e mankinglikesnothing.eversseendbheforednstheprimatesworldoees]

normalization 4, sample-2

\parindent = Opt
\leftskip = 0Opt
\rightskip = Opt
\hangindent =-20pt
\hangafter = -3

JAgriculturedssadfairlysecenthumansdnvention andinmanywayssitswasoneofithegreat:stupid«move Ssm
L,,@allsg.mgm,e,.su_f,HunLeJ:mgath,er,erssghayeSEJ:J;Lous,andsmai"mwﬂdmsa,ur,c,esmfsgf@o,dsymsysubmstsggn.smAgm,cultureh
L,,@angedﬂ‘thatﬂall,ygﬂneratmgﬂammerwhelmgyr@hmc,emmmmfﬂwmozensedaomestlcatedﬂfao,dsysaurc,es,h

L,,@ak1ngsgy;g,usgextremelvﬂmﬂnerablesemsyﬂaesgnsextyfamme,,sgtheﬂnextsyl@custsemfestatlon,spﬂa,eﬂnextmpﬁtatoyhhght.‘_

:0.000

:0.000

:0.000

:0.000

[RH:0.000

[RH:0.000

L,,#mc,ulturegallowedgpfars.,sais,ockpll1ngseafsgs,,urplussymso,urcesyandmthus,ymemtably,sgthemnequalsmockpmngsm“-
L,,#mmﬂs&rat1ﬁcat10mmfsﬁ@,c1e,tvsa;ndsgtheymvenn,om@£spezkasses,sy_ZI;;hus,splztmazlxlowed&f@rmmeymventlonmppﬁvertv.‘h
. Hunksgthatmtheyp,unchsimemmesgpmma,temhumammt‘fer,en,c,esylzsml;hamwhemhumansmmvente,dsgpﬂv,er,tv,ylzhey‘h
eameupswithsaswaysefssubjugatingsthedew-rankinglikesnothingseversseensheforesinthesprimatesawor]d. s

39 Normalization

L

L

L

L

normalization 4, sample-3

\parindent = Opt
\leftskip = Opt
\rightskip = 0pt
\hangindent = 20pt
\hangafter = 3

,ﬁgmc,ul,t,uresglssyamfalrlvmmcentsghmmanymy,entmn,mands.;mﬂmanysemavssdtmmasmanespgi;ymesygmeatﬁs;up,1dsymoye,s‘h
,ﬁaﬂwtme.mlzlun,te,rmgather,erssghaayesgthousands,sy.afsewaldsps&o,ur,c,e,smfyﬁaod@msgmb51stﬂan,H;Asgmcultureﬂ&hangedh
,&atspa]sl,spgene,r,atmgy&msm,erwh,elmmgsmllances@nsamﬁ&wsgdozensdomestlc,atedspﬁao,dspsa,urc,es,@makmgsgmmye&m.m
,,@,,,,IremelyMﬁllnerablesJ;@sylahes,nexts.famme,,sgtheynextg]ﬁcus,tsmfe,stano,n,ﬂtheynﬁxnppmatosybllgthgAgmcultur,e_

,,,,allow,e,dsgfmsgssnockpmngsmspsmrplussm@s,o,ur,c,e,sgandsgmus,,samemtablv,sgmesgmle,qualsesano,ckpﬂmgm&f@memmm:h

_stratificationsefsseciety.andsthesinventionsef.classes...Ehus,sitsallowedforsthesinventionsefipoverty.sJsm

,,,,Ihlnkythatmthey_paunchﬂuney_ogfgthesgmlma,tenhumam.chffer,e,nc,esplssathatspmhenmumansspmyented@_pgvertv,‘h
,,,,Ihevmmeyupywaﬂhmavmysmmugamthesi@wmrankmgyhkesymthmgsmemﬁenspbef,or,espmsgth,eypnmate‘h

-
e ‘
b
e

h{l WOI‘ld PE-447 560 Lm»nm

normalization 4, sample-4

\parindent = O0pt
\leftskip = 10pt
\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

Agriculturesissas<fairly.recent:humansinvention,.and:in.many.wayssit-wass-one:of-thesgreatestUu-mm

L,,mmmoyesmﬂ&aﬂmumemlﬂuntei:mgather,,er,sma,v,espmo,us,andsmfspwaldmsourc,essgauﬂyfmQ,dsemmszubsmtw.anl ,,,,,,,,,
L,,Mgmc,ulturesﬁhangedymatsya,u,ﬂgeneratmgsansmerwhelmlngspmhance@nﬂamﬁ@wﬂdmzemd@meshc,atedu ,,,,,,,,,
L,,}ﬂ,mm,,,,f,o,odsy_saur,ces,s.,_makmgsy_.yﬂuseextremelyse_muln,erablesgmmthesgnexnp_famme,sp;thesgnextmlg,c,ustsgmfe,s,,—mm ,,,,,,,,,,
L,,Fﬂ,m,,,,tatlon,sy_themextsgp,otatosgbuhght.sg,qum,c,ultur,ema.llowedyf@rﬂsmckpﬂmgm&samplussgmsourcessgand_n ,,,,,,,,,
; Fﬂ,m,,,,thus,,smemtablv,sgtheyunequahﬁm,ckp111ngs@f91;hemmmst&ratlﬁ,c,atmns@f@s@,c1etvsandspthesamv,entmn_a ,,,,,,,,,
. }m,mm,,,,oﬂpclass,es.mil?,hus,sp_ltyallo,wedszf@rsgthespmvenﬂo,m&fsgpoyer,tv.sulﬁthmksp_thatsgthesgpunchghnemﬂp_the-a ,,,,,,,,,
L,,@m,,,,p,rlmatemhumanszdaff,er,enc,ey}smmatﬂmhenstmmanssmventedszpmyertv,spmevsycamespupsnglthﬂamwav-a ,,,,,,,,,
Lummm__Ofsslibjugatingdhedew-rankinglikesnothing.eversseensbeforednsthesprimatesworldss |

The previous examples differ from the previous set in that they push these hang related glue nodes before
the left and after the right skip. As I couldn’t make up my mind yet, I let LuaMetaTgX just provide both
variants.

The option to keep hang related information explicitly in the line has some consequences. First of all, we
now have glue and not some shift/width combination. Second, we have introduced an incompatibility: the
lines now always have the proper width. You might have noticed that but we can show it more explicitly.
We use two parameter sets

normalization 0, sample-5

\hangindent = 20pt
\hangafter 0]

Normalization 40

LRI

14,625

14,625

14,625

4,625

14,625

BS:4.6%5

JAgriculturesis-a=fairly.zecent-humansinvention sand-in:manyswayssitswassonesofsthe.great.stupidss.
. movessof-all:time...Hunter-gatherers:have.thousandssoef-wild:sourcessof-food:te-subsist-0n ... Agri-
.cultureschanged:that-all,sgenerating.an.overwhelming.reliance-on.asfew.dozen.domesticated-feodss
.sources,smaking.yousextremelysuiillnerablesto-the.next.famine,.thesnext-dacustsinfestation,sthes:nextiw
. potatosblight..Agriculture.allowedsfersstockpiling.ef-surplus.resources.and.thus,-inevitably,-the.un-
. equalsstockpilingsefithems=sstratificationsef:society.andsthedinventionsefclasses.«Ehus,itsallowedfark.
.thesinventionsofspoverty..dsthink.thatsthespunchslinesefsthesprimate-human.differencesissthat-whenis
.humanssinventedspoverty,sshey.camesupswith-aswayefssubjugatingsthedew-rankinglikesnothing.ever;

. seensheforesinshesprimatesnorld.cuwsa

normalization 4, sample-5

\hangindent
\hangafter

20pt
0

_Agriculturesis-asfairly.zecent-human:invention,sand-in.many.wayssiftswassenesof:the.great.stupidim

_movessofsall-time...Hunter-gatherers<havesthousands.ofswild:sourcessof-food:t0:511bSiSt:0N .o A ST -fom

_cultureschangedsthat:all,sgenerating.an-overwhelming.relianceson.asfew.dozen.domesticated:foodsm

|
_sources,-makingsyousextremely.suilnerablesto-thesnext.famine,the.nextdacustinfestation, the.nextsm

_potatoshlight..Agriculturesallowedsfersstockpiling.efssurplus<resourcessandsthus,sinevitably,:th es;un

000

_equalsstockpilingsefithems=stratificationsefisocietysandthednventionseficlasses..Fhus,sitallowed:fa rm

|
_thesinventionsefspoverty..dsthinksthatsthespunchsline.ofsthesprimate-human.differencesis.thatswhengsm

,,,humansspmven,te,dsppﬁVertv,@meymmeyupymtmmwavmhsub}ugatmgsgthesp]@wmranklngmkesgngo,thmgspeayef:-

seensheforesindhesprimatesmorld. e

‘Lm»n 00

normalization 0, sample-6

\hangindent =-20pt
\hangafter = 0

0.000

[Agriculturesissasfairly.zecent:human<invention,sand-in.many.ways:if-was-one-of.the.great.stupid

movessof:allstime...Hunter-gatherers:have.thousands:of-wild.sources-af:feod:te.subsist.on ...Agri-

cultureschanged.that.all,sgenerating.an-overwhelming.reliance.onsasfew.dozen.domesticated:feo

Isgurces,;makingsyousextremelysviilnerablestosthe-next.famine,the:next:lacust.infestation,.the.nex

000

000

potatoshlight..Agricultures.allowedsfersstockpiling.efssuirplussresourcessandsthus,sinevitably,sthesun-

gqualsstockpilingefithems=siratificationsefiseciety.andsthesinventionseficlasses..Ehus,itallowed.fan

00

(% §

the-inventionsefspoverty..dsthink.that.thespunch.linesef-thesprimate-humansdifferencesissthatswhe

00

humanssdnventedspoverty,sthey.camesupswith-aswaysefismbjugatingsthedew-rankingdikesnothing.ever

00

seensheforesinsthesprimatesworld.suwa

normalization 4, sample-6

\hangindent =-20pt
\hangafter = 0

41 Normalization

JAgriculturesis-a=fairly:tecent-humansinvention sand-in.manyswayssitswassonesof:the.great.stupidim
L,,ﬁ)y,e,smﬂ.aasllmmﬂmeAsnzAL-le,te,;:mgather,erssyhayesgmo,us,andsﬂgfsgm11dmso,ur,c,e,smaﬁylf@,odmt@sesubs1stm&n.suAgrlrm.m
L,,@lturemhangedsathatmall,mgeneratmgs&axnsgmzeItwhelmmgspnehanceﬂQansgaﬁewﬂdozensgdom,esnc,at,e,dsgfao,dm.m
. g@urces,smaking.yousextremely.vuilnerable-to-the.next.famine,.the.next.lecustsinfestation sthe:nextsm
L,,m,tatoyhhght.SPAAgrlc,ulturesgal1owe,dsiar,sgsarzo,ckpmngyﬂfysaurplusﬂmsourcessganm_mus,sym,emtablv,sgthesgun,-,,m
. m11als&smckp,ﬂmggymmhemmsﬂanﬁcatmnmfﬂmme,tysgazndﬂmesmyennonsyﬂfsm;iss,es.sgxhus,@@aﬂowe,dsmrmm
L,,#spmy,entmny_osﬂgpoyer,ty,mlmth1nkﬂmammeypunchyhneymgﬁp_they_mlmat@mhumamdglfferencesp}ssgtha,tspwhenm:u.m
L,,bmansspmventedsppﬂyer,tv,Qmeymmeﬂupﬂmtmmmavmsﬁubj,ugatmgsgthesylawmrankmgmkesmthmgszeayermm
.seenbeforeintheprimatesnorld.cue s

A not yet mention part of the normalization is that, because they are no longer of relevance, the special
local par nodes have been removed. The one that starts a paragraph is turned into a normal directional
node if needed, so that we get properly balanced pairs of directional nodes. It must been said that the
code that does all this is a bit of a mess. We want to stay close to the original code, but we also need to deal
with all these extensions, like directions, protrusion, extra boxes, etc.

Not shown here is that there is a fifth mode of operation. When we enable that level an overfull box will
get a correction skip so that the right skip etc are properly aligned. How useful this is: we’ll see.

Now, when I decide to keep this feature, which can be set at the Lua end to do the previously mentioned
tasks, depending on a feature level ranging from zero to four, I also need to check the impact on existing
ConTgXt code, which (currently) is complicated by the fact that most is shared between MKIV and Imtx,
and only LuaMetaTgX has this normalization feature. Iwill probably enable it for a while locally in order to
seeifthere are side effects. Then, when the code base gets adapted, we have to assume that normalization
happens, so there is no way back.

Normalization 42

43 Normalization

6 Expansion

Character expansion was introduced in pdfTgX a couple of decades ago. It is a mechanism that scales
glyphs horizontally in order to reduce excessive whitespace that is needed to properly justify a paragraph.
I must admit that I never use it myself but there are users who do. Although this mechanism evolved a
bit, and in LuaTgX is implemented a bit different, the basics remained the same. If you have no clue what
this is about, you can just quite reading here.

A font can be set up to expand characters by a certain amount: they can shrink or stretch. This is driven
by three parameters: step, stretch and shrink. The values are in thousands because TgX has no float
quantity. Originally these values were percentages of the width of a glyph, later they became related to
the em width but in LuaTgX we went back to the former definition.

In ConTgXt MKIV we have an interface that works as follows:

\startluacode
local classes = fonts.expansions.classes

classes.qualitya = §

vector = "default",
factor =1,
stretch = 4,
shrink = 2,
step = .5,

k

classes.qualityb = {
vector = "default",
factor =1,
stretch = 8,
shrink = 4,
step = .5,

%

\stopluacode

The default vector looks like this:

vectors['default'] = {
[0x0041] = 0.5, -- A
[Ox0042] = 0.7, -- B
-- and some more

%

The values that we pass to the engine are stretch 40, shrink 20, and step 5 for qualitya and stretch 80,
shrink 40, and step 5 for qualityb, so we multiply by 10. In the engine the step is limited to 100, the
stretch to 1000 and the shrink to 500. But these extremes produce quite bad results.

The expansion class is set with the expansion feature, as in:

\definefontfeature [basea] [default] [expansion=qualitya]
\definefontfeature [baseb] [default] [expansion=qualityb]

Expansion 44

\definefont [FontA] [Serifxbaseal]
\definefont [FontB] [Serifxbaseb]

In figure 6.1 we see this in action, using the following code:

\setupalign[verytolerant,stretch,hz] % hz triggers expansion
\dorecurse $30% %
$\FontB \darkred test me #1,} \FontA \dorecursesi#ltitest HFL, 1%

f\par

test me 1, test 1, test me 2, test 1, test 2, test me 3, test 1, test 2, test 3, test me 4, test 1, test 2, test 3, test 4,
test me 5, test 1, test 2, test 3, test 4, test 5, test me 6, test 1, test 2, test 3, test 4, test 5, test 6, test me 7, test
1, test 2, test 3, test 4, test 5, test 6, test 7, test me 8, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test §,
test me 9, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test me 10, test 1, test 2, test 3, test 4,
test 5, test 6, test 7, test 8, test 9, test 10, test me 11, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8,
test 9, test 10, test 11, test me 12, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11,
test 12, test me 13, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test §, test 9, test 10, test 11, test 12, test
13, test me 14, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13,
test 14, test me 15, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test
13, test 14, test 15, test me 16, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11,
test 12, test 13, test 14, test 15, test 16, test me 17, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test
9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test me 18, test 1, test 2, test 3, test 4, test
5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test me
19, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test
15, test 16, test 17, test 18, test 19, test me 20, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9,
test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test me 21, test 1, test
2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test
17, test 18, test 19, test 20, test 21, test me 22, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9,
test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test
me 23, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14,
test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test me 24, test 1, test 2, test 3, test 4,
test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test
19, test 20, test 21, test 22, test 23, test 24, test me 25, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test §,
test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22,
test 23, test 24, test 25, test me 26, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test
11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24,
test 25, test 26, test me 27, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test
12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25,
test 26, test 27, test me 28, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test
12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25,
test 26, test 27, test 28, test me 29, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test
11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24,
test 25, test 26, test 27, test 28, test 29, test me 30, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test
9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test
23, test 24, test 25, test 26, test 27, test 28, test 29, test 30,

Figure 6.1

There is one drawback with this method, although so far I never heard a user complain, which can be an
indication of how this mechanism is used: you cannot mix fonts with different step, stretch and/or shrink.
As we just did this in the example, this statement is not really true in LuaMetaTgX: there we only need to
keep the step the same. This is compatible in the sense that otherwise we would quit the run, so at least

45 Expansion

we carry on: the smallest stretch and shrink is taken. But, we do issue a warning (once) because there
can be side effects! This is not that pretty a solution anyway because it depends on what font is used first.

It is for this reason that we have another option: in ConTgXt Imtx you can define a specific expansion:

\defineexpansion
[myexpansion]
[step=1, % default
stretch=50,
shrink=20]

There is no need to have a different step than 1. In pdfTgX instances are created per step used, but in
LuaTgX this is more fluid. There is no gain in using different steps. We just keep it for compatibility
reasons. This specific expansion is enables with:

\setexpansion[myexpansion]

and the result is shown in figure 6.2. This time the set expansion wins over the one set in the font. All
fonts that have the expansion feature set are treated the same. By using this method you can locally have
different values.

Deep down we use some new primitives:

\adjustspacingstep
\adjustspacingstretch
\adjustspacingshrink

The step is limited to 100 (10%) and the stretch and shrink to 500 (50%) and the stretch to 1000 (100%)
but these extremes are only useful for examples.

Expansion 46

test me 1, test 1, test me 2, test 1, test 2, test me 3, test 1, test 2, test 3, test me 4, test 1, test 2, test 3, test 4,
test me 5, test 1, test 2, test 3, test 4, test 5, test me 6, test 1, test 2, test 3, test 4, test 5, test 6, test me 7, test
1, test 2, test 3, test 4, test 5, test 6, test 7, test me 8§, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test
8, test me 9, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test me 10, test 1, test 2, test 3, test
4, test 5, test 6, test 7, test 8, test 9, test 10, test me 11, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8,
test 9, test 10, test 11, test me 12, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11,
test 12, test me 13, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test
13, test me 14, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13,
test 14, test me 15, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test §, test 9, test 10, test 11, test 12,
test 13, test 14, test 15, test me 16, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10,
test 11, test 12, test 13, test 14, test 15, test 16, test me 17, test 1, test 2, test 3, test 4, test 5, test 6, test
7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test me 18, test 1, test 2, test
3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test
18, test me 19, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test
13, test 14, test 15, test 16, test 17, test 18, test 19, test me 20, test 1, test 2, test 3, test 4, test 5, test 6,
test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test
20, test me 21, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test
13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test me 22, test 1, test 2, test 3, test
4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test
18, test 19, test 20, test 21, test 22, test me 23, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9,
test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22,
test 23, test me 24, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test §, test 9, test 10, test 11, test 12,
test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test me
25, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14,
test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25, test me 26, test
1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15,
test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25, test 26, test me 27, test
1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15,
test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25, test 26, test 27, test me
28, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14,
test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25, test 26, test 27,
test 28, test me 29, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test §, test 9, test 10, test 11, test 12,
test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25,
test 26, test 27, test 28, test 29, test me 30, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9,
test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22,
test 23, test 24, test 25, test 26, test 27, test 28, test 29, test 30,

Figure 6.2

47 Expansion

7 Macros

In a rather large macro package like ConTgXt a user can’t know all the commands. Even I often only use
a handful of them. One danger luring is that commands can get redefined and that deep down such a
command is used and that the new definition is not doing the expected.

A command like \framed can have companions, like \setupframed. These for the user visible com-
mands are implemented using commands with less nice names, often in some namespace, using under-
scores and therefore also much longer. There is not that much change that a user spoils those. When a
user uses \defineframed, a new command gets defined and when doing that a user should know what
has already been defined.

In addition to these commands, we also have entities like character definitions and math symbols, as
well as a while lot of registers (counters, dimensions etc.), and let’s not forget primitives: the build in
commands.

We can go paranoid and try to protect all these commands from redefinitions, but one of the prominent
properties of TgX is that you can redefine commands. It therefore makes no sense to prohibit this. Also, in
practice there are seldom problems, at least haven’t heard of them. In fact, too much protection can also
bite us because sometimes redefinition is handy or even needed. Take for instance the \NC command
used in tables: it adapts itself to the circumstances.

At the engine level there is not that much that we can (currently) do. In LuaMetaTgX we can define frozen
macros. The question is: will we use that feature?

\frozen\def\foo{foo}

After this definition, one cannot easily redefine \ foo. It is however possible (unless these primitives are
redefined) to do this:

\unletfrozen\foo
and make \ foo available again. It’s companion is:
\letfrozen\foo

Because messing with frozen macros can issue an error message, we cannot demonstrate it on paper. But
we can show a few companion primitives because just to be complete, one can also unprotect and protect
existing macros:

\def\crapicrap? \edef\morecrapi\crap} \meaning\moreczrap
\letprotected\crap \edef\morecrapi\crap} \meaning\morecrap
\unletprotected\crap \edef\morecrapi\crap} \meaning\morecrap

Protection prevents expansion of macros in some cases. One can define a macro by using the prefix
\protected although in ConTgXt this doesn’t work as expected. The protected was already taken when
this primitive shows up, so we use \unexpanded or \normalprotected instead. And yes, that one also
clashes with a primitive that showed up later, but as it’s not used often, the longer \normalunexpanded
will do.

macro:->crap
macro:->\crap

Macros 48

macro:->crap

Back to freezing commands: the question is, will and if so, how will we use this in ConTgXt? This is one of
the decisions we have to make in 2020.

49 Macros

8 Libraries

8.1 Introduction

The LuaMetaTgX binary comes with a couple of libraries built in. These normally provide enough func-
tionality to get a TgX job done. But take the case where need to manipulate (or convert) an image before
we can include it? It would be nice if ConTgXt does that for you so having some features in the binary that
handle it make sense. However, given that such a conversion only happens once it makes more sense to
just call an external program and let that deal with it. It is for that reason that the ConTgXt code base has
hardly any library related code: most of what one wants to do can be done by calling a program. Some
callers are built in, others can be dealt with using the Adityas filter module. The most significant runtime
exception is probably accessing sql databases where it might be more efficient to use alibrary call instead
of calling a client. And even then the main reason for that interface being present is the simple fact that I
(ab)use the engine to serve requests that need some kind of database access. Another example of where
we need some external program is in generating barcodes. Here one can argue that it does make sense to
do that runtime, for instance because they change or because one doesn’t like to have dozens of cached
barcode images on disk.

In this chapter I will explain how we deal with libraries in LuaMetaTgX. Because libraries create a depen-
dency an approach is chosen that tries to avoid bloating the source tree with additional header and source
files. This is made easy by the fact that we don’t need full blown interfaces to libraries where all methods
are exposed. We know what we need and most of these tasks somehow relate to typesetting which is a
limited application with known demands in terms of input, output and performance. We don’t need to
serve every possible scenario.

8.2 Using LUA libraries

One approachistouse aLualibrary that sits between the embedded Lua instance and the external library.
Say that one does this:

local mylib = require("mylib")

This can locate and load the file mylib.lua which implements a bunch of (Lua) functions. But, it can also
load a library, for instance mylib.d11, a binary that provides functions that themselves can call external
ones. Often such a library is also responsible for some resource management which is then done via user-
data objects. Such a connector library on the one hand refers to Lua library methods (like const char
* str = lua_tostring (L, 1); for fetching a Lua string variable from the argument list) and on the
other hand to those in the external library (like passing that string st to a function and passing the result
back to Lua with lua_pushstring (L, result);). If we would follow that approach in LuaMetaTgX it
means that in addition to the main binary (on MS Windows that is luametatex.exe) thereis also an extra
intermediate binary (on MS Windows that is mylib.d11) plus the external library (on MS Windows that
could be foolib.d11) which itself can depend on other libraries.

In this approach we need to compile the extra intermediate libraries alongside the main LuaMetaTgX
binary. Quite likely we then need access to the header files of the external libraries too. We might even
decide to put the dependencies in our source tree. But, this is not what we like to do: it adds extra work,
we need to keep an eye on updates and operating specific patches, we complicate the compilation, etc.
This all contradicts the fact that we want LuaMetaTgX to be simple. There is no need to complicate the
setup just because a very few users want to use some library. Add to this the fact that quite likely we need

Libraries 50

to provide a version of LuaMetaTgX that exposes its Lua related symbols which makes for a larger binary.
So, this approach is not really an option because at the same time we like to keep the binary (and memory
footprint) as small as possible (think of running in a container or on a low energy device).

8.3 Avariant

There are a few issues when you use Lua libraries from elsewhere. First of all, you need to get hold of one
that matches the version of Lua that you use. There are not that many and some only can be set up as part
of alarger framework. Also, you can find plenty of modules that seem not to be maintained (or maybe they
are just very stable and I'm wrong here). Also, not all platforms are supported equally well. Then there is
the question to what extend libraries are to stay. What is considered to be the standard today might not
be tomorrow. Even in the rather stable TgX ecosystem we see them come and go. These are all reasons
to avoid hard coded dependencies. Ideally we like users to be able to compile LuaMetaTgX in the future
without too must hassle.

A couple of years after we started the LuaTgX project, a solution for using libraries was implemented,
called SwigLib, because it uses the swig infrastructure. It was an attempt to come up with a more or less
standard approach, a rather one-to-one mapping so that basically any library could be interfaced. But,
probably because no one really needs libraries, it never catched on. In MKIV we still support loading
libraries made that way but in Imtx that code has been removed.

As a side note: the code that deals with this in MKIV also deals with version specific loading. When we
were playing with for instance MySQL libs we found out that it made sense to be able to support different
apis, butin the end, given the rare usage of libraries, that made no sense either. Therefore in Imtx locating
libraries has version support removes and as a consequence is much simpler (code-wise).

8.4 Foreign function interfaces

Then there is a ffi interface, first introduced in LuajitTgX as it is part of LuaJIT, and later a similar library
was built-in LuaTgX. But LuaJIT doesn’t conceptually follow Lua upgrades and its future is unsure so in
LuaMetaTgX there is no jit variant (the jit part was never used anyway as it only slowed down a run; we just
used the ffi part plus the fact that the restricted virtual machine performs better). The ffi library used in
LuaTgX also comes from elsewhere and it doesn’t seem to be maintained any longer, so that code is to be
keptworking in the perspective of LuaTgX. Both technologies hook into the processor architecture and are
somewhat complex so when their maintenance becomes unsure we have to reconsider using them. Not
all hardware platforms are supported* and the functionality can differ in details per platform. To some
extend we can keep using ffi in LuaTgX because Luigi takes care of it, but who knows when it becomes too
problematic. Does it make sense to adopt a library that needs tweaks depending on architectures? For
now we're good for LuaTgX, so for a while we’re also okay (in MKIV).

The nice thing about ffi is that one can define the interface at runtime. Of course this interface has to fit
the current version of the library api, but that is doable. Itis up to a user of a library to determine where it
comes from. It can be putin the TgX tree but also being taken from wherever the operating system put itin
the path. Of course that can then be a bit of an issue when there are different versions because programs
can ship their own variants, but when you use a library you probably are aware of that and know what
you're doing. A drawback of ffi is that it opens up the whole machinery pretty low level, which can be
considered a risk. Some can consider that to be a security threat. It for these reasons that LuaMetaTgX
doesn’t provide the ffi feature; users who depend on it can of course use MkIV with LuaTgX.

4 AsIwrite this only Intel works while ARM doesn’t and only on MS Windows, linux and os-x I can compile without alignment warnings

51 Libraries

8.5 So how to proceed?

When a library and its Lua interface are kept external the main binary has to be compiled in a way that
permits loading libraries (read: symbols need to be known). When we use ffi that is not needed. And
when a library is internal we have the disadvantage that we mentioned at the start of this chapter.

So, how do we combine the advantages of ffi (runtime binding), external libraries (no need to have all
that code in the code base) and internal libraries (no loading issues)? At some point it stroke me that
we actually can do that with not that much effort. The solution was probably subconsciously implanted
by noticing the fact that the LuaMetaTgX machinery uses function pointers in some places and the fact
that when a Lua library is loaded by Lua itself, a specific initialization function is called to initialize it: by
combining these concepts we can delay the binding till when a library is needed.

In LuaMetaTgX we can therefore have some optional libraries that offer a minimal interface because after
all we can do a lot at the Lua end. Optional libraries register themselves in the global optional table.
We're talking of a couple of hundred lines of C for a simple binding. The functions in an optional library
table can be used (accessed) without loading the library and then just do nothing useful. So, before using
them you need to load the third party library but we can safely assume that the Lua wrapper code calls an
initializer when it needs some feature. That initializer, which by the way is located at the Lua end, loads the
external library, and when that is successful the needed helpers are bound by resolving function pointers.
There is no dependency when nothing is used: the main binary stays lean and mean because the binding
normally only adds a few KB. Users can compile without dependencies and when used performance is
quite okay (no ffi overhead).

The LuaMetaTgX distribution only ships a few such bindings but these can serve as example. What is
shipped has a proper Lua companion file and these are then the standard one used in the ConTgXt dis-
tribution. Think of MySQL and SQLite (for databases), zint (for barcodes), simple Curl (for fetching stuff),
Ghostscript and GraphicsMagick (for some conversions) bindings . When compiled into LuaMetaTgX
these will add some interfacing code to the main binary but that gets compensated by the removal of
the ffi library. The Lua interfaces provide just enough to get us going. At some point we can consider
providing libraries as optional part of an installation because we can generate them using the buildbot
infrastructure managed by Mojca, but the core distribution (source code) is kept clean.

Libraries 52

53 Libraries

9 Is LUAMETATEX still TEX?

9.1 Introduction

Is LuaMetaTgX really a TgX (compatible) engine? The answer to that depends on how you define TgX. If you
think of the program with the same name, the answer is definitely “no”, simply because a program that
is not exactly behaving like “TgX The Program” cannot be called TgX. This is why derived programs have
texintheir name but also some addition that indicates that it isn’t the original: e, pdf, 1ua. Don’t confuse
that with macro package names that have tex in their name. If you find such binaries that they are likely
some stub to an engine (binary) that preloads a format file (a memory dump) with the same name.

When you mean “TgX The Macro Language” the answer is a bit more nuanced especially when the results
are pretty close to identical. In the next sections I will discuss this in more detail from the perspective of
how ConTgXt evolved and what engines it has used.

9.2 Multiple engines

When we started with ConTgXt there was not that much choice in engines. Basically one just used original
TgX, but although we used the version that came with the book, pretty soon we switched to emTgX, a ver-
sion that gave more memory; later a real huge version showed up. The fonts used were bitmaps and the
viewer was a dvi bitmap viewer. However, when our new printer could not be set up properly we decided
to move on to PostScript fonts. That also meant using a different backend driver (dvipsone). And then of
course we also started using a previewer that could handle outline fonts. Once you start along that route
graphics come into play, color shows up and hyperlinks become an option. A couple of years later the
pdf document rendering format was introduced. This paragraph already mentions a lot of different pro-
grams and adaptations, but we’re still talking good old TgX here and ConTgXt was set up in such a way that
it adapted itself to whatever ecosystem made sense. When looking at TgX one has to consider the front as
well as the backend, and both have related primitives and features. Extensions to the frontend have been
driven by the demands of macro packages (beyond the original ideas) and those of the backend relate to
what the evolving rendering demands impose.

A couple of decades ago the e-TgX project started. It’s objective was to extend stable TgX with a couple of
more primitives and features: it is a superset and therefore still TgX, but as it really is an extension the
name was extended too (with the bit unusual character ¢). At that point the main reason for ConTgXt was
convenience because the new features were already kind of present in the code base (think of emulated
behavior). Again the macro package adapted itself at runtime.

Then pdfTEX came around which had some impact. It introduced the concept of a built-in backend that
avoided additional programs. The e-TgX extensions were merged into this program so that basically
meant that it replaced its predecessors. For a user pdf TgX was just TgX. For some reason the narrative
became that ConTgXt depended on pdfTgX, probably because it was always quick in using its features, a
side effect of being close to the development.

The ConTgXt package was an early adopter of MetaPost and that graphic subsystem, although still exter-
nal, was integrated in such a way that users could think of it being embedded. This was made possible by
the fact that right from the start ConTgXt came with an infrastructure that handled processing including
subruns as needed for MetaPost. This is why, years later, adding a MetaPost library to LuaTgX was a logical
step. As ConTgXt came with a lot of scripts (for all kind of tasks related to typesetting and managing a TgX
ecosystem) adding a scripting language (like Lua) was not that strange either.

Is LuaMetaTgX still TgX? 54

5]

In parallel to pdf TEX the experimental Omega program was on its way and although at some point a stable
Aleph variant was there, it never was robust enough for production. Its main contribution (that survived)
was the introduction if directional typesetting. There were ConTgXt users using it but for very specific
applications. It’s also why the bidirectional model of Omega inspired LuaTgX more than the simpler model
that e-TgX used.

9.3 The merge

We now move forward to LuaTgX and more precisely LuaMetaTgX because that is for ConTgXt the engine
of choice now. To what extend is it TgX or not? The naive answer is “no” because some primitives are not
present and/or are implemented using Lua. However, these primitives fall into categories. Some relate
to the backend and in LuaMetaTgX the backend is not built-in and as a consequence a macro package
has to provide the primitives as part of its implementation of a backend. This is no big deal because the
backend related primitives in TgX The Program are actually examples of extensions and implemented as
such. Handling them happens in kind of isolated code. Take \special: it is basically a no-op when the
dvi driver doesn’t interpret what is passed to the dvi file.5¢

A more drastic change is the lack of font loaders and that no fonts can be stored in the format. Again this
relates to the simple fact that todays fonts are more demanding so we need to extend the machinery and
as we do that via Lua extensions we can as well do all that way. Less drastic, but it could have side effects,
is that the machinery has to be able to deal with OpenType math. And of course all is Unicode aware so
additional primitives cope with that. But in principle the old stuff should still work. Hyphenation is also
expanded: patterns are loaded runtime and the hyphenation, ligature building and kerning stages are
split, which actually it a good thing.

The LuaMetaTgX code base is a follow up on LuaTgX, that combines good old TgX (but adapted with re-
spect to fonts, languages and math as mentioned), parts of e-TgX (so it provides more primitives), bits
of pdfTeX (like protrusion and expansion, although adapted), and rudiments of Omega (Aleph). And of
course there’s a lot of new stuff too, primitives as well as ways to plug in Lua code plus some helpers at
the Lua end.

As an example of progression, by now the e-TgX extensions that we kept are integrated more naturally in
existing subsystems. A nice detail is that there are no longer any version numbers that relate to e-TgX; for
a while they were kept but suddenly I realized that it makes no sense to waste (four) command codes on
something that is of not much use: there has never been a real ¢-TgX follow up after its stable release so
testing for a version makes no sense. No backend means no pdfTgX version info too and Omega version
numbers serve no purpose either. If a macro package needs to know what functionality is there, testing
for the LuaTgX version number, revision and maybe functionality level makes enough sense. By the way,
one reason for a clean up related to e-TgX was that where e-TgX uses change files to replace or extend
good old TgX code, LuaTgX has one integrated code base.

9.4 The verdict

So in the end the answer is that LuaMetaTgX is mostly TgX but that due to developments like for instance
Unicode, OpenType fonts and math, as well as the wish to use images, color, runtime graphics, direction-
ality, features beyond what the engine has built, etc. in the end it hopefully meets the demands to today. In

ConTgXt MKII has a bunch of backend drivers, TgX code, that targets specific postprocessors and they hook into primitives like
\special or the additional \pdf ... onesin pdfTgX.

We need to keep in mind that by the time pdf TgX and later LuaTgX were developed memory constraints were lifted so these engines
didn’t have to work around the limitations that for instance e-TgX and Omega had to cope with.

55 Is LuaMetaTgX still TEX?

its core the same code is still there although extensions and hooks got mixed in more naturally. When in
documents (or talks) I speak of TgX I basically refer to a concept (materialized in the set of core primitives
and related functionality) but once extensions come into play I try to talk of LuaTgX or LuaMetaTgX. This
happens kind of automatic because I know what got added but I can imagine that users who entered the
game later don’t always see what was added (and when).

Is LuaMetaTgX still TEX? 56

57 Is LuaMetaTgX still TEX?

10 Numbers

A few decades of programming in the TgX language can make one wish for certain features. It will there-
fore be no surprise that in LuaTgX (and even more in LuaMetaTgX) we have some additional functionality.
However, [have to admit that some of these are not used that much in ConTgXt MKIV and Imtx. The reason
is that some wishes date from MKII times and because we now have Lua we actually don’t need that many
new fancy features. Also, it makes no sense to rewrite mechanisms that are already working well. How-
ever, in order to fully exploit the possibilities that Lua gives, there are some additions that relate to the
way this language can communicate with TgX. Of course there’s also the issue of a potentially enhanced
performance, but there is not much to gain in that department.

A side effect of adding features, of which some are just there to complete the picture, or, as mentioned,
because they were supposed to make sense, is that I make examples. Here I show the result of one of
these experiments. I have no clue how useful this is, but I've learned not to underestimate users in their
demands and creativity.

Internally, TgX does all in 32 bit integers. When you say:

\scratchcounter 123
\scratchdimen 123pt

the 123 gets assigned to a count register and the 123pt is assigned to a dimen register but actually that is
then also an integer: the internal unit of a dimen is a scaled point (sp) and only when its value is shown to
the user, a real number can show up, followed by the pt unit. The precision is limited, so you can expect
about four decimal positions precision here. There is no concept of a floating point number in TgX, and
the only case where a float gets used is in the final calculations of glue and even that only comes into play
in the backend.

So, although I don'’t really have an application for it in ConTgXt (otherwise I'd already added a float data
type to the engine), it sounded like a good idea to see if we could emulate float support. In the following
examples the numbers are managed in Lua and therefore they are global. I could make a local variant but
why complicate matters. These macros start with \1ua to make clear that they are not managed by TgX.

\luacardinal bar 123
\luainteger bar -456
\luafloat bar 123.456E-3

We define bar three times. Each type gets its own hash, so from the perspective of Lua its nature is kept:
integer or double.

\the\luacardinal bar \quad
\the\luainteger bar \quad
\the\luafloat bar

123 -456 0.12345599999999999629718416827017790637910366058349609375
Instead of decimal values, you can also use hexadecimal values (watch the p for exponents):

\luacardinal bar 0x123
\luainteger bar -0x456
\luafloat bar 0x123.456p-3

Numbers 58

So, now we get:
291 -1110 36.40887451171875

From these examples you see two kind of usage: setting a value, and using it. Itis that property that makes
them special. Because the macros are implemented using Lua calls it means that at the Lua end we know
what usage is expected. And it is that dualistic property that I wanted to explore but that in the end only
makes sense it a very few cases, but sometimes those few are important. We could of course two macros,
a setter and a getter, but using one kind of its in.

The setters accept an optional equal sign, as in:

\luainteger gnu= 123456 \luafloat gnu= 123.456e12
\luainteger gnu = 123456 \luafloat gnu = 123.456e12
\luainteger gnu =123456 \luafloat gnu =123.456e12

Although Lua is involved in picking up the value, storing it someplace, and retrieving it on demand, per-
formance is pretty good. You probably won’t notice the overhead anyway.

The values that \the returns are serialized numbers. However, sometimes you want what TgX sees as a
numeric token, For that we have these variants

\luadimen test 100pt
\scratchdimen = .25 \luadimen test
\the\scratchdimen

Which produces the expected value: 25.0pt, something that depends on the fact that the dimension is
not a serialized. Talking of serialization, there are several ways that Lua can do that so let’s give some
examples. We start with some definitions. Beware, floats and cardinals are stored independently!

\luacardinal x -123
\luacardinal y = 456

\luafloat X
\luafloat y

123.123
-456.456

We have a macro \luaexpression (not to be confused with \1uaexpr) that takes an optional keyword:

- : \luaexpression in.x + 2xn.y}
f : \luaexpression float in.x + 2xn.y#
i : \luaexpression integer {n.x + 2xn.y}
¢ : \luaexpression cardinal {n.x + 2%n.y}
b : \luaexpression boolean {n.x + 2xn.y#
1 : \luaexpression lua in.x + 2xn.y}

The serialization can be different for these cases:

- : -789.789

f : -789.788999999999987267074175179004669189453125
i: -790

c : 790

b :1

1 : -0x1.8aed4fdf3bb645ap+9

59 Numbers

The numbers namespace resolves to a float, integer or cardinal (in that order) and calculations take place
as in Lua. If you only use integers then normally Lua will also serialize them as such.

Here is another teaser. Say that we set the scratchdimen register to a value:
\scratchdimen 123.456pt

We now introduce the \nodimen macro, that can be used this way:
[\the\scratchdimen] [\the\nodimen\scratchdimen]

[123.456pt] [123.456Dt]

which is not that spectacular. Nor is this:

\nodimen\scratchdimen =

654.321pt

But how about this:

\the
\the
\the
\the
\the
\the
\the
\the
\the
\the

\nodimen
\nodimen
\nodimen
\nodimen
\nodimen
\nodimen
\nodimen
\nodimen
\nodimen
\nodimen

bp
cc
cm
dd
in
mm
nc
nd
pt
sp

\scratchdimen
\scratchdimen
\scratchdimen
\scratchdimen
\scratchdimen
\scratchdimen
\scratchdimen
\scratchdimen
\scratchdimen
\scratchdimen

651.876462bp
50.959168cc
22.996753cm
611.510013dd
9.053841in
229.96753mm
51.103896nc
613.246746nd
654.320999pt
42881581sp

So here we have a curious mix of setter and getter. The setting part is not that interesting but we just
provide it as convenience (and demo). Of course we can have 10 specific macros instead. Keep in mind
that this is a low level macro, so it doesn’t use the normal ConTgXt user interface.

A bit more complex are one or two dimensional arrays. Again this is an example implementation where
users can come up with more ideas.

\newarray name integers type integer nx 2 ny 2
\newarray name booleans type boolean nx 2 ny 2
\newarray name floats type float nx 2 ny 2
\newarray name dimensions type dimension nx 4

Here we define three two-dimensional assays and one one-dimensional array. The type determines the
initialization as well as the scanner and serializer. Values can be set as follows:

\arrayvalue integers 124 \arrayvalue integers 218
\arrayvalue booleans 1 2 true \arrayvalue booleans 2 1 true
\arrayvalue floats 12 12.34 \arrayvalue floats 21 34.12
\arrayvalue dimensions 1 12.34pt \arrayvalue dimensions 3 34.12pt

If you want to check an array on the console, you can say:
\showarray integers

We now access some values. Apart from the float these are (sort of) native data types.

Numbers 60

[\the\arrayvalue integers 1 2]
[\the\arrayvalue booleans 1 2]
[\the\larrayvalue floats 1 2]
[\the\arrayvalue dimensions 1]J\crlf
[\the\arrayvalue integers 2 1]
[\the\arrayvalue booleans 2 1]
[\the\arrayvalue floats 2 1]

[\the\arrayvalue dimensions 3]
This produces:

[4]1[1][12.339999999999999857891452847979962825775146484375] [12.34pt]
[8]1[1][34.11999999999999744204615126363933086395263671875][34.12pt]

You can of course use these values in many ways:

\dostepwiserecurseil}{i4$3$1%:
[\the\arrayvalue dimensions #1 :
\luaexpression dimen {math.sind(30) % a.dimensions[#1]%]

$
This gives:
[12.34pt: 6.17pt] [0.0pt: Opt] [34.12pt: 17.06pt] [0.0pt: Opt]

In addition to the already seen integer and dimension variables fed back into TgX, we also have booleans.
These are just integers with the value zero or one. In order to make their use easier there is a new
\ifboolean primitive that takes such a bit:

slot 1 is \ifboolean\arrayequals dimensions 1 Opt zero \else not zero \fi
slot 2 is \ifboolean\arrayequals dimensions 2 Opt zero \else not zero \fi

We get:

slot 1 is not zero
slot 2 is zero

A variant is a comparison macro. Of course we can use the dimen comparison conditional instead:

slot 1: \ifcase\arraycompare dimensions 1 3pt 1t \or eq \else gt \fi zero
slot 2: \ifcaselarraycompare dimensions 2 3pt 1t \or eq \else gt \fi zero
slot 3: \ifcaselarraycompare dimensions 3 3pt 1t \or eq \else gt \fi zero
slot 4: \ifcaselarraycompare dimensions 4 3pt 1t \or eq \else gt \fi zero
slot 1: \ifcmpdim\arrayvalue dimensions 1 3pt 1t \or eq \else gt \fi zero
slot 2: \ifcmpdim\arrayvalue dimensions 2 3pt 1t \or eq \else gt \fi zero
slot 3: \ifcmpdim\arrayvalue dimensions 3 3pt 1t \or eq \else gt \fi zero
slot 4: \ifcmpdim\arrayvalue dimensions 4 3pt 1t \or eq \else gt \fi zero
We get:

slot 1: gt zero
slot 2: 1t zero

61 Numbers

slot 3: gt zero
slot 4: 1t zero

slot 1: gt zero
slot 2: 1t zero
slot 3: gt zero
slot 4: 1t zero

Anyway, the question is: do we need this kind of trickery, and if so, what more is needed? But beware: we
do have Lua anyway, so there is no need for a complex user interface at the TgX end just for the sake of it
looking more TgX. The above shows a bit what is possible.

It is too soon to discuss the low level interface because it still evolves. After some initial experiments, I
decided to follow a slightly different route, and often the third implementation starts to look what I like
more.

Numbers 62

63 Numbers

11 Parameters

When TgX reads input it either does something directly, like setting a register, loading a font, turning
a character into a glyph node, packaging a box, or it sort of collects tokens and stores them somehow,
in a macro (definition), in a token register, or someplace temporary to inject them into the input later.
Here we’ll be discussing macros, which have a special token list containing the preamble defining the
arguments and a body doing the real work. For instance when you say:

\def\food#l#2{#1 + #2 + #1 + #2%

the macro \ foo is stored in such a way that it knows how to pick up the two arguments and when expand-
ing the body, it will inject the collected arguments each time a reference like #1 or #2 is seen. In fact, quite
often, TEX pushes a list of tokens (like an argument) in the input stream and then detours in taking tokens
from that list. Because TgX does all its memory management itself the price of all that copying is not that
high, although during a long and more complex run the individual tokens that make the forward linked
list of tokens get scattered in token memory and memory access is still the bottleneck in processing.

A somewhat simplified view of how a macro like this gets stored is the following:

hash entry "foo" with property "macro call" =>

match (# property stored)
match (# property stored)
end of match

match reference
other character
match reference
other character
match reference
other character
match reference

N+ R+ N+ R

When a macro gets expanded, the scanner first collects all the passed arguments and then pushes those
(in this case two) token lists on the parameter stack. Keep in mind that due to nesting many kinds of
stacks play a role. When the body gets expanded and a reference is seen, the argument that it refers to
gets injected into the input, so imagine that we have this definition:

\foo#l#2{\ifdim\dimenO=0pt #1\else #2\fi}
and we say:

\foo{yestino}

then it’s as if we had typed:

\ifdim\dimen0=0pt yes\else no\fi

So, you'd better not have something in the arguments that messes up the condition parser! From the
perspective of an expansion machine it all makes sense. But it also means that when arguments are not
used, they still get parsed and stored. Imagine using this one:

Parameters 64

\def\foo#l{\iffalsef#1\oof#1\oof#1\oof#1\oof#I1\£i}

When TgX sees that the condition is false it will enter a fast scanning mode where it only looks at condition
related tokens, so even if \oof is not defined this will work ok:

\foos!?

But when we say this:

\foof\else?

It will bark! This is because each #1 reference will be resolved, so we effectively have
\def\foo#l{\iffalse\else\oof\else\oof\else\oof\else\oof\else\fi}

which is not good. On the other hand, since expansion takes place in quick parsing mode, this will work:

\def\oof{\else?
\foo\oof

which actually is:
\def\foo#l{\iffalse\oof\oof\oof\oof\oof\oof\oof\oof\oof\fi}

So, a reference to an argument effectively is just a replacement. As long as you keep that in mind, and
realize that while TgX is skipping ‘if’ branches nothing gets expanded, you're okay.

Most users will associate the # character with macro arguments or preambles in low level alignments, but
since most macro packages provide a higher level set of table macros the latter is less well known. But,
as often with characters in TgX, you can do magic things:

\catcode ?=\catcode #

\def\foo #1#2?3§{?1?2?3% \meaning\foo\space=>\fo0$1}{2}{3%\par
\def\foo ?1#2?3{?1?2?3% \meaning\foo\space=>\fo0$1}{2}{3%\par
\def\foo ?1?2#3{?1?2?3% \meaning\foo\space=>\fo0$1}{2}{3%\par

Here the question mark also indicates a macro argument. However, when expanded we see this as result:

macro:#1#2?3->?17?2?3 =>123
macro:?14#2?3->?17?2?3 =>123
macro:?1?2#3->#14243 =>123

The last used argument signal character (officially called a match character, here we have two that fit that
category, ## and ?) is used in the serialization! Now, there is an interesting aspect here. When TgX stores
the preamble, as in our first example:

match (# property stored)
match (# property stored)
end of match

the property is stored, so in the later example we get:

match (# property stored)
match (# property stored)

65 Parameters

match (? property stored)
end of match

But in the macro body the number is stored instead, because we need it as reference to the parameter,
so when that bit gets serialized TgX (or more accurately: LuaTgX, which is what we’re using here) doesn’t
know what specific signal was used. When the preamble is serialized it does keep track of the last so-
called match character. This is why we see this inconsistency in rendering.

A simple solution would be to store the used signal for the match argument, which probably only takes a
few lines of extra code (using a nine integer array instead of a single integer), and use that instead. I'm
willing to see that as a bug in LuaTgX but when I ran into it I was playing with something else: adding the
ability to prevent storing unused arguments. But the resulting confusion can make one wonder why we
do not always serialize the match character as #.

It was then that I noticed that the preamble stored the match tokens and not the number and that TgX in
fact assumes that no mixture is used. And, after prototyping that in itself trivial change I decided that
in order to properly serialize this new feature it also made sense to always serialize the match token as
. I simply prefer consistency over confusion and so I caught two flies in one stroke. The new feature is
indicated with a #0 parameter:

\bgroup
\catcode ?=\catcode #

\def\foo ?1?0?3§?1?2?3% \meaning\foo\space=>\f00§1}{2%{3%\crlf
\def\foo ?1#0?3§?1?2?3% \meaning\foo\space=>\f00$1}{2%{3%\crlf
\def\foo #1#2?3§?1?2?3% \meaning\foo\space=>\f00$1}{2%{3%\crlf
\def\foo ?1#2?3§?1?2?3}% \meaning\foo\space=>\foo{l1l$3$2}{3}\crlf
\def\foo ?1?2#3§?1?2?3% \meaning\foo\space=>\foo{l$3$2%{3}\crlf
\egroup

macro:#1#0#3->#1#2#3 =>13
macro:#1#0#3->#1#2#3 =>13
macro:#1#2#3->#1#2#3 =>123
macro:#1#2#3->#1#2#3 =>123
macro:#1#2#3->#1#2#3 =>123

So, what is the rationale behind this new #0 variant? Quite often you don’t want to do something with an
argument at all. This happens when a macro acts upon for instance a first argument and then expands
another macro that follows up but only deals with one of many arguments and discards the rest. Then
it makes no sense to store unused arguments. Keep in mind that in order to use it more than once an
argument does need to be stored, because the parser only looks forward. In principle there could be
some optimization in case the tokens come from macros but we leave that for now. So, when we don’t
need an argument, we can avoid storing it and just skip over it. Consider the following:

\def\foo #13\ifnum#l=1 \expandafter\fooone\else\expandafter\footwo\fi}
\def\fooone#l1#03#1}

\def\footwoH#0#25#2}

\fooflfiyestinot

\foof{0Of{iyestinot

We get:

yes no

Parameters 66

7

Just for the record, tracing of a macro shows that indeed there is no argument stored:

\def\foo#1#0#3{....%
\fo0{11%{22%{33%
\foo #1#O#3->....
#1<-11

#2< -

#3<-33

Now, you can argue, what is the benefit of not storing tokens? As mentioned above, the TgX engines do
their own memory management.” This has large benefits in performance especially when one keeps in
mind that tokens get allocated and are recycled constantly (take only lookahead and push back).

However, even if this means that storing a couple of unused arguments doesn’t put much of a dent in
performance, it does mean that a token sits somewhere in memory and that this bit of memory needs to
getaccessed. Again, thisisno big deal on a computer where a TgX job can take one core and basically is the
only process fighting for cpu cache usage. But less memory access might be more relevant in a scenario
of multiple virtual machines running on the same hardware or multiple TgX processes on one machine. I
didn’t carefully measure that so I might be wrong here. Anyway, it’s always good to avoid moving around
data when there is no need for it.

Just to temper expectations with respect to performance, here are some examples:

\catcode !=9 % ignore this character
\firstoftwoarguments
srirrrrrrrrrrrrrrrrrzsrrrrrrrrrrrrrrrrrnd
\secondoftwoarguments
srrrrrrrrrrrrrrrrrrrEserrrrrrrrrrrrrrrrnt
\secondoffourarguments
srrrrrrrrrrrrrrrrrrrEsrrrrrrrrrrrrrrrrent
srrrrrrrrrrrrrrrrrrrEsrrrrrrrrrrrrrrrrent

In ConTgXt we define these macros as follows:

\def\firstoftwoarguments #F1F2541 %
\def\secondoftwoarguments FL#232%
\def\secondoffourarguments#l#23#45#2%

The performance of 2 million expansions is the following (probably half or less on a more modern ma-
chine):

macro total step

\firstoftwoarguments 0.245 0.000000123
\secondoftwoarguments 0.251 0.000000126
\secondoffourarguments 0.390 0.000000195

But we could use this instead:

\def\firstoftwoarguments #1031 E
\def\secondoftwoarguments 042 $4F2F
\def\secondoffourarguments#0o#2#0#0{#2}

An added benefit is that dumping and undumping is relatively efficient too.

67 Parameters

which gives:

macro total step

\firstoftwoarguments 0.229 0.000000115
\secondoftwoarguments 0.236 0.000000118
\secondoffourarguments 0.323 0.000000162

So, no impressive differences, especially when one considers that when that many expansions happen in
arun, getting the document itself rendered plus expanding real arguments (not something defined to be
ignored) will take way more time compared to this. I always test an extension like this on the test suite® as
well as the LuaMetaTgX manual (which takes about 11 seconds) and although one can notice a little gain,
it makes more sense not to play music on the same machine as we run the TgX job, if gaining milliseconds
is that important. But, as said, it’s more about unnecessary memory access than about cpu cycles.

This extension is downward compatible and its overhead can be neglected. Okay, the serialization now
always uses i but it was inconsistent before, so I'm willing to sacrifice that (and I'm pretty sure no ConTgXt
user cares or will even notice). Also, it’s only in LuaMetaTgX (for now) so that other macro packages don’t
suffer from this patch. The few cases where ConTgXt can benefit from it are easy to isolate for MKIV and
Imtx so we can support LuaTgX and LuaMetaTgX.

I mentioned LuaTgX and how it serializes, but for the record, let’s see how pdfTgX, which is very close to
original TgX in terms of source code, does it. If we have this input:

\catcode D=\catcode #
\catcode 0O=\catcode #
\catcode N=\catcode #
\catcode -=\catcode #
\catcode K=\catcode #
\catcode N=\catcode #
\catcode U=\catcode #
\catcode T=\catcode #
\catcode H=\catcode #

\def\dek D102N3-4K5N6U7T8HO$#14243 #4464748#9%
1\meaning\dek \tracingall \dek don{tknuth}?

The meaning gets typeset as:
macro:D102N3-4K5N6U7T8H9->H1IH2H3 H4H6H7H8H9don nuth
while the tracing reports:

\dek D102N3-4K5N6U7T8H9->H1H2H3 H5H6H7H8H9
D1<-d

02<-o0

N3<-n

4<

K5<-k

Currently some 1600 files that take 24 minutes plus or minus 30 seconds to process on a high end 2013 laptop. The 260 page manual
with lots of tables, verbatim and MetaPost images takes around 11 seconds. A few milliseconds more or less don’t really show here.
I only time these runs because I want to make sure that there are no dramatic consequences.

Parameters 68

N6<-n
U7<-u
T8<-t
H9<-h

The reason for the difference, as mentioned, is that the tracing uses the template and therefore uses the
stored match token, while the meaning uses the reference match tokens that carry the number and at
that time has no access to the original match token. Keeping track of that for the sake of tracing would
not make sense anyway. So, traditional TgX, which is what pdf TgX is very close to, uses the last used match
token, the H. Maybe this example can convince you that dropping that bit of log related compatibility is
not that much of a problem. I just tell myself that I turned an unwanted side effect into a new feature.

A few side notes

The fact that characters can be given a special meaning is one of the charming properties of TgX. Take
these two cases:

\bgroup\catcode \&=5 &\egroup
\bgroup\catcode \!=5 !\egroup

In both lines there is now an alignment character used outside an alignment. And, in both cases the error
message is similar:

! Misplaced alignment tab character &
! Misplaced alignment tab character !

So, indeed the right character is shown in the message. But, as soon as you ask for help, there is a dif-
ference: in the first case the help is specific for a tab character, but in the second case a more generic
explanation is given. Just try it.

The reason is an explicit check for the ampersand being used as tab character. Such is the charm of TgX.
I'll probably opt for a trivial change to be consistent here, although in ConTgXt the ampersand is just an
ampersand so no user will notice.

There are a few more places where, although in principle any character can serve any purpose, there are
hard coded assumptions, like $ being used for math, so a missing dollar is reported, even if math started
with another character being used to enter math mode. This makes sense because there is no urgent need
to keep track of what specific character was used for entering math mode. An even stronger argument
could be that TgXies expect dollars to be used for that purpose. Of course this works fine:

\catcode €=\catcode'$
€ \sqrti{x"3% €

But when we forget an € we get messages like:
! Missing $ inserted

or more generic:

! Extra %, or forgotten $

which is definitely a confirmation of “America first”. Of course we can compromise in display math be-
cause this is quite okay:

69 Parameters

\catcode €=\catcode'$
$€ \sqrtix"3t €$

unless of course we forget the last dollar in which case we are told that
! Display math should end with $$

so no matter what, the dollar wins. Given how ugly the Euro sign looks I can live with this, although I
always wonder what character would have been taken if TgX was developed in another country.

Parameters 70

71 Parameters

12 Parsing

The macro mechanism is TgX is quite powerful and once you understand the concept of mixing parame-
ters and delimiters you can do a lot with it. I assume that you know what we’re talking about, otherwise
quit reading. When grabbing arguments, there are a few catches.

- When they are used, delimiters are mandate: TgX will go on reading an argument till the (current)
delimiter condition is met. This means that when you forget one you end up with way more in the
argument than expected or even run out of input.

« Because specified arguments and delimiters are mandate, when you want to parse input, you often
need multi-step macros that first pick up the to be parsed input, and then piecewise fetch snippets.
Bogus delimiters have to be appended to the original in order to catch a run away argument and check-
ing has to be done to get rid of them when all is ok.

The first item can be illustrated as follows:
\def\foo[#1]5...%

When \foo gets expanded TgX first looks for a [and then starts collecting tokens for parameter #1. It
stops doing that when aa] is seen. So,

\starttext
\foo[whatever
\stoptext

will for sure give an error. When collecting tokens, TgX doesn’t expand them so the \stoptext is just
turned into a token that gets appended.

The second item is harder to explain (or grasp):
\def\foo[#1=4#2]% (#1/#2)}%
Here we expect a key and a value, so these will work:

\foo[key=value]
\fool[key=]

while these will fail:

\foo[key]
\foo[]

unless we have:

\foo[key]=]
\foo[]=]

But, when processing the result, we then need to analyze the found arguments and correct for them being
wrong. For instance, argument #1 can become] or here key]. When indeed a valid key/value combina-
tion is given we need to get rid of the two ‘fixup’ tokens =]. Normally we will have multiple key/value pairs
separated by a comma, and in practice we only need to catch the missing equal because we can ignore
empty cases. There are plenty of examples (rather old old code but also more modern variants) in the

Parsing 72

ConTgXt code base.

I will now show some new magic that is available in LuaMetaTgX as experimental code. It will be tested in
Imtx for a while and might evolve in the process.

\def\food#l=#2, 3 (#1/#2)}

\foo 1=2,\ignorearguments
\foo 1=2\ignorearguments
\foo 1\ignorearguments
\foo \ignorearguments

Here we pick up a key and value separated by an equal sign. We end the input with a special signal com-
mand: \ignorearguments. This tells the parser to quit scanning. So, we get this, without any warning
with respect to a missing delimiter of running away:

(1/2)(2/2)@N{)

The implementation is actually fairly simple and adds not much overhead. Alternatives (and I pondered
a few) are just too messy, would remind me too much of those awful expression syntaxes, and definitely
impact performance of macro expansion, therefore: a no-go.

Using this new feature, we can implement a key value parser that does a sequence. The prototypes used
to get here made only use of this one new feature and therefore still had to do some testing of the results.
But, after looking at the code, I decided that a few more helpers could make better looking code. So this
is what I ended up with:

\def\grabparameter#1=4#2,%
{\ifarguments\or\or
% (\whatever/#1/#2)\par%
\expandafter\def\csname\namespace#l\endcsname{#2}1%
\expandafter\grabnextparameter

\fi§

\def\grabnextparameter
i\expandafterspaces\grabparameter?

\def\grabparameters [#1]#2[#3]%
i\def\namespace$#13%
\expandafterspaces\grabparameter#3\ignorearguments\ignorearguments?

Now, this one actually does what the ConTgXt \getparameters command does: setting variables in a
namespace. Being a parameter driven macro package this kind of macros have been part of ConTgXt
since the beginning. There are some variants and we also need to deal with the multilingual interface.
Actually, MKIV (and therefore Imtx) do things a bit different, but the same principles apply.

The \ignorearguments quits the scanning. Here we need two because we actually quit twice. The
\expandafterspaces can be implemented in traditional TgX macros but I though it is nice to have it
this way; the fact that I only now added it has more to do with cosmetics. One could use the already some-
what older extension \ futureexpandis (which expands the second or third token depending seeing the
first, in this variant ignoring spaces) or a bunch of good old primitives to do the same. The new condi-
tional \ifarguments canbeused toact upon the number of arguments given. It reflects the most recently
expanded macro. There is also a \lastarguments primitive (that provides the number of arguments.

73 Parsing

So, what are the benefits? You might think that it is about performance, but in practice there are not that
many parameter settings going on. When I process the LuaMetaTgX manual, only some 5000 times one
or more parameters are set. And even in a way more complex document that I asked my colleague to run
Iwas a bit disappointed that only some 30.000 cases were reported. I know of users who have documents
with hundreds of thousands of cases, but compared to the rest of processing this is not where the per-
formance bottleneck is.? This means that a change in implementation like the above is not paying off in
significantly better runtime: all these low level mechanisms in ConTgXt have been very well optimized
over the years. And faster machines made old bottlenecks go away anyway. Take this use case:

\grabparameters
[foo]
[keyO=valueO,

keyl=valuel,
key2=value2,
key3=value3]

After this, parameters can be accessed with:
\def\getvaluei#l#2{\csname#l#2\endcsname}
used as:

\getvalue{foo}ikey2}

which takes care of characters normally not permitted in macro names, like the digits in this example.
Of course some namespace protection can be added, like adding a colon between the namespace and the
key, but let’s take just this one.

Some 10.000 expansions of the grabber take on my machine 0.045 seconds while the original
\getparameters takes 0.090 so although for this case we’re twice as fast, the 0.045 difference will not
be noticed on a real run. After all, when these parameters are set some action will take place. Also,
we don’t actually use this macro for collecting settings with the \setupsomething commands, so the
additional overhead that is involved adds a baseline to performance that can turn any gain into noise.
But some users might notice some gain. Of course this observation might change once we apply this
trickery in more places than parameter parsing, because I have to admit that there might be other places
in the support macros where we can benefit: less code, double performance, but these are all support
macros that made sense in MKII and not that much in MKIV or Imtx and are kept just for convenience and
backward compatibility. Think of some list processing macros. So, as a kind of nostalgic trip I decided to
rewrite some low level macros anyway, if only to see what is no longer used and/or to make the code base
somewhat (c)leaner.

Elsewhere I introduce the #0 argument indicator. That one will just gobbles the argument and does not
store a token list on the stack. It saves some memory access and token recycling when arguments are not
used. Another special indicator is #+. That one will flag an argument to be passed as-is. The #- variant
will simply discard an argument and move on. The following examples demonstrate this:

\def\foo [#1] §\detokenize$#1%}
\def\ofo [#0] §\detokenize{#1%?
\def\oof [#+]i\detokenize$#1%?
\def\fof[#1#-4#2]$\detokenize{#1#2%%

° Think of thousands of pages of tables with cell settings applied.

Parsing 74

10

\def\fff[#1#0#3]1\detokenize{#1#3%}

\meaning\foo\ : <\foo[{123%]> \crlf
\meaning\ofo\ : <\ofo[{123%]> \crlf
\meaning\oof\ : <\oof[{123%]> \crlf
\meaning\fof\ : <\fof[123]> \crlf
\meaning\fff\ : <\fof[123]> \crlf

This gives:

macro: [#1]->\detokenize {#1% : <123>
macro: [#0]->\detokenize {#1% : <>

macro: [#+]->\detokenize §#1% : <§123%>
macro: [#14#-#2]->\detokenize $#14#2% : <13>
macro: [#1#04#3] ->\detokenize $#14#3}% : <13>

When playing with new features like the one described here, it makes sense to use them in existing macros
so that they get well tested. Some of the low level system files come in different versions: for MKII, MKIV
and Imtx. The MKII files often also have the older implementations, so they are also good for looking at the
history. The Imtx files can be leaner and meaner than the MKIV files because they use the latest features.*

When I was rewriting some of these low level MKIV macros using the newer features, at some point I
wondered why I still had to jump through some hoops. Why not just add some more primitives to deal
with that? After all, LuaTgX and LuaMetaTgX already have more primitives that are helpful in parsing,
so a few dozen more lines don’t hurt. As long as these primitives are generic and not that specific. In
this particular case we talk about two new conditionals (in addition to the already present comparison
primitives):

\ifhastok <token> i<token list>}%
\ifhastoks {<token list>% {<token list>%
\ifhasxtoks {<token list>% {<token list>%}

You can probably guess what they do from their names. The last one is the expandable variant of the
second one. The first one is the fast one. When playing with these I decided to redo the set checker. In
MKII that one is done in good old TgX, in MKIV we use Lua. So, how about going back to TgX?

\ifhasxtoks {cd} {fabcdef?
This check is true. But that doesn’t work well with a comma separated list, but there is a way out:
\ifhasxtoks {,cd,} $,ab,cd,ef,?

However, when I applied that a user reported that it didn’t handle optional spaces before commas. So how
do we deal with such optional characters tokens?

\def\setcontains#1#2§\ifhasxtokss , #1,$$,#2,%¢

\ifcondition\setcontains{icd?{iab,cd,eftYES \else NO \fi
\ifcondition\setcontainsicd?iab, cd, ef}YES \else NO \fi

Some 70 primitives present in LuaTgX are not in LuaMetaTgX. On the other hand there are also about 70 new primitives. Of those
gone, most concerned the backend, fonts or no longer relevant features from other engines. Of those new, some are really new
primitives (conditionals, expansion magic), some control previously hardwired behaviour, some give access to properties of for
instance boxes, and some are just variants of existing ones but with options for control.

75 Parsing

We get:
YES NO

The \ifconditionisanold one. When nested in a condition it willbe seenasan \if. .. by the fast skip-
ping scanner, but when expanded it will go on and a following macro has to expand to a proper condition.
That said, we can take care of the optional space by entering some new territory. Look at this:

\def\setcontains#l#2{\ifhasxtoksi, \expandtoken 9 "20 #1,}{,#2,%¢

\ifcondition\setcontains{cdt{ab,cd,eftYES \else NO \fi
\ifcondition\setcontainsficd?{ab, cd, ef}YES \else NO \fi

We get:
YES YES

So how does that work? The \expandtoken injects a space token with catcode 9 which means that it is in
the to be ignored category. When a to be ignored token is seen, and the to be checked token is a character
(letter, other, space or ignored) then the character code will be compared. When they match, we move on,
otherwise we just skip over the ignored token (here the space).

In the ConTEXt code base there are already files that are specific for MkIV and Imtx. The most visible
difference is that we use the \orelse primitive to construct nicer test trees, and we also use some of the
additional \future... and \expandafter... features. The extensions discussed here make for the
most recent differences (we're talking end May 2020).

After implementing this trick I decided to look at the macro definition mechanism one more time and see
if I could also use this there. Before I demonstrate another next feature, I will again show the argument
extensions, this time with a fourth variant:

\def\TestA#1#2433 7 (#1) (#2) (#3) 1}
\def\TestB#1#04#37 (#1) (#2) (#3)}
\def\TestC#L#+#37 (#1) (#2) (#3)
\def\TestD#1#-#27 (#1) (#2) ¢

The last one specifies a to be thrashed argument: #-. It goes further than the second one (#:0) which still
keeps a reference. This is why in this last case the third argument gets number 2. The meanings of these
four are:

macro:#1E24E3->5 (K1) (4F2) (#3) ¢
macro: 13 -> (#1) (#2) (4#3)
macro:FLE+HE3-> (1) (42) (43)
macro:#1#-#2->(#1) (#2)

There are some subtle differences between these variants, as you can see from the following examples:

\TestAl{\red 2%3
\TestB1{\red 2%3
\TestCl{\red 2%3
\TestD1l{\red 2%3

Here you also see the side effect of keeping the braces. The zero argument (#0) is ignored, and the
thrashed argument (#-) can’t even be accessed.

Parsing 76

(1) (2) (3)
(1) OB)
(1) (2) (3)
(1) (3)

In the next example we see two delimiters being used, a comma and a space, but they have catcode 9
which flags them as ignored. This is a signal for the parser that both the comma and the space can be
skipped. The zero arguments are still on the parameter stack, but the thrashed ones result in a smaller
stack, not that the later matters much on today’s machines.

\normalexpanded %
\def\noexpand\foo
\expandtoken 9 "2C % comma
\expandtoken 9 "20 % space
#1=42]%

£1 (1) (#2) %

This means that the next tree expansions won’t bark:

\foo, key=value]
\foo, key=value]
\foo key=value]

or expanded:

(key) (value)
(key) (value)
(key) (value)

Now, why didn’t I add these primitives long ago already? After all, I already added dozens of new primi-
tives over the years. To quote Andrew Cuomo, what follows now are opinions, not facts.

Decades ago, when TgX showed up, there was no Internet. I remember that I got my first copy on floppy
disks. Computers were slow and memory was limited. The TgXbook was the main resource and writing
macros was a kind of art. One could not look up solutions, so trial and error was a valid way to go. Figuring
out what was efficient in terms of memory consumption and runtime was often needed too. I remember
meetings where one was not taken serious when not talking in the right ‘token’, ‘node’, ‘stomach’ and
‘mouth’ speak. Suggesting extensions could end up in being told that there was no need because all could
be done in macros or even arguments of the “who needs that”. I must admit that nowadays I wonder to
what extend that was related to extensions taking away some of the craftmanship and showing off. In
a way it is no surprise that (even trivial to implement) extensions never surfaced. Of course then the
question is: will extensions that once were considered not of importance be used today? We’ll see.

Let’s end by saying that, as with other experiments, I might port some of the new features in LuaMetaTgX
to LuaTgX, but only after they have become stable and have been tested in Imtx for quite a while.

77 Parsing

13 Tokens

This is mostly a wrapup of some developments, and definitely not a tutorial.

Talking deep down TgX is talking about tokens and nodes. Roughly spoken, from the perspective of the
user, tokens are what goes in and stays in (as macro, token list of whatever) and nodes is what get produced
and eventually results in output. A character in the input becomes one token (before expansion) and a
control sequence like \ foo also is turned into a token. Tokens can be linked intolists. This actually means
that in the engine we can talk of tokens in two ways: the single item with properties that trigger actions, or
as compound item with that item and a pointer to the next token (called link). In Lua speak token memory
can be seen as:

fixmem = {
{4 info, 1link %,

$ info, link %,
¥ info, link %,
4 info, link %,

£

Both are 32 bit integers. The info is a combination of a command code (an operator) and a so called
chr code (operand) and these determine its behaviour. For instance the command code can indicate an
integer register and the chr code then indicates the number of that register. So, like:

fixmem = {
i+ 3+ cmd, chr}, index_into_fixmem %
i+ 1 cmd, chr}, index_into_fixmem %,
i+ 1 cmd, chr}, index_into_fixmem %
i+ 1 cmd, chr}, index_into_fixmem %

§

In the following line the characters that make three words are tokens (letters), so are the space (spacer),
the curly braces (begin- and endgroup token) and the bold face switch (which becomes one token which
resolves to a token list of tokens that trigger actions (in this case switching to a bolder font).

foo $\bf bart foo

When TgX reads a line of input tokens are expanded immediately but a sequence can also become part fo
a macro body or token list. Here we have 3;, + 1+ 1+ 1,,: +3,., + 1, + 1 + 3., = 14 tokens.

A control sequence normally starts with a backslash. Some are built in, these are called primitives, and
others are defined by the macro package or the user. There is a lookup table that relates the tokenized
control sequence to some action. For instance:

\def\fooifoot?

creates an entry that leads (directly or following a hash chain) to the three letter token list. Every time
the input sees \ foo it gets resolved to that list via a hash lookup. However, once internalized and part of
a token list, it is a direct reference. On the other hand,

\the\count®

Tokens 78

triggers the \the action that relates to this control sequence, which then reads a next token and operates
on that. That next token itself expects a number as follow up. In the end the value of \count0 is found
and that one is also in the so called equivalent lookup table, in what TgX calls specific regions.

equivalents = {
{ level, type, value }%,
{ level, type, value },
{ level, type, value }%,

$

The value is in most cases similar to the info (cmd & chr) field in fixmem, but one difference is that coun-
ters, dimensions etc directly store their value, which is why we sometimes need the type separately, for
instance in order to reclaim memory for glue or node specifications. It sound complicated and it is, but
as long as you get a rough idea we can continue. Just keep in mind that tokens sometimes get expanded
on the fly, and sometimes just get stored.

There are alot of primitives and each has a unique info. The same is true for characters (each category has
its own command code, so regular letters can be distinguished from other tokens, comment signs, math
triggers etc). All important basic bits are in table of equivalents: macros as well as registers although the
meaning of a macro and content of token lists lives in the fixmem table and the content of boxes in so
called node lists (nodes have their own memory).

In traditional TgX the lookup table for primitives, registers and macros is as compact as can be: it is an
array of so called 32 bit memory words. These can be divided into halfs and quarters, so in the source you
find terms like halfword and quarterword. The lookup table is a hybrid:

[level 8] [type 8] [value 16] | [equivalent 32]
[level 8] [type 8] [value 16] | [equivalent 32]
[level 8] [type 8] [value 16] | [equivalent 32]

The mentioned counters and such are directly encoded in an equivalent and the rest is a combination of
level, type and value. The level is used for the grouping, and in for instance pdfTgX there can therefore be
at most 255 levels. In LuaTgX we use a wider model. There we have 64 bit memory words which means
that we have way more levels and don’t need to have this dual nature:

[level 16] [type 16] [value 32]
[level 16] [type 16] [value 32]
[level 16] [type 16] [value 32]

We already showed a Lua representation. The type in this table is what a command code is in an ‘info’
field. In such a token the integer encodes the command as well as a value (called chr). In the lookup
table the type is the command code. When TgX is dealing with a control sequences it looks at the type,
otherwise it filters the command from the token integer. This means that a token cannot store an integer
(or dimension), but the lookup table actually can do that. However, commands can limit the range, for
instance characters are bound by what Unicode permits.

Internally, LuaTgX still uses these ranges of fast accessible registers, like counters, dimensions and at-
tributes. However, we saw that in LuaTgX they don’t overlap with the level and type. In LuaTgX, at least till
version 1.13 we still have the shadow array for levels but in LuaMetaTgX we just use those in the equiv-
alents lookup table. If you look in the Pascal source you will notice that arrays run from [somemin

79 Tokens

11

somemax] which in the C source would mean using offsets. Actually, the shadow array starts at zero so
we waste the part that doesn’t need shadowing. It is good to remind ourselves that traditional TgX is 8 bit
character based.

The equivalents lookup table has all kind of special ranges (combined into regions of similar nature, in
TEX speak), like those for lowercase mapping, specific catcode mappings, etc. but we’re still talking of
n x 256 entries. In LuaTgX all these mappings are in dedicated sparse hash tables because we need to
support the full Unicode repertoire. This means that, while on the one hand LuaTgX uses more memory
for the lookup table the number of slots can be less. But still there was the waste of the shadow level table:
Ididn’t calculate the exact saving of ditching that one, but I bet it came close to what was available as total
memory for programs and data on the first machines that I used for running TgX. But . .. after more than
a decade of LuaTgX we now reclaimed that space in LuaMetaTgX."

Now, in case you're interested (and actually I just write it down because I don’t want to forget it myself)
the lookup table in LuaMetaTgX is layout as follows

the hash table

some frozen primitives

current and defined fonts one slot + many pointers
undefined control sequence one slot

internal and register glue pointer to node
internal and register muglue pointer to node
internal and register toks pointer to token list
internal and register boxes pointer to node list
internal and register counts value in token
internal and register attributes value in token
internal and register dimens value in token
some special data structures pointer to node list

the (runtime) extended hash table

Normally a user doesn’t need to know anything about these specific properties of the engine and it might
comfort you to know that for along time I could stay away from these details. One difference with the other
engines is that we have internal variables and registers split more explicitly. The special data structures
have their own slots and are not just put somewhere (semirandom). The initialization is bit more granular
in that we properly set the types (cmd codes) for registers which in turn is possible because for instance
we’re able to distinguish glue types. This is all part of coming up with a bit more consistent interface to
tokens from the Lua end. It also permits diagnostics.

Anyway, we now are ready for some more details about tokens. You don’t need to understand all of it in
order to define decent macros. But when you are using LuaTgX and do want to mess around here is some
insight. Assume we have defined these macros:

\def\MacroAsa}t \def\MacroBib?
\def\macroafa}t \def\macrobib?
\def\MACROata} \def\MACRObib}?

How does that end up internally?

cmd name chr cs rawchr
\scratchcounterone 80 register_int 260 75231 459190

Don’t expect a gain in performance, although using less memory might pay back on a virtual machine or when TgX has to share the
cpu cache.

Tokens 80

\scratchcountertwo
\scratchdimen
\scratchtoks
\scratchcounter
\letterpezrcent
\everypar

%
\pagegoal
\pagetotal
\hangindent
\hangafter
\dimdim
\relax
\dimen
\stoptext
\MacroA
\MaczroB
\MacroC
\macroa
\macrob
\macroc
\MACROa
\MACROb
\MACROc

We show the raw chr value but in the Lua interface these are normalized to for instance proper register
indices. This is because the raw numbers can for instance be indices into memory or some Unicode
reference with catcode specific bits set. But, while these indices are real and stable, these offsets can
actually change when the implementation changes. For that reason, in LuaMetaTgX we can better talk of

80
84
78
80
128
79
74
93
93
85
81
116
0
102
129
128
128
116
128
128
116
128
128
116

register_int
register_dimen
register_toks
register_int
call
internal_toks
char_given
set_page_property
set_page_property
internal_dimen
internal_int
undefined_cs
relax

register
protected_call
call

call
undefined_cs
call

call
undefined_cs
call

call
undefined_cs

command codes as main indicator and:

261
257
257
257
0

1
37
0

1
17
42
0
1114112

2
0
0
0
0
0
0
0
0
0
0

subcommand for tokens that have variants, like \ ifnum
register indices for the 64K register banks, like \count 0
internal indices for internal variables like \parindent

characters specific Unicode slots combined with catcode

pointers to token lists, macros, Lua functions, nodes

This so called cs number is a pointer into the table of equivalents. That number results comes from the
hash table. A macro name, when scanned the first time, is still a sequence of bytes. This sequence is used
to compute a hash number, which is a pointer to a slot in the lower part of the hash (lookup) table. That
slot points to a string and a next hash entry in the higher end. A lookup goes as follows:

ok wh =

So, in Lua speak, we have:

hashtable = §

81 Tokens

compute the index into the hash table from the string
goto the slot with that index and compare the string field
when there is no match goto the slot indicated by the next field
compare again and keep following next fields till there is no follow up
optionally create a new entry
use the index of that entry as index in the table of equivalents

75279
2162
655603
9310
101735
27262
39
27028
54424
105414
52526
196624
3380
3190
29178
5553
666484
196624
6609
666485
196624
4625
4626
196624

459191
590283
327989
459187

2726
327720

590020
458849

57915
668403
619428

668187
667810

668449
668503

-- lower part, accessed via the calculated hash number
i stringpointer, nextindex %,
i stringpointer, nextindex %,

-- higher part, accessed by following nextindex
i1 stringpointer, nextindex %,
i1 stringpointer, nextindex %,

£

Eventually, after following a lookup chain in the hash tabl;e, we end up at pointer to the equivalents lookup
table that we already discussed. From then on we’re talking tokens. When you’re lucky, the list is small
and you have a quick match. The maximum initial hash index is not that large, around 64K (double that in
LuaMetaTgX), so in practice there will often be some indirect (multi-compare) match but increasing the
lower end of the hash table might result in less string comparisons later on, but also increases the time
to calculate the initial hash needed for accessing the lower part. Here you can sort of see that:

\dostepwiserecurse{ a}{ z}{l1%3
\expandafter\def\csname whatever\Uchar#l\endcsname
1%
$
\dostepwiserecurse{ a}{ z}{l1l}s
\expandafter\let\csname somemore\Uchar#l\expandafter\endcsname
\csname whatever\Uchar#l\endcsname

cmd name chr cs rawchr
\whatevera 128 call 666491 663113
\somemorea 128 call 666505 663113
\whateverb 128 call 666492 668685
\somemoreb 128 call 57246 668685
\whateverc 128 call 56989 667831
\somemorec 128 call 666506 667831
\whateverd 128 call 666493 670730
\somemored 128 call 666507 670730
\whatevere 128 call 666494 670542
\somemoree 128 call 666508 670542
\whateverf 128 call 666495 670668
\somemoref 128 call 57250 670668
\whateverg 128 call 56993 668396
\somemoreg 128 call 666509 668396
\whateverh 128 call 666496 668634
\somemoreh 128 call 666510 668634
\whateveri 128 call 56995 667968
\somemorei 128 call 57253 667968
\whateverj 128 call 666497 668620
\somemorej 128 call 57254 668620
\whateverk 128 call 56997 668596
\somemorek 128 call 57255 668596
\whateverl 128 call 56998 669320
\somemorel 128 call 666511 669320

ool oMol ool ool ol oMol oMol oMol ool ool ol olMol oMol

Tokens 82

12

\whateverm 128 call
\somemorem 128 call
\whatevern 128 call
\somemoren 128 call
\whatevero 128 call
\somemoreo 128 call
\whateverp 128 call
\somemorep 128 call
\whateverq 128 call
\somemoreq 128 call
\whateverr 128 call
\somemorer 128 call
\whatevers 128 call
\somemores 128 call
\whatevert 128 call
\somemoret 128 call
\whateveru 128 call
\somemoreu 128 call
\whateverv 128 call
\somemorev 128 call
\whateverw 128 call
\somemorew 128 call
\whateverx 128 call
\somemorex 128 call
\whatevery 128 call
\somemorey 128 call
\whateverz 128 call
\somemorez 128 call

56999 670399
57257 670399
57000 670383
57258 670383
57001 668652
57259 668652
666498 668699
57260 668699
57003 664927
57261 664927
666499 668694
666512 668694
666500 668331
666513 668331
666501 664680
57264 664680
666502 667153
57265 667153
666503 670488
57266 670488
57009 668666
57267 668666
57010 670498
57268 670498
57011 670414
57269 670414
666504 670421
57270 670421

ool oMol ool ololol ool oMol oMol ool ool ol oMol ool oMo oMo

The command code indicates a macro and the action related to it is an expandable call. We have no sub
command!? so that column shows zeros. The fifth column is the hash entry which can bring us back to
the verbose name as needed in reporting while the last column is the index to into token memory (watch
the duplicates for \1et macros: a ref count is kept in order to be able to manage such shared references).
When you look a the cs column you will notice that some numbers are close which (I think) in this case
indicates some closeness in the calculated hash name and followed chain.

It will be clear that it is best to not make any assumptions with respect to the numbers which is why, in
LuaMetaTgX we sort of normalize them when accessing properties.

field meaning

command operator
cmdname internal name of operator

index sanitized operand

mode original operand

csname associated name

id the index in token memory (a virtual address)
tok the integer representation

active true when an active character

We cheat a little here because chr actually is an index into token memory but we don’t show them as such.

83 Tokens

expandable true when expandable command
protected true when a protected command
frozen true when a frozen command

user true when a user defined command

When a control sequence is an alias to an existing primitive, for instance made by \ 1let, the operand (chr)
picked up from its meaning. Take this:

\newif\ifmyconditionone
\newif\ifmyconditiontwo

\meaning\ifmyconditionone \crlf
\meaning\ifmyconditiontwo \crlf
\meaning\myconditiononetrue \crlf
\meaning\myconditiontwofalse \crlf

\myconditiononetrue \meaning\ifmyconditionone \crlf
\myconditiontwofalse\meaning\ifmyconditiontwo \crlf
\iffalse
\iffalse

macro:->\let \ifmyconditionone \iftrue
macro:->\let \ifmyconditiontwo \iffalse
\iftrue
\iffalse

Internally this is:

cmd name chr cs
\ifmyconditionone 123 if_test 23 666516
\ifmyconditiontwo 123 if_test 24 19025
\iftrue 123 if_test 23 6713
\iffalse 123 if test 24 13157

The whole list of available commands is given below. Once they are stable the LuaMetaTgX manual will
document the accessors. In this chapter we use:

kind, min, max, fixedvalue token.get_range("primitive")
cmd, chr, cs = token.get_cmdchrcs("primitive")

The kind of command is given in the first column, which can have the following values:

0 no not accessible

1 regular possibly with subcommand

2 character the Unicode slot is encodes in the the token

3 register this is an indexed register (zero upto 64K)

4 internal thisis an internal register (range given)

5 reference thisis areference to a node, Lua function, etc.

6 data a general data entry (kind of private)

7 token a token reference (that can have a followup)
cmd name min max default or subcommands

2 0 relax 0 Ox10FFFF 0x110000

2 1 left_brace 0 Ox10FFFF

Tokens 84

O 00N o0 WwN

NP R RERRE R R R
©® VOO0 WNP O

PP RPRPPRPPRPRPPRPPRLPRPPRLPPRPRPPRLPPORPPEPNRPRLPNNNNMNNMNNMNNNNNNDN
B wwwwmwwmwwwwNnNRNNNNNDRNN
© VO IO0CADRWNPOOOIOCAEWN P

IS
=

42
43
44
45
46
47
48
49
50

PR RPRRPRPRLRPRPR

[y

51
52
53

RN

54
55
56
57
58
59
60
61
62
63
64
65
66
67

PR RPRPRPOORRPRRPERERERR

right_brace
math_shift
tab_mark
car_ret
mac_param
sup_mark
sub_mark
ignore
spacer
letter
other_char
par_end
stop
delim_num
char_num
math_char_num
mark

node

xray
make_box
hmove

vmove
un_hbox
un_vbox
remove_item
hskip

vskip

mskip

kern

mkern
leader_ship
halign
valign
no_align
vrule

hrule
insert
vadjust
ignore_something
after_something

break_penalty
start_par
ital_corr
accent
math_accent
discretionary
eq_no
left_right
math_comp

limit_switch
above
math_style

math_choice
non_script
vcenter
case_shift
message
catcode_table
end_local
lua_function_call
lua_call
in_stream
begin_group
end_group
omit

ex_space

85 Tokens

[clolol oMol ool oo Moo No Moo Mo Mo Nol

[clclcl ool ool ool ololNo Mol oMo lo o Moo No Mo ol

[cl SN cl ool oo Mool

[l ol o]

[clcol ool olololM oo oMo lNoMNo ol

Ox10FFFF
Ox10FFFF
Ox10FFFF
Ox10FFFF
Ox10FFFF
Ox10FFFF
Ox10FFFF
Ox10FFFF
Ox10FFFF
Ox10FFFF
Ox10FFFF
Ox10FFFF

1

1
Ox10FFFF

3

2

ONOOPRPPFPRPOOOUOOGOAIRMNRELRRLRERERPLIO

O NP NP OO o

N ow

OrRrProor

OXLFFFFF
OXLFFFFF
1

[cl ool o)

0x110000
0=end 1=dump
O=delimiter 1=Udelimiter

O=mathchar 1=Umathchar 2=Umathcharnum 3=Umathclass
O=mark 1=marks 2=clearmarks

O=show 1=showbox 2=showthe 3=showlists 4=showgroups 5=showtokens 6=showifs
0=box 1=copy 2=1astbox 3=vsplit 4=tpack 5=vpack 6=hpack 7=vtop
O=moveright 1=moveleft

0=lower l=raise

O=unhbox 1=unhcopy

O=unvbox 1=unvcopy

O=unkern 1=unpenalty 2=unskip

0=hfil 1=hfill 2=hss 3=hfilneg 4=hskip

0=vfil 1=v£fill 2=vss 3=vfilneg 4=vskip

O=mskip

O=kezrn

O=mkezrn

O=shipout 1=<unavailable> 2=1eaders 3=cleaders 4=xleaders 5=gleaders
O=halign

O=valign

O=noalign

0=vrule 1=novrule

0=hrule 1=nohrule

O=insert

O=vadjust

O=ignorespaces l=ignorepars 2=ignorearguments

O=aftergroup 1=afterassignment 2=atendofgroup 3=aftergrouped 4=afteras-
signed 5=atendofgrouped

O=penalty

0=noindent 1=indent 2=quitvmode 3=snapshotpar 4=parattr 5=wrapuppar
0=/

O=accent

O=mathaccent 1=Umathaccent
O=discretionary 1=- 2=automaticdiscretionary

O=<unavailable> 1=<unavailable>

1=1eft 2=middle 3=right 4=Uvextensible 5=Uleft 6=Umiddle 7=Uright
O=mathord 1=mathop 2=mathbin 3=mathrel 4=mathopen 5=mathclose 6=mathpunct
7=mathinner 8=underline 9=overline
O=displaylimits 1=1imits 2=nolimits 3=ordlimits

O=above 1=over 2=atop 3=Uskewed 4=Uabove 5=Uover 6=Uatop 7=UUskewed
O=displaystyle 1=crampeddisplaystyle 2=textstyle 3=crampedtextstyle
4=scriptstyle 5=crampedscriptstyle 6=scriptscriptstyle 7=cramped-
scriptscriptstyle

O=mathchoice 1=Ustack

O=nonscript

O=vcenter

0=lowercase 1=uppercase

O=message 1=errmessage

O=savecatcodetable 1=initcatcodetable

0=endlocalcontrol

0=closein 1=openin
O=begingroup
O=endgroup

O=omit

O=<space>

P NNNRP R

A WO w

68
69

70

71
72
73
74
75
76
77

78
79

80
81

82
83
84
85

86
87

88
89
90

boundary
radical

super_sub_script

math_shift_cs
end_cs_name
set_local_box
char_given
math_given
math_xgiven
some_item

register_toks
internal_toks

register_int
internal_int

register_attr
internal_attr
register_dimen
internal_dimen

register_glue
internal_glue

register_mu_glue
internal_mu_glue
lua_value

[clclolN oMol olNo)

[}

(o]

(o]

0
1
0

3

0

1
Ox10FFFF
Ox10FFFF
Ox10FFFF
40

OXFFFF
10

OXFFFF
119

OXFFFF

OXFFFF
21

OXFFFF
15

OXFFFF
3
OXLFFFFF

O=noboundary 1=boundary 2=protrusionboundary 3=wordboundary

O=radical 1=Uradical 2=Uroot 3=Uunderdelimiter 4=Uoverdelimiter 5=Udelim-
iterunder 6=Udelimiterover 7=Uhextensible

0=Usubscript 1=Usuperscript 2=Usuperprescript 3=Usubprescript 4=Unosub-
script 5=Unosuperscript 6=Unosubprescript 7=Unosuperprescript
O=Ustartmath 1=Ustopmath 2=Ustartdisplaymath 3=Ustopdisplaymath
O=endcsname

O=localleftbox 1=localrightbox

O=lastpenalty 1=lastkern 2=1lastskip 3=lastnodetype 4=1lastnodesubtype 5=in-
putlineno 6=badness 7=luatexversion 8=luatexrevision 9=currentgrouplevel
10=currentgrouptype 1l=currentiflevel 12=currentiftype 13=currentif-
branch 14=gluestretchorder 15=glueshrinkorder 16=fontid 17=fontcharwd
18=fontcharht 19=fontchardp 20=fontcharic 21=mathstyle 22=Umathcharclass
23=Umathcharfam 24=Umathcharslot 25=1astarguments 26=1uavaluefunction
27=insertht 28=1eftmarginkern 29=rightmarginkern 30=parshapelength 31=par-
shapeindent 32=parshapedimen 33=gluestretch 34=glueshrink 35=mutoglue
36=gluetomu 37=numexpr 38=dimexpr 39=glueexpr 40=muexpr

O=output 1=everypar 2=everymath 3=everydisplay 4=everyhbox 5=everyvbox
6=everyjob 7=everycr 8=everytab 9=errhelp 10=everyeof

O=pretolerance 1=tolerance 2=1inepenalty 3=hyphenpenalty 4=exhyphenpenalty
5=clubpenalty 6=widowpenalty 7=displaywidowpenalty 8=brokenpenalty 9=binop-
penalty 10=relpenalty 11=predisplaypenalty 12=postdisplaypenalty 13=inter-
linepenalty 14=doublehyphendemerits 15=finalhyphendemerits 16=adjdemer-
its 17=mag 18=delimiterfactor 19=1ooseness 20=time 21=day 22=month 23=year
24=showboxbreadth 25=showboxdepth 26=shownodedetails 27=hbadness 28=vbad-
ness 29=pausing 30=tracingonline 31=tracingmacros 32=tracingstats 33=trac-
ingparagraphs 34=tracingpages 35=tracingoutput 36=tracinglostchars 37=trac-
ingcommands 38=tracingrestores 39=uchyph 40=outputpenalty 41=maxdeadcy-
cles 42=hangafter 43=floatingpenalty 44=globaldefs 45=fam 46=escapechar
47=defaulthyphenchar 48=defaultskewchar 49=endlinechar 50=newlinechar
51=1language 52=1efthyphenmin 53=righthyphenmin 54=holdinginserts 55=er-
rorcontextlines 56=1localinterlinepenalty 57=1ocalbrokenpenalty 58=noligs
59=nokerns 60=nospaces 61=catcodetable 62=outputbox 63=setlanguage 64=ex-
hyphenchar 65=adjustspacing 66=adjustspacingstep 67=adjustspacingstretch
68=adjustspacingshrink 69=protrudechars 70=tracingfonts 71=tracingas-
signs 72=tracinggroups 73=tracingifs 74=tracingscantokens 75=tracingnest-
ing 76=predisplaydirection 77=1lastlinefit 78=savingvdiscards 79=savinghy-
phcodes 80=mathegnogapstep 81=mathdisplayskipmode 82=mathscriptsmode
83=mathnolimitsmode 84=mathrulesmode 85=mathrulesfam 86=mathitalicsmode
87=shapemode 88=firstvalidlanguage 89=hyphenationbounds 90=mathsurround-
mode 91=predisplaygapfactor 92=hyphenpenaltymode 93=automatichyphen-
penalty 94=explicithyphenpenalty 95=automatichyphenmode 96=compoundhyphen-
mode 97=breakafterdirmode 98=exceptionpenalty 99=prebinoppenalty 100=pre-
relpenalty 101=mathpenaltiesmode 102=mathdelimitersmode 103=mathscriptbox-
mode 104=mathscriptcharmode 105=mathrulethicknessmode 106=mathflattenmode
107=1uacopyinputnodes 108=fixupboxesmode 109=glyphdimensionsmode 110=in-
ternalcodesmode 111=supmarkmode 112=glyphdatafield 113=glyphstatefield
114=glyphscriptfield 115=matholdmode 116=pardirection 117=textdirection
118=mathdirection 119=1inedirection

O=parindent 1=mathsurround 2=1ineskiplimit 3=hsize 4=vsize 5=maxdepth
6=splitmaxdepth 7=boxmaxdepth 8=hfuzz 9=vfuzz 10=delimitershortfall
11=nulldelimiterspace 12=scriptspace 13=predisplaysize 14=displaywidth
15=displayindent 16=overfullrule 17=hangindent 18=<unavailable> 19=<un-
available> 20=emergencystretch 21=pxdimen

0=1ineskip 1=baselineskip 2=parskip 3=abovedisplayskip 4=belowdisplayskip
5=abovedisplayshortskip 6=belowdisplayshortskip 7=1leftskip 8=rightskip
9=topskip 10=splittopskip 11=tabskip 12=spaceskip 13=xspaceskip 14=parfill-

skip 15=mathsurroundskip

1=thinmuskip 2=medmuskip 3=thickmuskip

Tokens 86

1 91 set_font_property
92 set_aux
1 93 set_page_property

[y

1 94 set_box_property

7 95 set_specification
1 96 def_char_code

1 97 def_family
1 98 set_math_param

99 set_font
100 def_font
101 data
102 register
103 combine_toks

PP o3

104 advance
105 multiply
106 divide
107 prefix
108 let

PR R R R

[y

109 shorthand_def

110 read_to_cs
111 def

112 set_box
113 hyph_data

[SR

[y

114 set_interaction
1 115 set_font_id

87 Tokens

0 5
0 2
0 10
0 10
0 9
0 2
0 114
@ OXLFFFFF
0 4
0 7
0 0
0 0
0 0
0 2
0 9
0 10
0 1
0 3
0 0
0 7
0 3
0 0

O=hyphenchar 1=skewchar 2=1pcode 3=rpcode 4=efcode 5=fontdimen
O=spacefactor 1=prevdepth 2=prevgraf

O=pagegoal 1=pagetotal 2=pagestretch 3=pagefilstretch 4=pagefillstretch
5=pagefilllstretch 6=pageshrink 7=pagedepth 8=deadcycles 9=insertpenalties
10=interactionmode

O=wd 1=ht 2=dp 3=boxdirection 4=boxorientation 5=boxxoffset 6=boxyoffset
7=boxxmove 8=boxymove 9=boxtotal 10=boxattr

O=catcode 1=1ccode 2=uccode 3=sfcode 4=mathcode 5=Umathcode 6=Umathcodenum
7=delcode 8=Udelcode 9=Udelcodenum

O=textfont 1=scriptfont 2=scriptscriptfont

O=Umathquad 1=Umathaxis 2=Umathspacingmode 3=Umathoperatorsize 4=Umath-
overbarkern 5=Umathoverbarrule 6=Umathoverbarvgap 7=Umathunderbarkern
8=Umathunderbarrule 9=Umathunderbarvgap 10=Umathradicalkern 11=Umathrad-
icalrule 12=Umathradicalvgap 13=Umathradicaldegreebefore 14=Umathradi-
caldegreeafter 15=Umathradicaldegreeraise 16=Umathstackvgap 17=Umathstack-
numup 18=Umathstackdenomdown 19=Umathfractionrule 20=Umathfractionnumvgap
21=Umathfractionnumup 22=Umathfractiondenomvgap 23=Umathfractiondenomdown
24=Umathfractiondelsize 25=Umathskewedfractionhgap 26=Umathskewedfraction-
vgap 27=Umathlimitabovevgap 28=Umathlimitabovebgap 29=Umathlimitabovek-
ern 30=Umathlimitbelowvgap 31=Umathlimitbelowbgap 32=Umathlimitbelowkern
33=Umathnolimitsubfactor 34=Umathnolimitsupfactor 35=Umathunderdelimiter-
vgap 36=Umathunderdelimiterbgap 37=Umathoverdelimitervgap 38=Umathoverde-
limiterbgap 39=Umathsubshiftdrop 40=Umathsupshiftdrop 41=Umathsubshiftdown
42=Umathsubsupshiftdown 43=Umathsubtopmax 44=Umathsupshiftup 45=Umathsup-
bottommin 46=Umathsupsubbottommax 47=Umathsubsupvgap 48=Umathspacebefor-
escript 49=Umathspaceafterscript 50=Umathconnectoroverlapmin 51=Umathor-
dordspacing 52=Umathordopspacing 53=Umathordbinspacing 54=Umathordrelspac-
ing 55=Umathordopenspacing 56=Umathordclosespacing 57=Umathordpunctspac-
ing 58=Umathordinnerspacing 59=Umathopordspacing 60=Umathopopspacing
61=Umathopbinspacing 62=Umathoprelspacing 63=Umathopopenspacing 64=Umath-
opclosespacing 65=Umathoppunctspacing 66=Umathopinnerspacing 67=Umathbi-
nordspacing 68=Umathbinopspacing 69=Umathbinbinspacing 70=Umathbinrelspac-
ing 71=Umathbinopenspacing 72=Umathbinclosespacing 73=Umathbinpunctspac-
ing 74=Umathbininnerspacing 75=Umathrelordspacing 76=Umathrelopspac-

ing 77=Umathrelbinspacing 78=Umathrelrelspacing 79=Umathrelopenspacing
80=Umathrelclosespacing 81=Umathrelpunctspacing 82=Umathrelinnerspac-

ing 83=Umathopenordspacing 84=Umathopenopspacing 85=Umathopenbinspacing
86=Umathopenrelspacing 87=Umathopenopenspacing 88=Umathopenclosespacing
89=Umathopenpunctspacing 90=Umathopeninnerspacing 91=Umathcloseordspac-
ing 92=Umathcloseopspacing 93=Umathclosebinspacing 94=Umathcloserelspacing
95=Umathcloseopenspacing 96=Umathcloseclosespacing 97=Umathclosepunctspac-
ing 98=Umathcloseinnerspacing 99=Umathpunctordspacing 100=Umathpunc-
topspacing 101=Umathpunctbinspacing 102=Umathpunctrelspacing 103=Umath-
punctopenspacing 104=Umathpunctclosespacing 105=Umathpunctpunctspac-

ing 106=Umathpunctinnerspacing 107=Umathinnerordspacing 108=Umathin-
neropspacing 109=Umathinnerbinspacing 110=Umathinnerrelspacing 111=Umath-
inneropenspacing 112=Umathinnerclosespacing 113=Umathinnerpunctspacing
114=Umathinnerinnerspacing

O=count 1=attribute 2=dimen 3=skip 4=muskip

O=toksapp l=etoksapp 2=tokspre 3=etokspre 4=gtoksapp 5=xtoksapp 6=gtokspre
7=xtokspre

O=advance

O=multiply

0=divide

0=global 1=protected 2=frozen

0=glet 1=1et 2=futurelet 3=futuredef 4=1etcharcode 5=1letfrozen 6=unletfrozen
7=letprotected 8=unletprotected 9=1etdatacode

O=chardef 1=mathchardef 2=Umathchardef 3=Umathcharnumdef 4=countdef 5=at-
tributedef 6=dimendef 7=skipdef 8=muskipdef 9=toksdef 10=1uadef

O=read 1=readline

O=def 1=gdef 2=edef 3=xdef

O=setbox

O=hyphenation 1=patterns 2=prehyphenchar 3=posthyphenchar 4=preexhyphenchar
5=postexhyphenchar 6=hyphenationmin 7=hjcode

O=batchmode 1=nonstopmode 2=scrollmode 3=errorstopmode

O=setfontid

[y

PP OO, R

RN

N NN NN

116
117

118
119
120
121
122
123

124
125

126
127

128
129
130
131
132
133
134
135
136
137
138
139

undefined_cs
expand_after

no_expand

input
lua_expandable_call
lua_local_call
begin_local

if_test

cs_name
convert

the
top_bot_mark

call

protected_call
frozen_call
frozen_protected_call
frozen_cs_end_template
frozen_cs_dont_expand
internal_glue_ref
register_glue_ref
internal_mu_glue_ref
register_mu_glue_ref
specification_ref
box_ref

[}

N O O oo oo

0

3
Ox1FFFFF
Ox1FFFFF
0

48

16

O=<unavailable>

O=expandafter 1=unless 2=futureexpand 3=futureexpandis 4=futureexpandisap
5=expandafterspaces 6=expandafterpars 7=expandtoken 8=expandcstoken 9=ex-
pand

O=noexpand

O=input 1=endinput 2=scantokens 3=scantextokens

O=beginlocalcontrol

2=fi 3=else 4=or 5=orelse 6=1if 7=ifcat 8=ifabsnum 9=ifnum 10=ifabsdim 11=ifdim
12=ifodd 13=ifvmode 14=ifhmode 15=ifmmode 16=ifinner 17=ifvoid 18=ifh-

box 19=ifvbox 20=iftok 21=ifcstok 22=ifx 23=iftrue 24=iffalse 25=ifchknum
26=ifnumval 27=ifcmpnum 28=ifchkdim 29=ifdimval 30=ifcmpdim 31=ifcase
32=ifdefined 33=ifcsname 34=ifincsname 35=iffontchar 36=ifcondition 37=ifeof
38=iffrozen 39=ifprotected 40=ifusercmd 41=ifempty 42=ifboolean 43=ifmathpa-
rameter 44=ifmathstyle 45=ifarguments 46=ifhastok 47=ifhastoks 48=ifhasxtoks
O=csname 1=lastnamedcs 2=begincsname

O=number 1=directlua 2=1luafunction 3=1luabytecode 4=expanded 5=immediateas-
signment 6=immediateassigned 7=string 8=csstring 9=romannumeral 10=meaning
11=Uchar 12=1uaescapestring 13=fontname 14=jobname 15=formatname 16=1lua-
texbanner

O=the 1=thewithoutunit 2=detokenize 3=unexpanded

O=topmark 1=firstmark 2=botmark 3=splitfirstmark 4=splitbotmark 5=topmarks
6=firstmarks 7=botmarks 8=splitfirstmarks 9=splitbotmarks

Tokens 88

89 Tokens

14 Keywords

Some primitives in TgX can take one or more optional keywords and/or keywords followed by one or more
values. In traditional TgX it concerns a handful of primitives, in pdf TgX there are plenty of backend related
primitives, LuaTgX introduced optional keywords to some math constructs and attributes to boxes, while
LuaMetaTgX adds some more too. The keyword scanner in TgX is kind of special. Keywords are used in
cases like:

\hbox spread 10cm {...%
\advance\scratchcounter by 10
\vrule width 3cm height lex

Sometimes there are multiple keywords, as with rules, in which case you can imagine use cases like:
\vrule width 3cm depth lex width 10cm depth Oex height lex\relax

Here we add a \relax to end the scanning. If we don’t do that and the rule specification is followed by
arbitrary (read: unpredictable) text, the next word can as well be valid keyword and when followed by a
dimensions (unlikely) it will happily take that as directive or when not followed by a dimension an error
message will show up. Sometimes the scanning is more restricted, like with glue where the optional plus
and minus are to come in that order, but when missing, again a word from the text can be picked up if one
doesn’t explicitly ends with a \relax or some other not relevant token.

\scratchskip = 10pt plus 10pt minus 10pt % okay

\scratchskip = 10pt plus 10pt % okay

\scratchskip = 10pt minus 10pt % okay

\scratchskip = 10pt minus 10pt plus 10pt % typesets "plus 10pt"
\scratchskip = 10pt plus whatever % an error

The scanner is case insensitive, so the following specifications are all valid:

\hbox To 10cm {To}
\hbox TO 10cm {TO}
\hbox t0 10cm {t0%
\hbox to 10cm {to}

It happens that keywords are always simple english words so the engine uses a cheap check deep down,
just offsetting to uppercase, but of course that will not work for arbitrary utf (as used in LuaTgX) and it’s
also unrelated to the upper- and lowercase codes as TgX knows them.

The above lines scan for the keyword to and after that for a dimension. Where keyword scanning is case
tolerant, dimension scanning is period tolerant:

\hbox to 10cm {110cm}
\hbox to 10.0cm $10.0cm}
\hbox to .0Ocm {.0cm}
\hbox to .cm $.cmé
\hbox to 10.cm {10.cm?

These are all valid and according to the specification; even the single period one is okay, although it looks
funny. It would not be hard to intercept that but I guess that when TgX was written anything that could
harm performance was taken into account and the above is quite okay. One can even argue for cases like

Keywords 90

\hbox to \first.\second cm $.cm?

Here \first and/or \second can be empty. Most users won’t notice these side effects of scanning num-
bers anyway.

The reason for even spending words on keywords is the following. Optional keyword scanning is kind of
costly, not so much now, but more so decades ago. For instance, in the first line below, there is no keyword.
The scanner sees a 1 and it not being a keyword, pushes that character back in the input.

\advance\scratchcounter 10
\advance\scratchcounter by 10

In the case of:
\scratchskip 10pt plux

It has to push back the four scanned tokens plux. Now, in the engine there are lots of cases where looka-
head happens and when a condition is not satisfied, the just read token is pushed back. Incidentally, when
picking up the next token triggered some expansion, it’s not the original next token that gets pushed back,
but the first token seen at the expansion. Pushing back tokens is not that inefficient, although it involves
allocating a token and pushing and popping input stacks (we're talking of a mix of reading from file, token
memory, Lua prints, etc) but it always takes a little time and memory. In LuaTgX there are more keywords
for boxes, and there we have loops too: in a box specification one or more optional attributes are scanned
before the optional to or spread, so again there can be push back when no more attr are seen.

\hbox attr 1 98 attr 2 99 to 1cmi...}%

In LuaMetaTgX there is even more optional keyword scanning, but we leave that for now and just show
one example:

\hbox spread 10em {\hss
\hbox orientation O yoffset 1mm to 2em tup$\hss
\hbox to 2em {heret\hss
\hbox orientation 0 xoffset -1mm to 2em {down?}\hss

%

Although one cannot mess to much with these low level scanners there was room for some optimization
so the penalty we pay for more keyword scanning in LuaMetaTgX is not that high. In fact, [often manage
to compensate adding features that have a possible performance hit with some gain elsewhere.

Anyway, it will be no surprise that there can be interesting side effects to keyword scanning. For instance,
using the two character keyword by in an advance can be more efficient because nothing needs to be
pushed back. The same is true for the sometimes optional equal:

\scratchskip = 10pt

Similar impacts on efficiency can be found in the way the end of a number is seen, basically anything not
resolving to a number (or digit).

\scratchcounter 10% space not seen, ends \cs
\scratchcounter =10% no push back of optional =
\scratchcounter = 10% extra optional space gobble
\scratchcounter = 10 % efficient ending of number scanning

91 Keywords

\scratchcounter = 10\relax % depending on engine less efficient

In the above examples scanning the number involves: skipping over spaces, checking for an optional
equal, skipping over spaces, scanning for a sign, checking for an optional octal or hexadecimal trigger
(single or double quote), scanning the number till a non digit is seen. In the case of dimensions there is
fraction scanning as well as unit scanning too.

In any case, the equal is optional and kind of a keyword. Having an equal can be more efficient then
not having one, again due to push back in case of no equal being seen, In the process spaces have been
skipped, so add to the overhead the scanning for optional spaces. In LuaMetaTgX all that has been op-
timized a bit. By the way, in dimension scanning pt is actually a keyword and as there are several di-
mensions possible quite some push back can happen there, but we scan for the most likely candidates
first.

All that said, we’re now ready for a surprise. The keyword scanner gets a string that it will test for, say to in
case of a box specification. It then will fetch tokens from whatever provides the input. A token encodes a
so called command and a character and can be related to a control sequence. For instance, the character
t becomes a letter command with related value 116. So, we have three properties: the command code,
the character code and the control sequence code. Now, instead of checking if the command code is a
letter or other character (two checks) a fast check happens for the control sequence code being zero. If
that is the case, the character code is compared. In practice that works out well because the characters
that make up a keyword are in the range 65 upto 90 and 97 upto 122, and all other character codes are
either below that (the ones that relate to primitives where the character code is actually a sub command
of a limited range) or much larger numbers that for instance indicate an entry in some array, where the
first useful index is above the mentioned ranges.

The surprise is in the fact that there is no checking for letters or other characters, so this is why the next
code will work too:!?

\catcode 0= 1 \hbox t0 10cm {...% 9% { begingroup
\catcode 0= 2 \hbox t0 10cm {...% % } endgroup
\catcode '0= 3 \hbox t0 10cm {...% % $ mathshift
\catcode 0= 4 \hbox t0 10cm {...% % & alignment
\catcode 0= 6 \hbox t0 10cm {...% % # parameter
\catcode 0= 7 \hbox t0 10cm {...} % " superscript
\catcode 0= 8 \hbox t0 10cm {...% 9% _ subscript
\catcode "0=11 \hbox t0 10cm {...%} % letter
\catcode '0=12 \hbox tO0 10cm $...%} % other

In the first line, when we would use change the catcode of T and use that one it would kind of fails because
they TgX sees a begin group character and starts the group, but as a second character in a keyword it’s
okay because TgX will not look at the category code.

Of course only the cases 11 and 12 make sense because one can imagine that messing with the category
codes of regular letters this way will definitely give problems with processing the text. In a case like:

$\catcode ‘0=3 \hbox to 10cm {oepstt % $ mathshift {oeps?
$\catcode '0=3 \hbox to 10cm {0epstt % $ mathshift {$eps?

we have several issues: the primitive control sequence \hbox has an o so TgX will stop after \hb which
can be undefined or a valid macro and what happens next is hard to predict. Going uppercase will work

3 No longer in LuaMetaTgX where we do a bit more robust check.

Keywords 92

but then the content of the box is bad because there the O enters math.
$\catcode '0=3 \hbox t0 10cm $0eps Oepsit % {$eps $epst

This will work because there are now two 0 in the box so we have balanced inline math triggers. But how
does one explain that to a user, who probably doesn’t understand where an error message comes from
in the first place. Anyway, this kind of tolerance is still not pretty so in LuaMetaTgX we now check for the
command code and stick to letters and other characters. On today’s machines (and even on my by now
ancient workhorse) the performance hit can be neglected. Actually, by intercepting the weird cases we
also avoid an unnecessary case check when we fall through the zero cs test. Of course that also means
that the above mentioned category code trickery doesn’t work any more: only letters and other characters
are now valid in keyword scanning. Now, it can be that some macro programmer actually used those side
effects but apart from some macro hacker being hurt because no longer mastering those details can be
showed off, it is users that we care more for, don’t we?

Now get me right, the above mentioning of performance of keyword and equal scanning is not that rele-
vant in practice. But for the record, here are some timings on a laptop with a i7-3849QM processor using
MingW binaries on a 64 bit MS Windows 10. The times are the averages of five times a million such as-
signments and advancements:

one million times terminal LuaMetaTgX LuaTgX
\advance \scratchcounter 1 space 0.068 0.085
\advance \scratchcounter 1 \relax 0.135 0.149
\advance \scratchcounter by 1 space 0.087 0.099
\advance \scratchcounter by 1 \relax 0.155 0.161
\scratchcounter 1 space 0.057 0.096
\scratchcounter 1 \relax 0.125 0.151
\scratchcounter =1 space 0.063 0.080
\scratchcounter =1 \relax 0.131 0.138

We differentiate between using a space as terminal or a \relax. The later is a bit less efficient because
more code is involved in resolving the meaning of that control sequence (which eventually boils down to
nothing) but nevertheless, these are not timings that one can loose sleep over, especially when the rest of
a decent TgX run is taken into account. And yes, LuaMetaTgX is a bit faster here than LuaTgX, but I would
be disappointed if that weren’t the case.

93 Keywords

