
LUAMETATEX
where do we stand

context 2020 meeting



luametatex — context 2020 meeting — when it started

When it started

• About three years ago the idea came up to go this route.

• At the 2018meeting it was first mentioned and those present were okay with it.

• Early 2019 the first beta release took place.

• At the 2019meeting the first more official version was presented.

• Around the 2020meeting we have more or less arrived at what I had in mind.

• At the 2021meeting I expect the code to be stable and repositories to be set up.

• At the 2022meeting we canmake the official transition fromMkIV to LMTX.

• Some new options are only enabled in my local cont-exp.tex file.

• Knowing that Wolfgang keeps an eye on all those changes makes memore daring.

• We aim to get less (but more efficient) macro code that on the average looks better.



luametatex — context 2020 meeting — why it started

Why it started

• There was an increasing pressure for a stable LuaTEX.

• There should be nomore changes to the interfaces, no more extensions.

• One can run into interesting comments on the web (as usual), like

– The LuaTEX program has ‘many bugs’.
– The LuaTEXmanual is bad.
– The LuaTEX program is too slow to be useful.
– The LuaTEX programwill never end up in distributions.
– The LuaTEX project is funded and developed in a commercial setting.

• I won’t comment on how I read these (demotivating) comments because . . .

• . . . it anyway often says more about the writer (attitudes) than about LuaTEX.

• I also looks like (non ConTEXt) users are charmed by LuaTEX, and themore they code, the more
we need to freeze.

• So, hopefully, the LuaMetaTEXdevelopment does not interfere badlywith developments outside
the ConTEXt community.



luametatex — context 2020 meeting — the development

The development
The summary on the next pages is partial. More can be found in articles and documents that come
with the distribution.

• LuaTEX started out as cweb code . . . that eventually became just C . . . which in LuaMetaTEX has
been detached from the (complex) infrastructure.

• The basic idea is to only keep the core of TEX, but for instance font loading, file handling and the
backend are gone.

• As a consequence the code has been reorganized (shuffled around).

• I experimented a lot without bothering about usage elsewhere and I like the result so far.

• The ConTEXt distribution will at some point ship with the source.



luametatex — context 2020 meeting — file handling

File handling

• All file handling goes via Lua, also read and write related primitives.

• The same is true for terminal (console) handling.

• Part of that (the writing) was actually kind of extension code in TEX and partly a system depen-
dency.

• The 𝜀-TEX pseudo file \scantokens primitive uses the samemechanism as Lua does.



luametatex — context 2020 meeting — the macro machinery

Themacromachinery

• There are extensions to the waymacro arguments are handled (less clumsymacros).

• There are extra if tests (makes for nicer macros).

• Elsebranches inconditionscanbecollapsedusing\orelseand\orunlesswhichgivescleaner
low level code.

• Tracing gives more detail about node properties and also shows attributes.

• Some new data carriers have been added that can be played with from Lua.

• Macros can efficiently be frozen (new) andprotected (redone) and the concepts ‘long’ andouter
are gone.1

• Saving and restoring is somewhat more efficient (partly a side effect of wider memory).

1 InConTEXtmacroswerealways\longandnever\outer. Most commandswereunexpandable (also inMkII, pre𝜀-TEX).
So, users won’t notice this.



luametatex — context 2020 meeting — language

Language

• Language control settings now use less parameters but bit sets instead.

• Only basic parameters are stored in the format file now.

• There are all kind of small improvements.



luametatex — context 2020 meeting — typesetting

Typesetting

• Attributes (the lists and states) are implementedmore efficiently.

• The paragraph state is stored with the paragraph.

• Paragraphs can be normalized and options are now set with bit sets.

• Boxes carry orientation related information (offsets, rotation, etc).

• Some nodes carry more information.

• Directions are mostly gone (it’s up to the backend).

• Migrated content is optionally kept with boxes.



luametatex — context 2020 meeting — math

Math

• Somemath concepts have been extended (like prescripts and somemore control over styles).

• There are plenty of new control details.

• The math parameter settings obey grouping in a math list.

• We can havemath in discretionaries in text andmore advanced discretionaries inmath aswell.



luametatex — context 2020 meeting — fonts

Fonts

• Font specification information no longer uses the string pool (which saves a lot).

• Of course we still have the basic font handler.

• We only store what is needed for traditional TEX font handling.

• Virtual fonts are evenmore virtual (also a backend thing) so we can have more features.



luametatex — context 2020 meeting — the code

The code

• Artifacts from Pascal and cweb have been removed.

• Languages, fonts, marks etc are no longer ‘register’ based.

• The token interface is more abstract and no longer presents strange numbers.

• Some internals have been reconstructed because of cleaner Lua interfacing.

• A side effect of this is better abstraction of the equivalent ranges.

• The code has beenmademore abstract (and looks easier in e.g. Visual Studio).

• The compile farm is used to check if compilation works out of the box.

• Compilation is fast and easy, otherwise this project was not possible.

• Readability of the code is constantly improved (the usual: has to look okay in my editor).

• The code has beenmademostly independent of specific operating system needs.

• Wide characters are dealt with in Windows interfaces.



luametatex — context 2020 meeting — libraries

Libraries

• We really want to stay lean andmean: the engine is also a Lua engine.

• All code is included, a few libraries are used, but these are small, old and stable.

• In addition some helper libraries are made (including pplib by Pawel).

• What we ship is what you get: ConTEXt will not depend onmore than that.

• If something is updated (at all) the differences are checked first.



luametatex — context 2020 meeting — the lua engine

The Lua engine

• We use the latest (even alpha) Lua (5.4) because LuaMetaTEX is a good test.

• There is no support for LuaJIT and the ffi interface is gone.

• There is a limited set of libraries that we support but no code is (and will be) included.

• There are less callbacks (because we only have a frontend).

• There are more token scanners and some options have been added.



luametatex — context 2020 meeting — efficiency

Efficiency

• We benefit somemore from the wider memory words (some constructs could go).

• The format file is smaller and not longer compressed.

• Memory management is nowmostly dynamic and usage is much lower.

• There are more statistics (also as side effect of memory management).

• Dumping the format has beenmade a bit more robust and is faster.

• The core engine performs a bit better (machines don’t get that much faster).

• We want to be prepared for future architectures.

• Wemanage to keep the binary way below 3 MB.

• The lot runs quite well on e.g. a Raspberry Pi 4.



luametatex — context 2020 meeting — upgradedmetapost

Upgraded MetaPost

• All (eight bit) font stuff has been stripped from the MetaPost library.

• The library no longer has a PostScript backend.

• The library provides scanners that make extensions possible.

• All file io goes via Lua.

• There are a few additions like pre/postscripts for clip and bounding boxes.



luametatex — context 2020 meeting — praise for the users

Praise for the users

• Much has been done and I probably forget to mention a lot.

• The number of bugs is relative small compared to what gets changed and added.

• The test suite gets ran very often, also to check if performance is okay.

• I could only do this because the ConTEXt users are so tolerant.

• Some seem to constantly check for updates so they help with fast testing.

• The ConTEXt code base gets stepwise adapted (split files) which again forces users to test.

• It takes a lot of time because we take small steps in order not to mess up.

• I would not do it without the positive attribute of the ConTEXt users.

• It’s all aboutmotivation and I thank the ConTEXt users for providing this friendly and non-com-
petitive bubble!



luametatex — context 2020 meeting — todo

Todo

• Maybe add somemore sanity checks in order to catch errors intruded by callbacks. Maybe add
somemore tracing too.

• Explore variants, like having registers in dedicated eqtb tables so that we can allocate them
dynamically (mostly for the fun of doing it).

• Add somemore documentation (read: addition cq. remarks aboutwhere the original documen-
tation no longer applies, but we have years for doing that).

• Update the manual (which is done occasionally in batch based on print-outs; there is no real
need to hurry because we still experiment).

• Apply some of the new stuff in LMTX. Take up some challenges.

• Wrap up new functionality (once it’s stable) in articles and other documents.



luametatex — context 2020 meeting — and luatex?

And LuaTEX?

• Of course LuaTEX will be maintained! After all, MkIV needs it and it serves as reference for the
front-end rendering and back-end generation when we’re messing with LuaMetaTEX.

• It is used by LATEX and there are now also plain inspired packages. Because there are spin-offs
(LATEX has settled on a version with built-in font processing) we cannot change much.

• And LuaTEX being nicely integrated into TEXLive is another argument for not touching it too
much.

• I have no clue of LuaTEX usage but that fact alone already makes an argument for being even
more careful. It’s bad advertisement for TEX when users who use the low level interfaces get
confronted with conceptual changes.

• So in the end not much will be back ported to LuaTEX: at some point the code base became too
different and it’s the price paid for the stability demand. That way we cannot introduce new
bugs either. It also doesn’t pay of.

• But, a few non-intrusive thingsmight actually trickle into it in due time, also out of self interest:
it might help to share code between MkIV and LMTX.


